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We study the small-amplitude transverse oscillations of a planar network of N sections of
string which are all attached at one common extremity. This network is called an N-string.
When the N sections of string are of "nite length, we "nd Fourier series expressions
describing the vibrations perpendicular to the plane containing the N-string at rest. The
standing perpendicular wave energies of a plucked symmetric N-string are analyzed. It is
found that higher harmonics can be excited to an energy level above that of the "rst
harmonic simply by plucking at an appropriate location along one of the strings. This result
is in contrast to an ordinary plucked string and may lead to interesting applications; most
notably the construction of new musical instruments. We also describe the movements of
one travelling perpendicular wave in an N-string as well as the interaction of such waves.
A method for increasing or reducing the amplitude of travelling perpendicular waves is
outlined.

( 2000 Academic Press
1. INTRODUCTION

The vibrating string problem, in which a tightly stretched #exible string is initially
perturbed and then allowed to vibrate, remains one of the important problems of
mathematical physics [1] and acoustics [2]. Also, because of its simplicity, it has become
a classical problem in the theory of partial di!erential equations [3]. In this work we
consider an extension of the vibrating string problem.

We de"ne an N-string as a planar network of N strings that are connected at one
common extremity. The common extremity, or the junction point, is mobile while the other
extremities are all "xed (see Figure 1). The aim of this paper is to study the linearized
vibrations of an N-string having "nite or in"nite length strings. We will obtain Fourier- and
d'Alembert-type expressions describing the vibrations which are perpendicular to the plane
containing the N-string at rest. These solutions for the linearized problem are useful in two
regards: (1) they describe the small-amplitude perpendicular oscillations of the N-string, and
(2) knowledge of the eigenmodes and eigenvalues of this linear problem is essential for any
reduction method (for example, center manifold or Lyapunov}Schmidt reduction, see
reference [4]) which would be used to study the stability and bifurcations of the rest state of
the N-string in a non-linear model.

The analysis of the small-amplitude vibrations of an N-string is interesting from an
acoustic point of view. Let us "rst recall that all string instruments produce sounds that are
0022-460X/00/460147#23 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic of a 5-string. All the extremeties are "xed while the junction point is free to move.
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well described through the analysis of small-amplitude vibrations of an ordinary string
which is plucked or struck. The sound produced by each string of such instruments can be
decomposed into modes which have energies that are always dominated by the energy of its
fundamental mode. If the string is plucked at its midpoint, the energy of its modes are in
harmonic relation with the energy of its fundamental mode. In this case, over 80 per cent of
the total energy is in the fundamental mode. One of the goals of this paper is to show that
the relationships between the energies of the modes of an N-string are signi"cantly di!erent
from the case of an ordinary string. In fact, we will show that higher modes of an N-string,
N'2, can be excited to energy levels above that of the fundamental mode, simply by
plucking at an appropriate location along one of the strings which compose a symmetric
N-string. We will also show that when such an N-string is plucked at the junction point of
its strings, the energy levels of its modes are in the same harmonic relations as in the case of
an ordinary string. These characteristics of the N-string should give instruments, made up
of N-strings, unique acoustic features.

The paper is organized as follows. In section 2, we present our mathematical model and
show the uncoupling of planar and perpendicular waves of an N-string at the linear level.
We establish some theoretical results and study the vibrations of standing perpendicular
waves of an N-string in section 3. In section 4, we analyze the standing perpendicular wave
energies of a symmetric N-string. In section 5, we consider the vibrations of an N-string
having all but one identical strings. We describe the motion of one travelling perpendicular
wave in an N-string in section 6. Section 7 deals with interactions of travelling
perpendicular waves "rst in one N-string and second in a tree of N-strings. Section 8
contains the conclusion and a discussion of our results.

2. LINEARIZED MATHEMATICAL MODEL

In the mathematical treatment that follows, we make the following assumptions about
the N-string:

1. Each string of the N-string is #exible and elastic.
2. The elasticity of each string of the N-string satis"es Hooke's law.
3. The N-string is subject to no internal nor external friction.
4. At rest, the N-string is in a plane.

Using a variational principle, Schmidt [5] presents a non-linear system of partial
di!erential equations with appropriate boundary and coupling conditions which describe
the planar vibrations of an arbitrary planar network of strings. He then derives and studies
the linearization of this model about the rest position of the network.
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Without di$culty, one can extend Schmidt's approach to describe the full
three-dimensional motion of a planar network of strings and the corresponding linearized
model. Speci"cally, let x

i
, i"1, 2,2, N, be the arclength parameter for the ith string at rest,

whose &&natural'' length is assumed to be l
i
, i.e., 0)x

i
)l

i
, where we assume that the

common junction point of the strings is at x
i
"0, i"1,2,N. Also, let ri(x

i
, t) denote

the three-dimensional vector which gives the deviation from the rest position at time t of the
point at arclength position x

i
on the ith string. We can assume, without loss of generality,

that the "rst two components of ri give the motions in the plane of the N-string and that the
third component of ri gives the motions perpendicular to the plane of the N-string. Then
following Schmidt [5], the linearized boundary value problem for the ri is the following:

ri
tt
"C

i
ri
xixi

, i"1, 2,2, N, (1)

r1(0, t)"r2(0, t)"2"rN(0, t), (2)

ri(l
i
, t)"0, i"1, 2,2, N, (3)

N
+
i/1

o
i
C
i
ri
xi
(0, t)"0, (4)

where C
i
is a symmetric block-diagonal 3]3 matrix of the form

C
i
"A

c
i1

c
i2

0

c
i2

c
i3

0

0 0 c2
i
B ,

where c
i
'0, c

i1
, c

i2
and c

i3
are constants depending on the tension and the Hooke's law

constant for the ith string, as well as on the mass density o
i
'0 of the ith string.

Consequently, equations (1)}(4) uncouple into planar components and a perpendicular
component. Note that this uncoupling does not occur for the full non-linear model [4]. If
we designate by u

i
the third component of the vector ri, then equations (1)}(4) lead to the

following equations:

ui
tt
"c2

i
ui
xixi

, i"1, 2,2, N, (5)

u1 (0, t)"u2(0, t)"2"uN (0, t), (6)

ui(l
i
, t)"0, i"1, 2,2,N, (7)

N
+
i/1

c2
i
o
i
ui
xi
(0, t)"0, (8)

We wish to solve the problem (5)}(8) subject to the initial conditions

ui (x
i
, 0)"Fi(x

i
), ui

t
(x

i
, 0)"Gi(x

i
), i"1,2,2,N, (9)

where the functions Fi and Gi are respectively continuous and piecewise continuous on
[0, l

i
].

3. STANDING WAVES

In this section as well as in sections 4 and 5, we will assume that all strings of the N-string
have "nite lengths.
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We will solve the problem (5)}(9) by the method of separation of variables, which will lead
to a matrix Sturm}Liouville system. Therefore, we will begin our study by giving some
information relevant to our problem on the eigenfunctions and eigenvalues of this kind of
Sturm}Liouville system.

