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A hybrid numerical scheme involving the combination of the Laplace transform technique
and the pseudo-force method is proposed to analyze the non-linear transient response of
a suspended cable subjected to arbitrary dynamic loading. A theoretical model of the cable
with multi-degree-of-freedom is first obtained through discretization of the partial
differential equations by finite difference approximation. The non-linear governing
equations take into account the effects of quadratic and cubic geometric non-linearities. The
proposed method deals with the non-linear effects as pseudo-forces and then establishes an
iterative solution scheme in the alternating Laplace/time domain by means of fast numerical
Laplace transform. This method eschews a time-stepping process and therefore is
computationally efficient. It also readily deals with the viscoelastic damping with
frequency-dependent model parameters and the hysteresis damping in terms of complex
stiffness models. Numerical examples are presented to evaluate the dynamic responses of
suspended cables under a concentrated sinusoidal force and a distributed random excitation,
and to identify the non-linear response properties by comparison with the linear vibration.
The validity and accuracy of the proposed method is also verified by comparing the results
with those obtained by using the direct time integration. © 2000 Academic Press

1. INTRODUCTION

The suspended cable has a wide range of practical applications in civil engineering and in
electrical industry. Long-span suspension bridges have become increasingly popular in
recent years due to their effective use of materials and their pleasant aesthetics. The
noteworthy records are the Tsing Ma Bridge of 1377 m, the Jiangyin Bridge of 1385 m,
the Humber Bridge of 1410m, the Great Belt East Bridge of 1624 m, and the
Akashi-Kaikyo Bridge of 1991 m which is the world’s longest suspension bridge at present.
The aerodynamics of the free cable-tower system is an important engineering issue in
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wind-resistant design of suspension bridges because the maximum danger of flutter-type
aerodynamics instability occurs during the ecarly erection stage of the main cables
suspended with a few partially erected deck units [1, 2]]. The dynamic response analysis of
free main cables of suspension bridges under synchronous and non-synchronous seismic
support-excitations is another research topic of practical interest [3, 4]. The research
interest in this aspect has been recently enhanced due to the attack of the 1995 Kobe
Earthquake on the erected Akashi-Kaikyo Bridge. At the time of this earthquake, both the
towers and main cables of the bridge were erected but no deck units had been hoisted [5].
For the suspended cables with long span and large sag, the effect of geometric non-linearity
on the dynamic response is significant, especially when subjected to strong wind and
earthquake excitations.

The prominent linear theory developed by Irvine and Caughey [6] describes the in-plane
and out-of-plane free vibration of a suspended cable with small sag and two fixed supports
at the same level. Hagedorn and Schafer [ 7] were among the first to extend the linear theory
to account for geometric non-linearities of the cable. Subsequently, numerous investigations
have been made to study different aspects of non-linear free and periodic/quasi-periodic
vibrations of suspended cables [8-17], especially the external and internal resonances. In
these studies, a discretized model with a few (two to four) degrees of freedom (d.o.f.) was first
derived by applying the Galerkin procedure to the governing partial differential equations
making use of the linearized modal deflection functions, and then the method of multiple
scales or other perturbation techniques were adopted to obtain the response prediction.
However, a study by Pakdemirli et al. [ 18] showed that treatment of the discretized system
in modal co-ordinates might result in inaccurate results compared to direct treatment of the
partial differential equations in some circumstances. Much less research has been devoted to
the transient dynamics of geometrically non-linear cables. At present, the time-step
integration procedure applied to the discretized finite element or finite-difference model
seems to be the only way to obtain the non-linear transient dynamic responses of cables.
For example, Wu and Chen [19] studied the moving-load-induced vibrations of
a suspended cable by using the Newmark direct integration method incorporated with the
Newton-Raphson iteration technique; Wang et al. [20] combined the finite element method
and the Runge-Kutta method to analyze underwater vibrations of a cable; Koh et al. [21]
used a modified box scheme (finite difference approximation in both space and time
domains) in conjunction with a time-step iterative method for the dynamic analysis of
low-tension cables.

When the direct integration approach in the time domain is used to solve for non-linear
transient problems, it is often necessary to take very small time steps to avoid undesirable
numerical oscillations (high-frequency oscillations) in the solution process. It will cost
a great deal of computational effort to obtain a long-term solution, especially for a system
with many d.o.f. The pseudo-force method [22, 23] and the incremental mode superposition
technique [24, 25] have also been used for non-linear response analysis, but both of them
are still step-by-step time-marching scheme. The hybrid frequency-time domain (HFTD)
method developed for soil-structure interaction analysis [26, 27] has been shown to be an
efficient numerical procedure in solving non-linear transient responses. In this method an
alternating frequency/time-domain iterative scheme based on the fast Fourier transform
(FFT) is adopted instead of the time-marching process. It has also been noted that
a combined Laplace transform and increment linearization approach [28] was successfully
applied to the evaluation of non-linear foundation uplifting under earthquake loads.
However, this method is only applicable to piecewise linear systems.

In the present study, a hybrid pseudo-force/Laplace transform method is presented for
non-linear transient response analysis of suspended cables under arbitrary dynamic
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loading. A multi d.o.f. model is first formulated by discretizing the governing partial
differential equations of motion in finite-difference form. The proposed method then treats
the non-linear terms of quadratic and cubic non-linearities as pseudo-forces. With the
response time history of the linearized system as initial guesses, the pseudo-forces are
estimated for all values of time and the linearized ordinary differential equations are solved
by numerically transforming to the Laplace domain. The displacement responses in the time
domain are then obtained by numerical inversion of the Laplace solution and the
pseudo-forces are updated. The process is repeated iteratively until convergence is reached.
The segmenting approach [26] is introduced in the solution scheme to ensure the
convergence. Compared with the HFTD method, the proposed method possesses two
advantages. Firstly, the present method allows the incorporation of initial conditions,
and therefore gives rise to more accurate transient response prediction than the HFTD
method. Secondly, due to the imposed periodicity of the discretized functions in FFT
and the resulting convolution error, a decaying loading function as the appended function
at the end of the time segment is necessary for the HFTD method [27]. In contrast, the
present method does not suffer from this deficiency and therefore the algorithm is more
efficient.

2. SYSTEM DESCRIPTION

2.1. EQUATIONS OF MOTION

As shown in Figure 1, a heavy elastic cable suspended between two fixed supports
at the same level is considered. The cable has shallow sag with the sag-to-span ratio ranging
from nearly zero to about 1:8. Let L, E, A, and m be the cable length, the modulus
of elasticity, the cross-sectional area and the mass per unit length of cable, respectively,
I be the span. The cable tension in the static configuration is T = T'(s). The static
equilibrium configuration lies in a vertical plane x-y and is described by a known function
y(s), s being a curvilinear abscissa. The dynamic configuration subjected to vertical
distributed dynamic loading f (s, t) is described by the displacement components u(s, t) and
v(s, t) measured from the static equilibrium position in the longitudinal and vertical
directions respectively.

It is assumed that the initial static strain is negligible with respect to unity. With the
Lagrangian strain as strain measure, the cable extensional strain due to dynamic loads can
be expressed by retaining terms up to order v* as [16]

du dydv 1(60)2. )

= Taxox T2\ax

| Lx |

o > x

y Dynamic state

Figure 1. Cable configurations.
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The governing differential equations of planar motion of a suspended cable can be
derived using the Hamilton principle

5H=5JIZJL(Q—V)dsdt+j

0 t

t, pL
J SW dsdt =0 ?)

0

in which Q is the kinetic energy density, V' the elastic strain energy density, W the virtual
work density associated with the gravity, dynamic loading and damping force. They are
expressed as

m| [(ou\? ov'\? EA ,
Q—E|:<E> +<E> :|, V—V,-+76 + Te, (3a,b)
ov ou
oW = [mg +f(s,t) — cyat:| ov — Cx ou, (3¢)

where V; is the elastic strain energy density held in the initial (static) configuration, ¢, and
¢, are the viscous damping coefficients per unit length in the longitudinal and vertical
directions respectively.

By substituting equations (3) and (1) into equation (2), integrating equation (2) by parts
and accounting for the static equilibrium configuration, the following non-linear partial
differential equations governing the planar motion of a suspended cable are obtained:

0 ou dyov 1 [/ov\? ou 0%u

Clpa |y ()L e, 4

ax{ [8x+dx 0x+2<0x> }} “a " (42)
0 ov dy ov\[ou dyov 1/[dv)\? ov 0%v
DS AR/ AR | i A e, L om 2l
@x{ ax <dx+(3x>|:6x+dx6x+2<6x> }Jrf(x’t) “ =M (D)

In the dynamic configuration, the total tension in the cable is T, = T + h(t), where h(t) is
the additional tension due to vibration and is given by

ou dyodv 1/[/ov\?