3.1. STURM}LIOUVILLE PROBLEM

A normalization of the strings will facilitate our work. Let x :"nx
i
/l
i
for i"1, 2,2, N. It

follows that 0)x)n parameterizes each string. If one de"nes vi(x, t) :"ui (l
i
x/n, t) for

i"1, 2,2,N, then the problem (5)}(9) becomes

vi
tt
"

n2c2
i

l2
i

vi
xx

, i"1, 2,2,N, (10)

v1(0, t)"v2(0, t)"2"vN(0, t), (11)

vi(n, t)"0, i"1, 2,2,N, (12)

N
+
i/1

c2
i
o
i

l
i

vi
x
(0, t)"0, (13)

vi (x, 0)"Fi(l
i
x/n), vi

t
(x , 0)"Gi(l

i
x/n), i"1,2,2,N. (14)

Let C :"diag(n2c2
1
/l2
1
, n2c2

2
/l2
2
,2,n2c2

N
/l2
N
) and ¸ :"diag(l

1
o
1
, l

2
o
2
,2, l

N
o
N
). Let us also

designate by S , T
L

the scalar product on RN obtained from the matrix ¸. Hence, if
U :"(/

1
, /

2
,2,/

N
)T, W :"(t

1
, t

2
,2,t

N
)T3RN, then

SU, WT
L
"l

1
o
1
/
1
t

1
#l

2
o
2
/

2
t
2
#2#l

N
o
N
/

N
t
N
.

Note that since C¸"¸C then SCU, WT
L
"SU, CWT

L
.

Let L2[0, n] and W1[0, n] be the usual Hilbert and Sobolev spaces on [0, n], and let us
denote K :"(L2[0, n])N and X :"(W1[0, n])N, i.e., the set of N-dimensional vector-valued
functions whose components are respectively in L2[0, n] and W1[0, n]. We will use the
following scalar product, induced from S , T

L
, on the Hilbert space K :

SSU , WTT
L
:"P

n

0

SU (x), W(x)T
L
dx .

Let

D :"MU3X : /1(0)"/2(0)"2"/N(0), U(n)"0, SCU@(0), (1, 1,2, 1)TT
L
"0N.

We consider the operator A : DPK de"ned by AU"!CUA. It can be shown that the
operator A is symmetric with respect to SS ,TT

L
on D. It then follows that the eigenvalues of

A are real numbers and if W
1
and W

2
are two eigenfunctions of A corresponding respectively

to the eigenvalues u
1

and u
2
, u

1
Ou

2
, then SSW

1
, W

2
TT

L
"0. We also have that the

spectrum of A is composed only of discrete eigenvalues of multiplicity at most 2N and the
eigenvalues of A constitute a real monotone sequence Mu

n
N such that

u
1
)u

2
)2)u

n
)u

n`1
)2, lim

n?=
u

n
"R.
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Finally, we have that there exists an orthonormal set MU
i
N of eigenfunctions of A which is

complete in K (see Appendix A for proof ).

3.2. SOLVING THE GENERAL CASE

In the previous section it was shown that the eigenfunctions of A form a basis for K. We
will now show, using the method of separation of variables, that this basis is the &&natural''
basis in which to study (10)}(14). We therefore set

vi(x, t)"Xi(x)¹(t), i"1, 2,2, N, (15)

where the Xi are functions of x only and ¹ is a function of t only. Substitution of equation
(15) into equations (10)}(14) produces

¹A#u¹"0, (16)

CXA#uX"0, (17)

X1(0)"X2 (0)"2"XN(0), (18)

X(n)"0, (19)

SCX@(0), (1, 1,2, 1)TT
L
"0, (20)

where X :"(X1, X2,2, XN)T and !u is the separation constant. It is straightforward to
show that equations (17)}(20) has non-trivial solutions only if u'0. Thus, we can set

j :"Ju'0. Consequently, equation (16) yields

¹ (t)"K
1
cos jt#K

2
sin jt,

where K
1
and K

2
are arbitrary constants. We also have that X is an eigenfunction of A with

eigenvalue j2. The solution of equation (17) is

Xi(x)"Ai cos
jl

i
x

nc
i

#Bi sin
jl

i
x

nc
i

, i"1, 2,2,N,

where the Ai and Bi are arbitrary constants. Conditions (18) leads to

A1"A2"2"AN, (21)

while condition (20) gives

N
+
i/1

l
i
Bi"0, (22)

where we de"ne l
i
:"c

i
o
i
. Finally, equations (19), (21) and (22) lead to the following system

of equations:

A1 cos l1j
c1
!1l1 (B2l

2
#2#BNl

N
) sin l1j

c1
"0,

(23)
A1 cos lij

ci
#Bi sin lij

ci
"0, i"2, 3,2, N.
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Thus, j2 is an eigenvalue of the operator A if and only if j is such that equation (23) has
a non-trivial solution for A1, B2,2, BN. It is easy to see that this occurs if and only if j is
such that

N
+
i/1
C

l
i

l
1

cosA
l
i
j
c
i
B

N
<
j/1
jOi

sinA
l
j
j

c
j
BD"0. (24)

Equation (24) has an in"nite number of roots 0(j
1
)j

2
)2)j

n
)j

n`1
)2, with

lim
n?=

j
n
"R. Note that the actual values of these roots depend on the values of the l

i
,

l
i
and c

i
.

Let j be a solution to equation (24). There are two possibilities: either sin (l
i
j/c

i
)O0 for

all i"1, 2,2, N, or there exists an i
1
3M1, 2,2,NN such that sin (l

i1
j/c

i1
)"0. It turns out

that these two cases are intimately linked to whether or not the real numbers c
i
/l
i
,

i"1, 2,2,N are incommensurate. We study each case separately below.

3.2.1. Incommensurate case

Suppose the numbers c
i
/l
i
, i"1, 2,2, N, are incommensurate, i.e., c

i
l
j
/c

j
l
i
NQ, for all

i, j"1, 2,2,N, iOj. Also suppose j is a solution of equation (24) such that there exists an
i
1
3M1, 2,2, NN with sinMl

i1
j/c

i1
)"0. Then clearly j"n

1
nc

i1
/l
i1

for some positive integer
n
1
. Equation (24) in this case reduces to

l
i1

l
1

cos n
1
n

N
<
j/1
jOi1

sinA
c
i1
l
j

c
j
l
i1

n
1
nB"0,

from which it follows that there exists a i
2
3M1, 2,2, NN, i

2
Oi

1
, and a positive integer

n
2
"c

i1
l
i2
n
1
/c

i2
l
i1
. The numbers c

i1
/l
i1

and c
i2
/l
i2

would thus be commensurate, which is
a contradiction. This means that, in this case, every solution j of equation (24) is such
that sin(l

i
j/c

i
)O0 for i"1, 2,2,N. Consequently, if the c

i
/l
i
, i"1, 2,2,N, are

incommensurate, equation (24) has an in"nite number of solutions j
k
"a

k
, k3N*, and

each a
k

is such that sin(l
i
a
k
/c

i
)O0 for i"1, 2,2,N. The corresponding eigenvalue is

simple and the eigenfunction is given by

P
k
(x) :"Ccos

l
1
a
k
x

nc
1

#A
l
2

l
1

cot
l
2
a
k

c
2

#2#

l
N

l
1

cot
l
N
a
k

c
N
B sin

l
1
a
k
x

nc
1

,

(25)

cos
l
2
a
k
x

nc
2

!Acot
l
2
a
k

c
2
B sin

l
2
a
k
x

nc
2

,2, cos
l
N
a
k
x

nc
N

!Acot
l
N
n

c
N
B sin

l
N
a
k
x

nc
N
D
T
.

Hence, for any U in the Hilbert space K, we have

U (x)"
=
+
k/1

A
k
P

k
(x) ,

where

A
k
:"

SSU, P
k
TT

L
SSP

k
, P

k
TT

L

.
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sThis use of the term resonance should not be confused with the terminology used in the theory of PoincareH
normal forms of non-linear ordinary di!erential equations. For our purposes, we will need the full chain of
equations in equation (26). If one considers just the individual equalities, and if the k

i
were representing the

fundamental frequencies of the movement, then the k
i
would form, two by two, resonances in the usual sense.

Therefore, the solution (possibly a weak solution) of equations (10)}(14), where the numbers
c
i
/l
i
, i"1, 2,2, N, are incommensurate, can be written as

[v1(x, t), v2(x, t),2, vN (x, t)]T"
=
+
k/1

(a
k
cos a

k
t#aL

k
sin a

k
t)P

k
(x),

where

a
k
:"

SSF, P
k
TT

L
SSP

k
, P

k
TT

L

, aL
k
:"

SSG, P
k
TT

L
a
k
SSP

k
, P

k
TT

L

for

F (x) :"[F1(l
1
x/n), F2(l

2
x/n),2,FN(l

N
x/n)]T ,

G(x) :"[G1(l
1
x/n), F2 (l

2
x/n),2, GN(l

N
x/n)]T .

The solution of the problem (5)}(9) is "nally obtained through the substitution

ui(x
i
, t)"vi(nx

i
/l
i
, t), i"1, 2,2, N.

3.2.2. Commensurate case

The case where some of the c
i
/l
i
are commensurate requires special care. A few new

de"nitions are in order. Let k
1
, k

2
,2,k

N
be positive real numbers. We will call resonances

of the positive numbers k
1
,2,k

N
a relation of the form

n
1
k
i1
"n

2
k
i2
"2"n

r
k
ir
, r3M2, 3,2,NN, (26)

where

d i
1
, i

2
,2, i

r
are distinct elements of M1, 2,2, NN,

d n
1
, n

2
,2, n

r
are positive integers without common divisor larger than 1, and

d the set Mk
i1
,2,k

ir
N is maximal in the sense that there exists no integer k such that

n
1
k
i1
"kk

j
for some j3M1, 2,2, NNCMi

1
, i

2
,2, i

r
N.

If s'r, we will say that

n
1
k
i1
"n

2
k
i2
"2"n

r
k
ir

is a subresonance of the resonance

m
1
k
j1
"m

2
k
j2
"2"m

s
k
js

if Mk
i1
, k

i2
,2,k

ir
N is a proper subset of Mk

j1
, k

j2
,2,k

js
N. In this case, there exists a number

K3N, K'1, such that if k
ia
"k

jb
for i

a
3Mi

1
, i

2
,2, i

r
N and j

b
3M j

1
, j

2
,2, j

s
N, then

m
b
"Kn

a
. We will say that K is the order of inclusion of the subresonance in the resonance.

Finally, we will say that a resonance is maximal if it is not a subresonance of any other
resonance.
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According to section 3.2.1 above, we know that if j is a solution to equation (24) such that
there exists an i3M1, 2,2,NN with sin(l

i
j/c

i
)"0, then there must be a resonance of the real

numbers

c
1

l
1

,
c
2

l
2

,2,
c
N

l
N

.

In general, there will be q such resonances which we write as

n
1,1

c
i1,1

l
i1,1

"n
1,2

c
i1,2

l
i1,2

"2"n
1,p1

c
i1,p1

l
i1,p1

,

n
2,1

c
i2,1

l
i2,1

"n
2,2

c
i2,2

l
i2,2

"2"n
2,p2

c
i2,p2

l
i2,p2

, (27)

F F F

n
q,1

c
iq,1

l
iq,1

"n
q,2

c
iq,2

l
iq,2

"2"n
q,pq

c
iq,pq

l
iq,pq

,

where 2)p
k
)N for k"1, 2,2, q. We can assume without loss of generality that

i
k,1

(i
k,2

(2(i
k,pk

for each k"1, 2,2, q, and there exists an integer M, 1)M)q,
such that the M "rst resonances in (27) are maximal, and the remaining resonances (if any)
are not maximal.

Let us consider the jth maximal resonance in (27), i.e., 1)j)M. For any positive integer
k, we have that j

k
"kn

j,1
nc

ij,1
/l
ij,1

is a solution of equation (24), and there are p
j
!1

orthogonal (with respect to SS , TT
L
) eigenfunctions for each value of k; these eigenfunctions

will be designated by Q
j,k,m

(x) for 1)m)p
j
!1. The components of Q

j,k,m
(x) are as

follows:

Qi
j,k,m

(x)"0, if iNMi
j,1

, i
j,2

,2, i
j,pj

N

and

Q
j,k,1

(x) :

i
g
g
g
j
g
g
g
k

Qij,1
j,k,1

(x)"C
1

l
ij,1
A
l
ij,2

n
j,2

#

l
ij,3

n
j,3

#2#

l
ij,pj

n
j,pj

BD sin kn
j,1

x,

Qij,2
j,k,1

(x)"
!1

n
j,2

sin kn
j,2

x,

F

Qij,pj

j,k,1
(x)"

!1

n
j,pj

sin kn
j,pj

x ,

Q
j,k,2

(x) : G
Qij,1

j,k,2
(x)"0,

Qij,2
j,k,2

(x)"C
1

l
ij,2
A
l
ij,3

n
j,3

#2#

l
ij,pj

n
j,pj

BD sin kn
j,2

x,

Qij,3
j,k,2

(x)"
!1

n
j,3

sin kn
j,3

x,

F

Qij,pj

j,k,2
(x)"

!1

n
j,pj

sin kn
j,pj

x ,
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F

Q
j,k,pj~1

(x) :

i
g
g
g
j
g
g
g
k

Qij,1
j,k,pj~1

(x)"Qij,2
j,k,pj~1

(x)"2"Qij,pj~2

j,k,pj~1
(x)"0,

Qij,pj~1

j,k,pj~1
(x)"C

1

l
ij,pj~1

A
l
ij,pj

n
j,pj
BD sin kn

j,pj~1
x,

Qij,pj
j,k,pj~1

(x)"
!1

n
j,pj

sin kn
j,pj

x .