Equation (4) reduces to the motion equation of a taut string by letting y(x) = 0, and gives
rise to the linear motion equations of a suspended cable with initial sag by eliminating the
non-linear terms (dv/dx)? and (du/dx) (6v/0x).

2.2. SPATIAL DISCRETIZATION

The finite-difference method is applied for the spatial discretization of equation (4). As
shown in Figure 2, the cable length is equally distanced by (n + 1) nodes with s, = 0 and
s, = L. The interval distance between the ith and (i + 1)th nodes is 4] = L /n. Using the
central difference algorithm, the derivatives of the dynamic displacement components u and
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-
Figure 2. Schematic of equally distanced nodes.
v at the ith node an be expressed as
du ey — g O%u Uiy — 2up+u g (6a,b)
OX |x=x, 241 7 ox?|=y, Al? ’ ’
dv TS 5721) iy — 200+ Uiy (6¢,d)
0X|x=»x, 241 T Ox? x=x, A2 ’

Substituting equation (6) into equation (4) yields the following ordinary differential
equations:

" q
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Equation (7) involves quadratic and cubic non-linear terms, and therefore cannot be
solved directly by the Laplace transform technique.
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3. PRESENTATION OF METHOD
An iterative scheme involving the combined use of the pseudo-force method and the

Laplace transform technique is presented to solve for equation (7). In order to obtain
a pseudo-linear system, the non-linear effects in equation (7) are defined as pseudo-forces

EA
P () = AR (0741 — 2034 10; + 2001 — O7—4), (8a)
EA
Piy(1) = W(”i+lvi+l — Uy Uy — Ui+ U g+ Uy 1O — Uy 1D 1)
3EAyY
SAL (0741 — 204101 + V7 1)
3EAy;
+ 2Al§) Vi1 — 20410 + 2001 — v7-1) (8b)
3EA

3 2 2
+ —8Al4 (Vi1 — 2054 10 — V7 10— 1 + 404 004

— o0 = 2007 +0dy) (=1,2...,n—1)

P;.(t) and P;,(t) are the pseudo-force components applied at the ith node in the
longitudinal and vertical directions respectively. With the estimated response values in the
previous iteration, the pseudo-forces are evaluated in the time domain and then treated as
external forces in the next iteration. In this way, at the kth iterative step equation (7) can be
represented by the following linearized equations:

62 (k) 0 (k)
u; Ui (k) (k) (k) (k)

m 6[2 + Cy —at + a; Ui + apvi 2 + aizu; o + AigV;
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(k) (k) (k) (k) (k) (k)
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9b
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in which the expressions of the coefficients a; and b; are given in Appendix A.

Equation (9) is solved by the Laplace transform technique. Because the dynamic loads
exerted on the cable, e.g., the wind and earthquake excitations, are complicated functions of
time usually given in a discrete form, the direct and inverse Laplace transforms can only be
evaluated using numerical approaches. There are numerous methods available for the
numerical Laplace transform [29, 30]. In the present study, the Wilcox method [31] is
adopted due to its several advantages [32]. Following the Wilcox method, the discrete
Laplace transform pair is formulated in a manner similar to the discrete Fourier
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transform pair as

- T 2N )
Fp) =55 3 [ef (t)]e i nen vy, (102)
m=1
2 N .
S(tn) = — ¢’ Re [ 2 f(p)elmbens 1)"/4”], (10b)
1=1

where p, =7y +j2l — V)r/T(l =1, 2, ..., N)is the discrete Laplace transform parameter, j is
the imaginary unit, T is the time duration of interest in the transient analysis, N is the
number of equi-spaced sampling intervals in [0, 71, and
tw=02m — )T/AN)m =1, 2,...,2N) is the discrete-time parameter.

Equation (10) can be regarded as the discrete Fourier transform of f(t) with a window
function e~ **. Therefore, by taking N to be an integer power of 2 and using an appropriate
empirical rule in determining the transform parameters, the numerical Laplace forward and
inverse transforms in equation (10) can be directly and efficiently computed by utilizing the
FFT algorithm. In the computation of numerical Fourier transform, the coefficient v is
taken as 2n/T according to Wilcox [31].