Now, suppose that M(q, i.e., there is at least one resonance in equation (27) which is not
maximal. If jJ is an integer such that M(jJ)q, then there exists a set MK

1
, K

2
,2,KuN of

orders of inclusion of the jJ th subresonance into the other resonances. We still have that
j
k
"kn

j
J
,1

nc
ijJ ,1

/l
ijJ ,1

is a solution to equation (24) for any integer k; however, if k is divisible by
any one of the integers K

1
, . . . ,Ku , then this eigenvalue is already accounted for in

a resonance which contains the jJ th resonance in equation (27) as a subresonance. Hence,
we only consider the integers kJ which are not a multiple of any of K

1
,2, Ku . The

corresponding orthogonal eigenfunctions QI jJ ,kJ ,m (x) are given by the same expressions as the
Q

j,k,m
(x) previously given.

In addition to the eigenfunctions Qj,k,m (x) and QI jJ ,kJ ,m (x), eigenfunctions of the form (25) are
also present when the c

i
/l

i
, i"1, 2,2,N, are commensurate. In fact, suppose there are

q resonances given by equation (27). Then there exists an in"nite number of solutions to (24),
j
k
"a

k
, k3N*, for which sin (l

i
a
k
/c

i
)O0, i"1, 2,2, N. The corresponding eigenfunctions

are given by equation (25) (see Appendix B for the proof).
Hence, if U is any element of K, we can write

U(x)"
=
+
k/1

A
k
P
k
(x)#

M
+
j/1

pj~1
+

m/1

=
+
k/1

B
j,k,m

Q
j,k,m

(x)#
q
+

jI/M`1

pj
J~1
+

m/1

+
kJ

CjJ ,kJ ,mQI jJ ,kJ ,m (x) ,

with the understanding that if M"q, then the third sum in the above formula does not
appear. It is also understood that in this third sum, kJ only takes on restricted integer values
as previously described. The coe$cients are given by

A
k
:"

SSU, P
k
TT

L
SSP

k
, P

k
TT

L

, B
j,k,m

:"
SSU, Q

j,k,m
TT

L
SSQ

j,k,m
, Q

j,k,m
TT

L

, CjJ ,kJ ,m :"
SSU, QI jJ ,kJ ,mTT

L
SSQI jJ ,kJ ,m , QI jJ ,kJ ,mTT

L

.

We have thus shown that if there are q resonances of the numbers c
i
/l
i
, i"1, 2,2,N, given

by equation (27) (the "rst M being maximal), the solution (possibly a weak solution) of
equations (10)}(14) can be written as

[v1(x, t), v2 (x, t),2, vN (x, t)]T

"

=
+
k/1

(a
k
cos a

k
t#aL

k
sin a

k
t)P

k
(x)

#

M
+
j/1

pj~1
+

m/1

=
+
k/1

[(b
j,k,m

cos(kn
j,1

nc
ij,1

t/l
ij,1

)#bL
j,k,m

sin(kn
j,1

nc
ij,1

t/l
ij,1

)]Q
j,k,m

(x)

#

q
+

j
8
/M`1

pj
J~1
+

m/1

+
kJ

[cjJ ,kJ ,m cos(kJ njJ ,1
nc

ij
J
,1
t/l

ij
J
,1
)#cL jJ ,kJ ,m sin(kJ njJ ,1

nc
ijI ,1

t/l
ijI ,1

)]QI jJ ,kJ ,m(x),
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where

a
k
:"

SSF, P
k
TT

L
SSP

k
, P

k
TT

L

, aL
k
:"

SSG, P
k
TT

L
a
k
SSP

k
, P

k
TT

L

,

b
j,k,m

:"
SSF, Q

j,k,m
TT

L
SSQ

j,k,m
, Q

j,k,m
TT

L

, bL
j,k,m

:"
l
ij,1

SSG, Q
j,k,m

TT
L

kn
j,1

c
ij,1

nSSQ
j,k,m

, Q
j,k,m

TT
L

,

cjJ ,kJ ,m :"
SSF, QI jJ ,kJ ,mTT

L
SSQI jJ ,kJ ,m , QI jJ ,kJ ,mTT

L

, cjJ ,kJ ,m :"
l
ijJ ,1

SSG, QI jJ ,kJ ,mTT
L

knjJ ,1
c
ijJ ,1

nSSQI jJ ,kJ ,m , QI jJ ,kJ ,mTT
L

for

F(x) :"[F1(l
1
x/n), F2(l

2
x/n),2,FN(l

N
x/n)]T ,

G(x) :"[G1(l
1
x/n), G(l

2
x/n),2,GN(l

N
x/n)]T .

The solution of the problem (5)}(9) is "nally obtained through the substitution

ui(x
i
, t)"vi(nx

i
/l
i
, t), i"1, 2,2,N.

4. A PLUCKED N-SYMMETRIC N-STRING AND ITS ENERGY

In this section, we will apply the results of the previous section in order to characterize the
standing perpendicular waves of a plucked N-symmetric N-string, i.e., an N-string which is
such that l

1
"l

2
"2"l

N
": l, c

1
"c

2
"2"c

N
": c and o

1
"o

2
"2"o

N
":o.

These conditions on the c
i
and o

i
imply that the N strings of the N-string form equal angles

of 2n/N at their junction point, when the N-string is at rest (see Figure 2).
Figure 2. Schematic of a 8-symmetric 8-string.
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We will suppose that our N-symmetric N-string vibrates following an initial
displacement corresponding to the plucking of the string i"N to the height h at x

N
"l/m,

where m3R, m'1. The factor 1/m indicates where the plucking is done along the string
i"N. When mPR, the plucking is done at the junction point of the N strings. The
functions which specify the initial conditions of the N-string are Gi(x

i
)"0 for 0)x

i
)l

and i"1, 2,2,N, and

Fj(x
j
) :"sA1!

x
j
l B, 0)x

j
)l, j"1, 2,2, N!1,

FN(x
N
) :"

i
g
j
g
k

x
N
l

(h!s)m#s if 0)x
N
)l/m ,

mh

m!1 A1!
x
N
l B if l/m(x

N
)l ,

where

s :"
mh

N#m!1
.

Note that in this case, there is one and only one resonance which is

c
1

l
1

"

c
2

l
2

"2"

c
N

l
N

.

The solutions of equation (24) and the corresponding eigenfunctions are given by

j
k
"a

k
"Ak!

1

2Bnc/l, j
k
"knc/l, k3N* ,

and

P
k
(x)"[1, 1,2, 1]T cos (k!1

2
)x,

Q
1,k,1

(x)"[(N!1),!1,!1,2,!1]T sin kx ,

Q
1,k,2

(x)"[0, (N!2),!1,!1,2,!1]T sin kx ,

F

Q
1,k,N~2

(x)"[0, 0,2, 2,!1,!1]T sin kx ,

Q
1,k,N~1

(x)"[0, 0,2, 0, 1,!1]T sin kx .

Applying the results of section 3 with these eigenvalues and eigenfunctions, we "nd

uj(x
j
, t)"

2hm2

n2(m!1)(N#m!1)

=
+
k/1
C
cos (k!1

2
)n/m

(k!1
2
)2

cos
(k!1

2
)nx

j
l

cos
(k!1

2
)nct

l

!

sin kn
m

k2
sin

knx
j

l
cos

knct

l D (28)
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for j"1, 2,2,N!1, and

uN(x
j
, t)"

2hm2

n2(m!1)(N#m!1)

=
+
k/1
C
cos (k!1

2
)n/m

(k!1
2
)2

cos
(k!1

2
)nx

N
l

cos
(k!1

2
)nct

l

#(N!1)
sin kn

m
k2

sin
knx

N
l

cos
knct

l D . (29)

Expressions (28) and (29) show that the vibrations of an N-symmetric N-string can be
represented in terms of the functions ui(x

i
, t), i"1, 2,2,N, which decompose into in-phase

harmonics with frequencies f
n
:"nc/4l .

We now determine the energy contained in each harmonic of the N-string vibrations. The
energy of any one of these harmonics is the sum of its kinematic and potential energies in
each of the N strings of the N-string. The kinematic Ki

n
and potential<i

n
energies of the nth

harmonic of the ith string, n3N*, i"1, 2,2,N, are given by

Ki
n
"

o
2 P

l

0

[(ui
n
)
t
(x

i
, t)]2dx

i

and

<i
n
"

oc2

2 P
l

0

[(ui
n
)
x
(x

i
, t)]2dx

i
.

The total energy E
n
(N, m, h) of the nth harmonic is thus

E
n
(N, m, h)"

N
+
i/1

(Ki
n
#<i

n
)"

i
g
j
g
k

4oc2h2m4N(cos nn
2m

)2

n2ln2(m!1)2 (N#m!1)2
if n is odd,

4oc2h2m4N(N!1)(sin nn
2m

)2

n2ln2(m!1)2 (N#m!1)2
if n is even.

Now, since we have conservation of energy, the total energy E (N, m, h) of all the
harmonics of the N-string is the same as its initial energy, which is the potential energy
associated with its initial displacement. We easily obtain that

E(N, m, h)"
oc2Nm2h2

2l(m!1)(N#m!1)
.

The fraction of the total energy in the nth harmonic is therefore given by

R(N, m, n) :"
E
n
(N, m, h)

E (N, m, h)
"

i
g
j
g
k

8m2(cos nn
2m

)2

n2n2(m!1)(N#m!1)
if n is odd,

8m2(N!1) (sin nn
2m

)2

n2n2(m!1)(N#m!1)
if n is even.

(30)

From (30), one immediately obtains

lim
m?=

R(N, m, n)"

i
g
j
g
k

8

n2n2
if n is odd,

0 if n is even.
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and

R(m, n) :" lim
N?=

R (N, m, n)"

i
g
j
g
k

0 if n is odd,

8m2(sin nn
2m

)2

n2n2(m!1)
if n is even.

(31)

Expression (30) shows that R (N, m, 2k!1)"0 if m divides 2k!1, and R(N, m,2k)"0 if
m divides k. Using equation (30), it is moreover easy to show that R(N, m, 2)*R(N, m, 1)
for 1(m)n/arccos((N!3)/(N!1)) and N3N, N'2. Similar inequalities can be
derived for other harmonics. Thus, in contrast to an ordinary string (i.e., N"2) where the
"rst harmonic is always the most energetic wherever the string is plucked, for an
N-symmetric N-string with N'2, it is possible to excite higher harmonics to an energy
level above that of the "rst harmonic simply by plucking the string at an appropriate value
of m. Expression (30) also shows that when an N-symmetric N-string is plucked at the
junction point of its strings, the energy levels of its higher modes are in the same harmonic
relation, with respect to the energy level of its fundamental mode, as in the case of an
ordinary string.

The graphs of Figure 3 give R(N, m, n) in terms of m for N"2, 3, 5, 10 and n"1, 2, 3, 4.
The graphs of Figure 4 give R(N, m, n) in terms of n for N"2, 3, 5, 10 and m"2, 3, 4, 5,
showing the+1/n2 decay of the mode energies. Finally, from equation (31), it is easy to see
that R(m, n) is asymptotically given by 2/(m!1) for all even n, when m is large. Figure 5
gives R(m, n) in terms of m for n"2, 4, 6, 8, 10.
Figure 3. R(N, m, n) in terms of m for (a) N"2; (b) 3; (c) 5; (d) 10 and **, n"1; } } }, 2; ) ) ) ) , 3; } ) } , 4.



Figure 4. R(N, m, n) in terms of n for (a) N"2; (b) 3; (c) 5; (d) 10 and h, m"2; s, 3; n, 4; e, 5.

Figure 5. R (m, n) in terms of m for ==, n"2; 22, 4; } } }, 6; 2, 8; } ) }, 10.
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5. THE (N!1)-SYMMETRIC N-STRING

We will now characterize the standing perpendicular waves of an N-string such
that l

2
"l

3
"2"l

N
": l, c

1
"c

2
"2"c

N
": c, and o

1
"o

2
"2"o

N
":o. These



Figure 6. Schematic of a 2-symmetric 3-string.
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conditions on the c
i
and o

i
imply that the N strings of the N-string form equal angles of

2n/N at their point of junction, when the N-string is at rest. The length l
1

of the string i"1
will, in general, be di!erent from l. Such an N-string having one of its strings not of the same
length as the N!1 others will be said (N!1)-symmetric (see Figure 6).

If l
1
/l is an irrational number, then we have the eigenfunctions P

k
(x) corresponding to the

eigenvalues j
k
"a

k
which are the positive roots of

(N!1) cotA
lj
c B#cotA

l
1
j
c B"0.

In this case, we also have only one resonance given by

c
2

l
2

"

c
3

l
3

"2"

c
N

l
N

.

The associated eigenvalues and eigenfunctions are respectively j
k
"knc/l, k3N*, and

Q
1,k,1

(x)"[0, (N!2),!1,2,!1]T sin kx ,

Q
1,k,2

(x)"[0, 0, (N!3),!1,2,!1]T sin kx ,

F

Q
1,k,N~3

(x)"[0, 0,2, 2,!1,!1]T sin kx ,

Q
1,k,N~2

(x)"[0, 0,2, 0, 1,!1]T sin kx .