Taking the Laplace transform of equation (9) with respect to time yields

m[ p*i; — pu;(0) — 1i;(0)] + c.[ pit; — u;(0)]
+ @iy fli—y + QiaBim g + il + Aigli + disllie g + diglivg = Pi(p), (11a)
m[ p*5; — pv;(0) — 6;(0)] + ¢, [ pi; — v;(0)]

+ bitli— 1 + biali— 1 + bisil; + bigl; + bistii+ 1 + bigliv 1 = Fiy(l’) +f~(xi9 p)

(i=1,2..,n—1). (11b)

The time-dependent terms in equation (9) have been removed by transforming to the
Laplace domain. Equation (11) can be re-arranged for computational convenience in the
following form:

Airlli— 1 + ApaBi—q + (a3 + mp* + cp)il; + ail; + Aisiliv 1 + AieDi+ 1
(12a)
= m[ pu;(0) + 4;(0)] + ¢,u;(0) + Pic(p),

birili—1 + bisbi— + bistl; + (big + mp* + ¢,p)0; + bisili1 + biglis1 (12b)
=m[ pvi(0) + 6,(0)] + ¢,0,0) + Pi(p) + f(xi,p) (i=1,2,....n— 1).

With the given Laplace domain parameter p, equation (12) constitutes linear algebraic
equations with respect to the unknowns @;_ {, 0;- 1, th;, 0;, Ui+ 1, ;41 (i =1,2,...,n — 1). In
recognizing uo = vg = u, = v, = 0 due to the fixed ends, we can eliminate the variables i,
Do, Uy, U, from the equations. By defining

@) = {0y 8y o @ B ey i) (13)
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a system of 2(n — 1) linear complex algebraic equations in the transformed domain is
obtained from equation (12) as

[D]{i} = {F} (14)

in which the coefficient matrix [D], the force vector {F} and the solution vector {ii} are all
complex-valued quantities. Equation (14) can be solved by directly using complex operation
or through transformation into real algebraic equations. Appendix B presents in detail the
derivation and expressions of transforming equation (14) into a system of 4(n — 1) linear
real algebraic equations with the separated real and imaginary components of the node
displacements in the Laplace domain as unknowns. The direct Gaussian elimination
method is used to solve the real algebraic equations in the present study.

When the transformed displacements {ii} are solved from equation (14), the time-domain
displacement responses at the present iteration are obtained by numerical inversion of the
Laplace solution. They are used to update the pseudo-forces for all values of time in the next
iteration and then transformed to the Laplace domain where the quasi-linear equations of
motion are solved. This process is repeated iteratively until the difference of evaluated
responses between two consecutive iterations is small enough.

4. IMPLEMENTATION ISSUES

Because the proposed method requires the iteration to be carried out simultaneously for
all values of the time duration of interest in the transient response analysis, the iteration
may not converge—within the given tolerance—when the time duration is long. The
segmenting technique [26] is introduced here to improve the convergence. Following this
approach, the entire time duration of interest is divided into several time segments T; (i = 1,
2,...,M), each consisting of a certain number of time steps. The iteration is then
implemented segment by segment. Because the response at time ¢; is not influenced by the
exciting force exerted at t > t;, the pseudo-forces for ¢ > t; are imposed constantly to zero
when computing the time segment with the terminal instant ¢;. At the same time, the pseudo
forces at the previous time segments, which have reached convergence before, should be
kept unvaried in the iterative computation for the present segment. So the pseudo-forces are
updated only within the concerned iteration segment. The iteration convergence can be
ensured when an appropriate number of time segments are selected [26]. In contrast to the
HFTD procedure [27], the proposed method does not need a decaying loading function to
append the exciting forces and the pseudo-forces at the end of each segment.

Since there is a tendency for the time function to “break up” ast — T when applying the
Wilcox method for numerical Laplace inversion, Wilcox [31] suggested that the time span
used in numerical Laplace transform should be slightly larger than the actual time duration
so as to make allowance for this phenomenon. In the present practice, given the time
duration of interest for transient response analysis T, the time span of numerical Laplace
transform is taken to be T" = oT with o being about 1-2, and the transform results obtained
for t > T are discarded.

The algorithm of the proposed hybrid pseudo-force/Laplace transform method for the
cable dynamic analysis is summarized in the following steps:

1. Determine the time duration for transient response analysis T and the number of
spatial discretization nodes n. Given the time span factor o, the time segment number
M, the tolerance ¢, and the allowable iterative number N. Let k = 0.
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2. Compute the transformed dynamic loads {f(p)} from f(x, t) within the time span
[0, T'] by using the numerical forward Laplace transform. Solve equation (14) by
assuming zero pseudo-forces to obtain the transformed displacement responses of the
linear problem.

3. Transform the Laplace solutions by using the numerical inversion to obtain the linear
displacement responses in the time domain. Take these linear responses as initial
guesses {u(o)} and repeat the following steps with k=1,2,... andi=1,2,..., M.

4. Compute the pseudo-forces {P.(u*~ )} and {P,(u*~ Y} from equation (8) and only
those within the ith time segment T; being iterated currently are updated. Solve
equation (14) with updated pseudo-forces to obtain the transformed displacement
responses {a®}.

5. Transform the Laplace solutions {i®} by use of the numerical inversion to
obtain the time-domain displacement responses at the present iteration. If
Y, lu®(t;) — u*~ V(1)) ||, 1, < & obtain the solutions in the ith time segment and go to
the (i + 1)th segment iteration until the Mth time segment is reached.

6. If ¥, [u®(t;) —u* " V()| ,er, > & and k < N, set k:=k + 1 and return to step 4.
Otherwise re-divide the ith time segment into N; sub-segments and iterate each
sub-segment until convergence. Otherwise re-divide the ith time segment into
N; sub-segments and iterate each sub-segment until convergence.

5. ILLUSTRATIVE EXAMPLES

5.1. EXAMPLE 1: A SHORT CABLE

A relatively short suspended cable (Cable 1) with the horizontal span L, = 3292 m
and the sag d =581 m is first analyzed. This cable has the modulus of elasticity
E =2:0x10'! Pa, the cross-sectional area A4 = 0-759 m?, the mass per unit length
m = 5951-:04 kg/m, and the horizontal tension T, = 1-388 x 10° kN. The cable natural
frequencies of in-plane modes are given in Table 1. The primary critical damping of the
cable is estimated to be & = 0-5%. The corresponding damping constant c is obtained by the
formula [33]

c=2({./JEAm. (15)

Cable I is divided into 18 elements in the analysis, i.e.,, n = 18. The damped free
vibration of the cable is first evaluated. The initial transverse displacement along the

TABLE 1

Natural frequencies of in-plane modes of Cable 1

Mode Natural frequency Remark

order (Hz)
1 0-3830 Symmetric mode
2 0-4642 Antisymmetric mode
3 0-7066 Symmetric mode
4 09321 Antisymmetric mode
5 1-1741 Symmetric mode
6 1-4223 Antisymmetric mode
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cable is taken as
vo(x) = s sin(mx/Ly) (16)

with so = 1:5 m.

The transient response solution is initially tried by taking the entire time duration of
interest of 70 s as one time segment, but the iteration fails to converge. Subsequently, the
solution process is repeated by arbitrarily dividing the time duration into 18 segments, each
consisting of 50 time steps. The iteration is performed segment by segment and the
convergence is reached for all segments. Figure 3(a) shows the predicted displacement
response at the cable mid-span. In all the figures throughout this paper, the positive
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Figure 3. Transverse displacement response at mid-span under free vibration: (a) critical damping & = 0-5%;
(b) critical damping & = 0:6%. Non-linear, - —- linear.
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response indicates the “moving-down” displacement and the negative response indicates the
“moving-up” displacement. In order to check if the system damping influences the iteration
convergence, the response solution is tried again by taking the entire time duration as one
time segment but increasing the critical damping from 0-5 to 0:6%. In this case, the iteration
convergence is achieved and the computation results are given in Figure 3(b). It is shown
that the convergence is indeed influenced by the system damping. When the damping is low,
we should use quite a number of time segments to reach convergence.

Both the linear and non-linear responses are illustrated in Figure 3 for comparison. There
is a frequency shift of the non-linear solution relative to the linear solution. As the
non-linear response amplitudes occur behind the corresponding linear response amplitudes,
this cable exhibits softening non-linearity. In fact, the geometric non-linearities of the
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Figure 4. Transverse displacement response under concentrated harmonic excitation with f= 0-5Hz:
(a) at mid-span; (b) at quarter-span. —— Non-linear, — - - linear.
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Figure 5. Cable dynamic tension under concentrated harmonic excitation with f= 0-5 Hz: (a) at mid-span;
(b) at quarter-span. Non-linear, ——- linear.

cable include quadratic and cubic non-linearities. Both softening and hardening behaviours
may occur depending on the relative contributions of the quadratic and cubic
non-linearities that are concerned with the cable parameters (e.g., sag, static tension) and
vibration mode.