If l
1
/l"p/q, where p and q are relatively prime integers, we have the eigenfunctions P

k
(x)

associated with the eigenvalues j
k
"a

k
which are the positive roots of

(N!1) cotA
lj
c B#cotA

lpj
qc B"0. (32)

We also have the maximal resonance

pc
1

l
1

"

qc
2

l
2

"2"

qc
N

l
N

(33)
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and the associated eigenvalues j
k
"kpnc/l

1
, k3N*, and eigenfunctions

Q
1,k,1

(x)"[(N!1) sin kpx,!sin kqx,2,!sin kqx]T ,

Q
1,k,2

(x)"[0, (N!2),!1,2,!1]T sin kqx ,

F

Q
1,k,N~2

(x)"[0, 0,2, 2,!1,!1]T sin kqx ,

Q
1,k,N~1

(x)"[0, 0,2, 0, 1,!1]T sin kqx.

Finally, we have a subresonance of order q of equation (33) given by

c
2

l
2

"

c
3

l
3

"2"

c
N

l
N

,

with associated eigenvalues j
k
"kJ nc/l, where kJ 3N* and is not a multiple of q; the

associated eigenfunctions are

QI
2,k

J
,1

(x)"[0, (N!2),!1,!1,2,!1]T sin kJ x ,

QI
2,k

J
,2

(x)"[0, 0, (N!3),!1,2,!1]T sin kJ x ,

F

QI
2,k

J
,N~3

(x)"[0, 0,2, 2,!1,!1]T sin kJ x ,

QI
2,k

J
,N~2

(x)"[0, 0,2, 0, 1,!1]T sin kJ x .

If l
1
Ol, then there are no closed-form expressions for the roots of equation (32). In order

to facilitate the solution of equation (32), one can temporarily "x the units of length and
time such that l"1 and c"1, thus obtaining

(N!1) cot j#cot
pj
q
"0. (34)

The roots j
k
"a

k
of equation (32) are then those of equation (34) multiplied by c and

divided by l. Moreover, since the functions cot j and cot(pj/q) are periodic respectively of
period n and qn/p, it is su$cient to determine the roots of equation (34) in the interval
[0, qn].

To be more speci"c let us consider in detail the case where N"3 and l
1
/l"1/2. It is easy

to show that in this particular case, the roots of equation (34) are given by a
k
"b

k
c/l, where

b
k
:"2[k/2]n#(!1)k~12arctanJ2 and [k/2] designates the integer part of k/2. The

corresponding eigenfunctions are

P
k
(x)"Ccos b

k
x/2n#(!1)k

J2

2
sinb

k
x/2n, cos b

k
x/n#(!1)k~1

J2

4
sinb

k
x/n,

cos b
k
x/n#(!1)k~1

J2

4
sinb

k
x/nD

T
.
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The eigenfunctions associated with the resonances of the 3-string are respectively given by

Q
1,k,1

(x)"[2 sin kx,!sin 2kx,!sin 2kx]T,

Q
1,k,2

(x)"[0, sin 2kx,!sin 2kx]T
and

QI
2,k

J
,1

(x)"[0, sin kJ x,!sin kJ x]T,

where kJ is an odd positive integer.
The general solution to the vibrating 2-symmetric 3-string problem is then given (in

normalized coordinates) by

[v1(x, t), v2 (x, t), v3 (x, t)]T

"

=
+
k/1
C(ak

cosb
k
ct/l#aL

k
sinb

k
ct/l )P

k
(x)

(35)

#

2
+

m/1

(b
1,k,m

cos 2knct/l#bL
1,k,m

sin 2knct/l)Q
1,k,m

(x)

#(c
2,2k~1,1

cos(2k!1)nct/l#cL
2,2k~1,1

sin(2k!1)nct/l)QI
2,2k~1,1

(x)D,
where the coe$cients a

k
, aL

k
and so forth are determined by the initial conditions as

indicated in section 3.2. The solution of equations (5)}(9) is obtained through the
substitution

u1(x
1
, t)"v1 (nx

1
/l
1
, t), u2 (x

2
, t)"v2 (nx

2
/l, t), u3(x

3
, t)"v3 (nx

3
/l
3
, t).

Expression (35) shows that the vibrations of our particular 2-symmetric 3-string can be
represented in terms of the functions ui (x

i
, t), i"1, 2, 3, which decompose into one set of

in-phase harmonics with frequencies f
n
"nc/2l, n3N*, and one set of modes of frequencies

fJ
n
"(2[n/2]n#(!1)n~12 arctanJ2)c/2nl, n3N*. Note that fJ

n
is not an integer multiple

of fJ
1
, which is the lowest frequency of this kind. The vibrations of our 2-symmetric 3-string

may thus be expressed in terms of two in"nite sets of periodic functions, but which are not of
the same period for each value of n: their frequencies are in fact incommensurate.
Consequently, the general solution of our 2-symmetric 3-string will not, in general, be
periodic in time. The form of equation (34) implies that the preceding observation applies to
all (N!1)-symmetric N-string, when l

1
Ol.

Let us now determine the proportion of energy which is devoted to the harmonic
vibrations over the total energy of all vibrations resulting from the plucking of one string of
our 2-symmetric 3-string. To this end, we will admit that the 3-string vibrates following an
initial displacement corresponding to the plucking of the string i"3 to the height h at the
point x

3
"l/m, where m3R, m'1. The functions specifying the initial conditions of the

3-string are G1(x
1
)"0 for 0)x

1
)l/2, Gi (x

i
)"0 for 0)x

i
)l and i"2, 3, and

F1(x
1
) :"

mh

m#3A1!
2x

1
l B, 0)x

1
)l/2,

F2 (x
2
) :"

mh

m#3A1!
x
2
l B, 0)x

2
)l,

F3(x
3
) :"G

mh
m`3

(1#3x3

l
) if 0)x

3
)l/m

mh (1!x3) if l/m(x
3
)l.
m~1 l
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It follows that

u1(x
1
, t)"

=
+
k/1
Cak cos

b
k
ct

l Acos
b
k
x
1

l
#(!1)k

J2

2
sin

b
k
x
1

l B
#2b

1,k,1
cos

2knct

l
sin

2knx
1

l D , (36)

u2 (x
2
, t)"

=
+
k/1
Cak cos

b
k
ct

l Acos
b
k
x
2

l
#(!1)k~1

J2

4
sin

b
k
x
2

l B
!(b

1,k,1
!b

1,k,2
) cos

2knct

l
sin

2knx
2

l

#c
2,2k~1,1

cos
(2k!1)nct

l
sin

(2k!1)nx
2

l D , (37)

u3 (x
3
, t)"

=
+
k/1
Cak cos

b
k
ct

l Acos
b
k
x
3

l
#(!1)k~1

J2

4
sin

b
k
x
3

l B
!(b

1,k,1
#b

1,k,2
) cos

2knct

l
sin

2knx
3

l

!c
2,2k~1,1

cos
(2k!1)nct

l
sin

(2k!1)nx
3

l D , (38)

where the coe$cients a
k
, b

1,k,1
, b

1,k,2
, and c

2,2k~1,1
are determined by the initial conditions.

The energy of the harmonic vibrations of our plucked 2-symmetric 3-string is the sum of
the kinematic and potential energies of the harmonics cos nnct/l, sin nnx

i
/l, n3N*,

i"1, 2, 3, in equations (36)}(38). One easily shows that the ratio R(m) of this energy over the
total energy of the plucked 3-string is given by

R (m)"
2m2

n2(m!1)(m#3)

=
+
k/1
C
2(sin (2k~1)n

m
)2

(2k!1)2
#

3(sin 2kn
m

)2

(2k)2 D . (39)

The graph of Figure 7 represents the function R(m) for 1(m)10. From equation (39),
or directly from the expressions of b

1,k,1
, b

1,k,2
and c

2,2k~1,1
, it is possible to show that

R(m)P0 when mPR.

6. TRAVELLING WAVES

The model considered in this paper remains valid when all strings of the N-string are of
in"nite length. In this section and the next, we will consider solutions (possibly weak
solutions) of equations (5), (6) and (8) which represent perpendicular travelling waves. Since
0)x

i
(R for i"1, 2,2, N, we will replace each x

i
by 0)x(R.

Let us suppose a travelling perpendicular wave on the "rst string of the N-string which
approaches the junction point O with speed c

1
and pro"le f

1
:RPR. This travelling wave

can be described as

u1 (x, t)"f
1
(t#x/c

1
).



Figure 7. R (m) in terms of m.
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If a part of the wave is re#ected by the point O then this re#ected wave will travel in the
positive x

1
direction and can be described by u1(x, t)"g

1
(t!x/c

1
), where g

1
: RPR.

The total perpendicular displacement of points along the "rst string is then given by

u1(x, t)"f
1
(t#x/c

1
)#g

1
(t!x/c

1
) .

The part of the incident wave at O that is transmitted in the other N!1 strings will also
form travelling perpendicular waves which can be described as

uj (x, t)"h
j
(t!x/c

j
), j"2, 3,2, N,

where h
j
: RPR. Conditions (6) then imply

f
1
(t)#g

1
(t)"h

j
(t), j"2, 3,2, N. (40)

At the instant when the travelling perpendicular wave reaches point O along the "rst
string, equation (8) is veri"ed. This implies that

f @
1
(t)!g@

1
(t)"

1

l
1

N
+
j/2

l
j
h@
j
(t). (41)

Integration of equation (41) yields

f
1
(t)!g

1
(t)"

1

l
1

N
+
j/2

l
j
h
j
(t)#K

1
, (42)

where K
1

is an arbitrary constant. Let us suppose that there exists a time t
0

such that
f
1
(t
0
)"g

1
(t
0
)"h

j
(t
0
)"0, for j"2, 3,2,N. This leads to K

1
"0 and

f
1
(t)!g

1
(t)"

1

l
1

N
+
j/2

l
j
h
j
(t). (43)
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From equations (40) and (43), we get

g
1
(t)"A

2l
1

NA
!1B f

1
(t),

h
j
(t)"

2l
1

NA
f
1
(t), j"2, 3,2,N,

where A :"(1/N) +N
i/1

l
i
is the arithmetic mean of the l

i
.

Since all the l
i

are "nite numbers, the value of A is "nite for every N3N, N*2.
Therefore g

1
(t)P!f

1
(t) and h

j
(t)P0, for j"2, 3,2,N, when NPR.

If the expression f
1
(t#x/c

1
) of the incident wave at O is known, the re#ected and

transmitted waves by the point O are given by

g
1
(t!x/c

1
)"(2l1

NA
!1) f

1
(t!x/c

1
),

h
j
(t!x/c

j
)"2l1

NA
f
1
(t!x/c

j
), j"2, 3,2,N

respectively. In particular, if the incident wave at O is harmonic with frequency n, i.e., if

f
1
(t!x/c

1
)"A

1
exp[2ni(nt!k

1
x)],

where A
1

represents the amplitude and k
1
"n/l

1
, it is easy to see that the re#ected and

transmitted waves are harmonic as well and have the same frequency as the incident wave.

7. TRAVELLING WAVE INTERACTIONS

Let us consider N!1 travelling perpendicular waves which reach O at the same time,
one along each of the "rst N!1 strings of the N-string. Using the method presented above
one directly shows that the perpendicular displacement of points on these N!1 strings are

uk(x, t)"f
k
(t#x/c

k
)#g

k
(t!x/c

k
), k"1, 2,2,N!1,

where the f
k
, and g

k
, k"1, 2,2, N!1, are functions of R in R which describe the incident

and the corresponding re#ected waves, respectively. The transmitted wave in the Nth string
of the N-string is then described by

uN(x, t)"h
N
(t!x/c

N
),

where h
N
: RPR.

Conditions (40) correspond here to

f
k
(t)#g

k
(t)"h

N
(t), k"1, 2,2, N!1.

Using equation (8), one easily shows that the equation analogous to equation (42) is

N~1
+
k/1

l
k
[ f

k
(t)!g

k
(t)]"l

N
h
N
(t)#K

2
,
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where K
2

is an arbitrary constant. Here again we suppose that there exists a time q
0

such
that f

k
(q

0
)"g

k
(q

0
)"0, for k"1, 2,2,N!1 and h

N
(q

0
)"0. It follows that K

2
"0 and

g
k
(t)"

2

NA

N~1
+
j/1

l
j
f
j
(t)!f

k
(t), k"1, 2,2, N!1,

h
N
(t)"

2

NA

N~1
+
j/1

l
j
f
j
(t).

Let c
1
"c

2
"2"c

N
and o

1
"o

2
"2"o

N
, which imply that the N strings of the

N-string at rest form equal angles of 2n/N. Now if f
1
(t)"f

2
(t)"2"f

N~1
(t), then

g
k
(t)"(1!2/N) f

1
(t) for k"1, 2,2,N!1, and h

N
(t)"2(1!1/N) f

1
(t). Given that the

energy per unit length of a travelling wave in a single string is proportional to the square of
its amplitude, we have that the energy of the transmitted wave is equal to 4(1!1/N)2 of the
energy contained in each of the N!1 incident waves at O. In this case we also have that
g
k
(t)Pf

1
(t), for k"1, 2,2, N!1, and h

N
(t)P2f

1
(t) when NPR.