The dynamic responses of Cable I subjected to a concentrated vertical harmonic
excitation at mid-span are then analyzed. The harmonic excitation is in the form

F = F, cos(2nft), (17)

where F is the exciting force amplitude and f'is the excitation frequency. In this example,
the force amplitude is F, = 1-6 x 10% kN, and the excitation frequency f'is taken to be 0-5
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Figure 6. Transverse vibration profile at different instants (t = 10-15s) under concentrated harmonic
excitation: (a) linear; (b) non-linear.

and 0-19 Hz respectively. The cable (static) tension is reduced to 90% of the original value
(1-388 x 10° kN) and the static configuration is accordingly updated to investigate the
non-linearity effects at a lower tension. In order to quickly accomplish the iteration at each
time segment, the entire time duration of 150s is divided into 300 segments, each consisting
of six time steps.

Figures 4-7 give the analysis results for f=0-5Hz Figure 4 shows the transverse
displacement response at the mid-span and at the quarter-span respectively. It is seen that
the non-linearities result in a quasi-static displacement drift to the down-position (positive
displacement drift) at the mid-span and to the up-position (negative displacement drift) at
the quarter-span. With the displacement response time history, the cable dynamic
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Figure 7. Comparison of predicted responses at mid-span by the proposed method and the Runge-Kutta
method: —present method; @ Runge-Kutta method.

tension can be readily evaluated from equation (5). Figure 5 gives the ratio of dynamic
tension to initial static tension at the mid-span and at the quarter-span respectively.
It is observed that the non-linearities give rise to a negative tension drift (compressing)
at the mid-span and a positive tension drift (tensioning) at the quarter-span. Figure 6
illustrates, respectively, the linear and non-linear transverse vibration profiles at
different instants from ¢ =10 to 15s. It is seen that the non-linear vibration profile
is much more complicated in the spatial shape than the corresponding linear vibration
profile. This explains why the conventional procedure by making use of a few linearized
modal deflection functions cannot provide accurate non-linear response prediction in some
circumstances.

In this example, a numerical verification is also carried out by evaluating the non-linear
dynamic response using the proposed method and using the sixth order Runge-Kutta
method. Figure 7 shows a comparison of these results, where the solid line indicates the
response results of the proposed method, while the circle points denote the result of the
Runge-Kutta method. It is seen that the results of the present method are in close
agreement with the Runge-Kutta integration results.

Figure 8 and 9 give the analysis results when the frequency of the harmonic excitation is
taken as f'=0-19 Hz. The transverse displacement response at the mid-span and at the
quarter-span is shown in Figure 8. It is observed that, in contrast to the case of f= 0-5 Hz,
the non-linear displacement response now exhibits a quasi-state drift to the up-position
(negative displacement drift) at the mid-span. At the quarter-span, the displacement drift is
still in the up-position but the response contains high-frequency components. These results
indicate that the non-linear dynamic response under a simple harmonic excitation may
produce positive or negative drift depending on the exciting frequency, and may exhibit
significant multi-harmonic response components even in the steady state. Figure 9 shows
the ratio of dynamic tension to initial static tension at the mid-span and at the quarter-span.
Itis seen that the dynamic tension taking into account non-linearity is obviously larger than
the corresponding dynamic tension without considering non-linearity and accommodates
multi-harmonic components.

An advantage of the proposed method is that it can directly deal with a system
with viscoelastic damping parametrically dependent on the frequency parameter or
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Figure 8. Transverse displacement response under concentrated harmonic excitation with f'= 0-19 Hz: (a) at
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with linear hysteretic damping (complex damping). It has been revealed that the
cable damping mainly stems from the internal friction damping due to flexure hysteresis
[34]. As an example, the transient response of Cable 1 with complex damping is
analyzed by the proposed method. The complex damping is introduced by replacing E with
E(1 +jn) and letting ¢ = 0. Figure 10(a) shows the transverse displacement response
at the mid-span of Cable I with complex damping (n = 0-06) subjected to the following
quasi-static loading:

2:5x103% for 0 <t < 10,

1
2:5%x10%  for t > 1-0. (18)

F(kN) = {

It is observed from Figure 10(a) that since the complex damping essentially degrades the
primary modal oscillations, the response retains high-frequency components and decay of
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Figure 9. Cable dynamic tension under concentrated harmonic excitation with f= 0-19 Hz: (a) at mid-span;
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the vibration to a static response takes a long time. As a comparison, Figure 10(b) gives the
response of Cable I with viscous damping (¢ = 0-5%) under the same quasi-static loading.
With the viscous damping, the response evolves like damped free vibration in the primary
period, and decays quickly to a static response. The non-linear static response is smaller
than the linear static response in both complex damping and viscous damping cases.

5.2. EXAMPLE 2: TSING MA BRIDGE CABLE

The main-span suspended cable of the Tsing Ma Bridge with a 1377 m main span,
referred to as Cable II, is analyzed as a long-span cable example. The field measurements of
modal properties of the suspension Tsing Ma Bridge at a series of construction stages have
been conducted by ambient vibration survey [35], including the cable free hanging stage at
which only the tower-cable system was erected but no deck units had been hoisted into
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Figure 10. Transverse displacement response at mid-span under quasi-static loading: (a) complex damping
(7 = 0-06); (b) viscous damping (¢ = 0-5%). Non-linear, - —- linear.

position. In the free hanging stage the main-span suspended cable is configured by the
following parameters: the cable horizontal span L, = 1369-36 m; the sag d = 123-52 m; the
horizontal tension T, = 1-226 x 10° kN; the modulus of elasticity E = 2-0 x 10! Pa; the
cross-sectional area 4 = 0-759 m?; and the mass per unit length m = 5951-04 kg/m. The
computed natural frequencies of in-plane modes are given in Table 2. These prediction
results agree well with the measured natural frequencies of the cable. In contrast with Cable
I, the first in-plane mode (and the odd-order modes) of Cable II is an antisymmetric mode.
The natural frequencies of Cable II are much lower than those of Cable I due to extremely
long cable span and relatively large sag. The primary viscous damping ratio is estimated to
be ¢ = 0-5%.

In order to verify the ability of the proposed method to deal with any type of excitations,
arandom dynamic loading uniformly distributed along the cable is considered. The discrete
random excitation, as shown in Figure 11, is produced by using the Davenport spectrum to
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TABLE 2

Natural frequencies of in-plane modes of Cable 11

Mode Natural frequency Remark
order (Hz)
1 0-1020 Antisymmetric mode
2 0-1488 Symmetric mode
3 0-2091 Antisymmetric mode
4 0-2562 Symmetric mode
5 0-3160 Antisymmetric mode
6 0-3562 Symmetric mode
1:00
0-00 -
—1-00
=200
£
E -3-00
g 400
(=]
=
—=5-00
—6-00
-7-00 -
—8-00_""""""""""""‘
0 5 10 15 20 25 30 35 40 45 50 55 60 65
t(s)

Figure 11. Time history of uniformly distributed exciting force.

simulate a wind lift load. In the response analysis, Cable II is divided into 40 elements, i.e.,
n = 40. The entire time duration of 1024 s is portioned into 60 segments and each time
segment consists of 20 steps. The iterative convergence is reached for all the time segments,
and the transverse displacement response at the mid-span and at the quarter-span is shown
in Figure 12. The difference of the magnitude and the phase between the non-linear and
linear responses is obvious but not significant. Figure 13 shows the ratio of dynamic tension
to initial static tension at the mid-span and at the quarter-span. It is seen that the additional
tension caused by the cable vibration is small relative to the initial tension. Figures 14 and
15 illustrate, respectively, the transverse and longitudinal vibration profiles at different
instants from ¢ = 50 to 60 s. Evidently, the response profile manifests itself as a combination
of the contributions from many modes. It makes clear again the necessity of containing
multiple modes in non-linear transient response analysis. It is seen that during the observed
time period (t = 50 ~ 60 s), the non-linear transverse response shows extremely large
positive (moving-down) amplitudes at the locations of about 0-15L, and 0-85L,, which
cannot be found in the linear response. The maximum longitudinal response amplitudes
also occur at about 0-15L, and 0-85L,.
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6. CONCLUSIONS

In the present study, a numerical scheme involving the hybrid application of the
pseudo-force method and the Laplace transform technique in conjunction with the
finite-difference discretization is presented for non-linear dynamic analysis of suspended
cables under arbitrary dynamic loading. In comparison with the time-step integration
method, the proposed method offers the following advantages: (1) Due to eliminating
step-by-step time marching process, the method can obtain simultaneously the non-linear
transient response in a time segment. It is particularly efficient in computing a long-term
solution, e.g., the steady state response under periodic or quasi-static loading. (2) The
proposed method can predict both the non-linear and linear transient response from one
solution scheme. In fact, the linear transient response in the entire time duration of interest
can be quickly evaluated by the proposed method without any iteration. (3) The proposed
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—— Non-linear, - - - linear.

method can readily deal with the viscoelastic damping which is parametrically dependent
on frequency as well as the complex damping. It is therefore promising to extend the
proposed method to the analysis of widely used cable-damper systems with viscoelastic
and/or hysteretic dampers installed transversely near the cable ends.