A succession of several interactions of waves as described above could potentially
produce a cascade of waves having the form of a tree whose branches represent waves
having higher and higher levels of energy as they approach the trunk of the tree. To see this,
let us consider a tree made up of N-strings with (N!1)M incident waves, M3N*, at
(N!1)M~1 junction points which eventually lead to a single transmitted wave. The ratio of
the amplitude of the wave exiting the tree network to that of the amplitude of the (N!1)M
entering waves is given by 2M(1!1/N)M and hence their energy ratio is 22M(1!1/N)2M.
The ratio between the transmitted wave exiting the tree network and the total energy of the
entering waves is (N!1)M(2/N)2M. Such a device could be used as a means of amplifying
a travelling wave, provided there is a way of reproducing it. Copies of this wave would have
to be di!used in wave guides con"gured as a tree network. The inverse process could be
used to reduce the amplitude of a travelling wave. Note that these observations are only
relevant if the amplitudes of all travelling waves in the tree network are su$ciently small for
our linear mathematical model to be applicable.

8. CONCLUSION AND DISCUSSION

We have studied a linear model for the transverse vibrations of an N-string. This model is
useful for describing the small-amplitude oscillations of the N-string. Also, our analysis
could help to shed some light on any nonlinear model whose linearization about the rest
state reduces to our model (i.e., characterizing the linear stability of this rest state).

The general solution for standing perpendicular waves presented in Section 3 applies
even when the N strings of the N-string at rest do not form equal angles at their junction
point. If these angles are not equal, the solution takes into account the corresponding
di!erent tensions in the strings through the values of the constants c

i
, i"1, 2,2,N.

For a plucked N-symmetric N-string with N'2, we have found that higher harmonics
can be excited to an energy level above that of the "rst harmonic simply by plucking at an
appropriate place along one of the strings. This phenomenon does not occur for an ordinary
plucked string. Acoustically, this result could lead to a unique tone colour which could lead
to the design of new musical instruments. A physical model of an N-string is being built to
explore this further. A more complete model of the N-string incorporating e!ects such as air
resistance will also be investigated.

For an (N!1)-symmetric N-string, we have shown that, in general, the vibrations are
formed of two sets of modes which, taken altogether, are not periodic in time, even if the
numbers c /l , i"1, 2,2,N, are commensurate.
i i
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Finally, we have studied the propagation and interactions of travelling waves in an
N-string with strings of in"nite length. A method for increasing or reducing the amplitude of
travelling prependicular waves corresponding to small deformations of an N-string has also
been presented.

The planar vibrations of an N-string were not examined in this paper. Although our
mathematical model applies to this case, the situation is much more di$cult and will be
reported on in subsequent work.
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APPENDIX A: PROOF OF EXISTENCE OF CERTAIN EIGENFUNCTIONS

Lemma A1. ¹he operator A is symmetric with respect to SS , TT
L

on D.

Proof. Let U, W3D. We then have

SSAU, WTT
L
"P

n

0

S!CUA (x), W(x)T
L
dx

"S!CU@(x), W (x)T
L
Dn
0
!P

n

0

S!CU@(x), W @ (x)T
L
dx

"!P
n

0

S!CU@(x), W @(x)T
L
dx

"!S!CU(x), W @(x)T
L
Dn
0
#P

n

0

SU(x), !CWA (x)T
L
dx

"P
n

0

SU(x),!CWA(x)T
L
dx"SSU, AWTT

L
. K

Proposition A1. ¹he spectrum of A is composed only of discrete eigenvalues of multiplicity at
most 2N. ¹he eigenvalues of A constitute a real monotone sequence Mu

n
N such that

u
1
)u

2
)2)u

n
)u

n`1
)2, lim u

n
"R.
n?=
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Furthermore, there exists an orthonormal set MU
i
N of eigenfunctions of A which is complete

in K.

Proof. It follows from Lemma A1, and is a simple generalization of what is known for scalar
Sturm}Liouville problems [6]; namely, one constructs a &&Green's matrix'' for the problem
AU"uU and an associated compact self-adjoint integral operator with kernel given by this
Green's matrix, and whose range is dense in K. K

APPENDIX B

Proof. Let R1 LK be the closure of the linear span R of all eigenfunctions Q
j,k,m

and
QI jJ ,kJ ,m previously de"ned. The result will follow from Proposition A1 of Appendix A if we can
show that the orthogonal complement R1 o is in"nite dimensional. We recall the fact that if
k
1

and k
2

are integers, then

P
n

0

sin k
1
x sin k

2
x dx"G

0 if k
1
Ok

2
,

n/2 if k
1
"k

2
.

Consider the "rst resonance in equation (27), which is necessarily maximal. For any positive
integer n, we de"ne the function R

n
(x)3K as having all its components zero except those

with indices i
1,1

, i
1,2

,2, i
1,p1

, which are of the form

Ri1,1
n

(x) :"<i1,1 sin nn
1,1

x ,

Ri1,2
n

(x) :"<i1,2 sin nn
1,2

x ,

F

Ri1,p1
n

(x) :"<i1,p1 sin nn
1,p1

x ,

where <i1,1 , <i1,2,2,<i1,p1 are chosen such that

l
i1,1

o
i1,1

l
i1,1

< i1,1 A
l
i1,2

n
i1,2

#

l
i1,3

n
i1,3

#2#

l
i1,p1

n
i1,p1
B!

l
i1,2

o
i1,2

n
i1,2

<i1,2!2!

l
i1,p1

o
i1,p1

n
i1,p1

<i1,p1"0,

l
i1,2

o
i1,2

l
i1,2

< i1,2 A
l
i1,3

n
i1,3

#2#

l
i1,p1

n
i1,p1
B!

l
i1,3

o
i1,3

n
i1,3

<i1,3!2!

l
i1,p1

o
i1,p1

n
i1,p1

<i1,p1"0,

F

l
i1,p1~1

o
i1,p1~1

l
i1,p1~1

<i1,p1~1A
l
i1,p1

n
i1,p1~1

B!
l
i1,p1

o
i1,p1

n
i1,p1

<i1,p1"0.

By construction, R
n
(x) is orthogonal to each Q

1,k,m
(x). If the jth resonance ( j*2) in

equation (27) does not involve any of the c
i1,1

/l
i1,1

, c
i1,2

/l
i1,2

,2, c
i1,p1

/l
i1,p1

, then R
n
(x) is also

orthogonal to each Q
j,k,m

(x) or to each QI j,kJ ,m (x), whichever applies depending on whether or
not the jth resonance is maximal. Finally, if the jth resonance ( j*2) in equation (27) does
involve one of the c

i1,1
/l
i1,1

, c
i1,2

/l
i1,2

,2, c
i1,p1

/l
i1,p1

, then this resonance is a subresonance of
the "rst resonance, with order of inclusion K'1. Since the QI j,kJ ,m are such that kJ is not
a multiple of K, then a simple computation shows that R

n
(x) is orthogonal to each QI j,kJ ,m (x).

Thus, for each integer n we have that R (x)3R1 o. K

n
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