Numerical examples including short-span and long-span cables are given to demonstrate
the applicability of the proposed method. Based on the analysis results, the following
conclusions on the non-linear dynamic behaviour of suspended cables are drawn: (1) Under
a simple harmonic excitation, the cable non-linear oscillations (both the displacement
response and the dynamic tension) are not symmetric about the equilibrium position. The
displacement response (and dynamic tension) at different cable locations, may have a static
drift in opposite directions (one in the up-position and another in the down-position). The
static drift at the same location can also change its direction when the excitation frequency
is changed. (2) The suspended cable may exhibit significant multiharmonic response
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subjected to a single harmonic excitation due to the geometric non linearities. This is
particularly obvious in the time history of the dynamic tension. It implies that in order to
obtain steady state dynamic response, the multi-harmonic components should be
accommodated in the solution scheme. (3) The non-linear vibration profile of a cable is
much more complicated than the corresponding linear vibration profile even under a simple
concentrated harmonic loading. When subjected to a distributed random excitation,
the higher vibration models contribute significantly to the cable response. Therefore,
the approximate approaches in terms of a few linearized modes usually cannot give accurate
non-linear response prediction for long-span cables.
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APPENDIX A: COEFFICIENTS a; AND b; IN EQUATION (9)
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APPENDIX B: TRANSFORMATION OF EQUATION (14) AS LINEAR
REAL ALGEBRAIC EQUATIONS

The Laplace domain parameter p is a complex-valued variable. In the numerical Laplace
transform, p is expressed in a discrete form and its value at the Ith sample is
=y +]j2l—)r/T(l=1,2,...,N). With this expression, the terms in the brackets on the
left-hand side of equation (12) can be written as

(aiz + mp? + c.p) = afs +jalz, (b + mp* + ¢,p) = afy + jai,,  (Bl, B2)

where the subscripts R and [ refer to the real and imaginary components respectively. The
expressions of a%, ai5, af and al, are given by

agy = a;3 + m{p? — [21 — OHr/T1*} + ¢y, aly = 2m(2l — 1)yyn/T + ¢(2l — Dn/T,

R
bi4

(B3, B4)

= by + m{y* — [ — Du/T1?} + ¢xp. bly = 2m(2l — yn/T + ¢,(2 — Dm/T.
(BS, B6)
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Similarly, the terms on the right-hand side of equation (12) can be expressed as

m[ puy(0) + 1:(0)] + cx14:(0) + Pi(p) = UF +jUI, (B7)
m[ poi(0) + 6:(0)] + ¢,0:(0) + Piy(p) + [ (xi, p) = VF +jV] (BB)
in which
UF = m[7:(0) + t:(0)] + cxt6:(0) + PR(py), (B9)
Ut = [m(2l — 1)n/TJui(0) + Pla(py), (B10)
VE = m[poi0) + 6001 + ¢,v:0) + £ (p2) + P (py), (B11)
Vi=[m@l = )n/TIu0) + /(1) + Ph(p), (B12)

where R0, (), PR(p1), PL(py), PR(py) and PL(p,) are the real parts and imaginary parts
of f(x;, p), Pix(p) and P,,(p) at the Ith sample in the Laplace domain.

The transformed displacement components in the Laplace domain, i,
0; (i=1,2,...,n— 1), are also complex-valued and can be expressed as

;= af +jil, b= ok 4 jil. (B13)

Substituting equations (B1)-(B13) into equation (12) and balancing the real and
imaginary parts, respectively, yield

ap iy + apti + alSil — al3i] + audt + aisiife + aibie, = UF, (B14)
aptli— 1 + a0y + alzuf + a5 + ] + aisily g + aiebiy = UJ, (B15)
bl + binBiy + bistlf + bRTR — biabl + bistife 1 + bihly: = VE, (B16)
biyiif— + bia¥i— 1 + bisili + biai + bRT] + bisili+ 1 + bisli1 = Vi. (B17)

Assembly of equations (B14)-(B17) from i = 1 to (n — 1) results in a system of 4(n — 1)
linear real algebraic equations as

[dq.1] . {11.1} {U_l}
) {in} p={ (U3} B15)
St Lo
in which
(@) = (@R R T (=120 1), (B19)

(U ={UR U VEVIT (i=1,2,...,n—1), (B20)
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