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A three-dimensional shell theory is presented which is applicable to doubly curved thick
open shells which are arbitrarily deep (have a large side-length to radius of curvature ratio)
in one principal direction but are shallow in the other direction. The strain-displacement
equations for the proposed “deep-shallow” shell theory are expressed in Cartesian
co-ordinates and the limits of applicability of these equations are discussed. These equations
are then used in a Ritz variational formulation with algebraic polynomials as trial functions
to solve for the natural frequencies of a number of doubly curved shell problems. A novel
approach is also proposed in which penalty functions are introduced to enforce continuity of
displacements at two opposite ends of a shell of rectangular platform, increasing the range of
problems which can be treated to include closed shells, such as cylinders, barrels,
cooling-tower-type structures, toroids, rings, etc. (a sub-class of shells of revolution).

© 2000 Academic Press

1. INTRODUCTION

Marguerre [ 1], Reissner [2-4] and Vlasov [5] are credited with the initial development of
shallow shell theory (see Leissa [6]). Work on the free vibration of shallow shells has been
discussed in a monograph on the vibration of shells by Leissa [6], in a book by Soedel [7],
as well as in a more recent review article by Qatu [8]. The free vibration behaviour of deep
cylindrical shell panels based on the deep shell theory of Novozilov [9] has been studied by
Mizusawa [ 10] using the thin strip method. Lee et al. [11] compared results obtained using
a deep shell theory with results obtained using shallow shell theory for cantilevered
cylindrically curved panels. The free vibration of thin closed cylindrical shells has been
extensively studied and is reviewed in a paper by Koga [12] as well as in Leissa’s
monograph [6]. The free vibration of laminated barrel shells has been treated in a recently
published paper by Qatu [13] where extensive numerical results are presented.

In the present paper, a three-dimensional shell theory applicable to a class of doubly
curved thick open shells which are arbitrarily deep (have a large side-length to radius of
curvature ratio) in one principal direction but which are shallow in the other direction is
proposed. The strain—-displacement equations of this “deep-shallow” shell theory are
expressed in Cartesian co-ordinates. Simple algebraic polynomials which satisfy the
boundary conditions on the six faces of a parallelepiped are used as trial functions in a Ritz
approach to obtain an eigenvalue equation based on the proposed strain-displacement
equations. (The use of simple polynomials as admissible functions in a Ritz approach
to treat plates, shells and solids has been discussed in a number of previous papers
[14-16].
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A novel technique is also proposed in which penalty functions are introduced to enforce
continuity of displacements at two opposite ends of a shell of rectangular platform (rather
than to enforce boundary conditions [17] or continuity between elements [ 187). This simple
device increases the range of problems which can be treated using the “deep-shallow” shell
equations to closed shells, such as cylinders, barrels, co oling-tower-type structures, toroids,
rings, etc. (a sub-class of shells of revolution).

In order to validate the proposed approach, as well as to explore the limits of
applicability, natural frequencies are obtained for a range of problems including
cylindrically curved panels, thick and thin cylindrical shells and barrel shells and are
compared, where possible, with values published in the open literature.

2. THEORY

2.1. STRAIN-DISPLACEMENT EQUATIONS

Consider a homogeneous isotropic shell described in orthogonal curvilinear co-ordinates
oy, o, lying along the neutral surface and a co-ordinate «; normal to the neutral surface as
shown in Figure 1. If it is assumed that the principal curvatures R, and R, are constant and
lie along the co-ordinates o; and «,, the three-dimensional linear strain-displacement
equations are given by (cf. Soedel [7, pp. 25-26] and Leissa [6, p. 7])
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where ¢, 4, ¢,,, £33 are the normal strains, ¢, ,, &,3 and &,5 the shear strains, and U,, U, and
U, the displacements in the o, «, and o5 directions, respectively, and where 4, and 4, are
the first fundamental quantities or Lamé parameters.

The strain—-displacement equations given by equation (1) can be simplified if it is further
assumed that: (i) The ratios of thickness ay to radius of curvature are small, that is a;/R, and
as;/R,« 1. It can then be assumed that 1 + a3/R; and 1 + a3/R, in equations (1) are
approximately equal to 1. (ii) Either the ratio of sidelength to radius of curvature a,/R, or
a,/R, is small (« 1), or in other words the shell is shallow in either the «, or o, direction (in
the following analysis it will be assumed that a,/R,<«1). The shell can then be
approximately described in Cartesian co-ordinates by letting x = R, d0 = o, y = a5,
z =03, R, = R, and R, = R, from which sidelengths a = R, 0 = a,,b = 2R, sin(¢/2) = a,
and thickness ¢ = a; and the Lamé parameters A; and A4, are equal to 1 as shown in Figure 2.
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Figure 1. Doubly curved shell in orthogonal curvilinear co-ordinates.
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Figure 2. Cartesian representation of doubly curved shell.

The strain—displacement equations can be expressed in terms of the displacements u,
v and w in the x, y and z Cartesian co-ordinates, respectively, as
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The shell is effectively “unwrapped” or “unravelled” in the deep direction as shown in
Figure 2 (instead of using the more typical projection onto the x—y plane used in shallow
shell theory). This very simple technique extends the applicability of the
strain—displacement equations (2) to shells which are arbitrarily deep in one direction. In
fact, shells may even be wrapped end to end (0 = 2II; a = 2I1R,) or coiled (0 > 2II;
a > 2IIR ) (although for coiled shells the interference of one surface on another is not taken
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Figure 3. (a) Closed barrel shell (constant positive meridional curvature R,); (b) closed cooling tower-shaped
shell (constant negative meridional curvature R,).

into account). It should be noted that the same approach can be used to extend the
applicability of classical thin-shallow shell theory to deep-shallow shells (all that is needed
is a correction in the sidelength used for the “deeper” direction).

Shells of revolution can be modelled in Cartesian co-ordinates by using the unwrapped
planform (a = 2ITR,) and by enforcing continuity at x = 0 and a. However, for these shells
the radius of curvature R, will not, in general, be constant but will vary along the axial
length b as is shown in Figure 3 (except for the special case of a cylinder where 1/R, = 0). It
can be shown that, in addition to the previously stated assumptions, the proposed equations
will only apply for closed shells provided b*/(8R R,)«1 (see Appendix A).

It should be noted that: (i) If a/R, and b/R, = 0 the strain-displacement equations (2)
reduce to the three-dimensional elasticity equations for a solid in Cartesian co-ordinates
and are valid for arbitrary thickness ¢; and (ii) if one of the curvatures is infinite (e.g.,
b/R,=0), that is if the shell is cylindrically curved, then the only limitation of the proposed
equations is that ¢/R, « 1.

2.2. FREE VIBRATIONS USING RITZ APPROACH

If simple harmonic motion at radian natural frequency w is assumed, the displacements u,
v and w in the x, y and z directions, respectively, can be expressed as u(x, y,z, t) =
U(x,y, z)sinwt; v(x,y,z,t)=V(x,y,z)sinwt and w(x, y,z,t) = W(x, y,z)sinwt. The
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displacements U, V and W for a thick shell of rectangular planform can be approximated
using algebraic polynomials as follows:

n,

n Y nz . u . u u u u u
Ut A= 5§ 5 At oy ot b — oo — e - o,

i=0 j=0 k=0

V(x,y,z) = 2 z z Byjx' ooy thoo gk im0 (g x)sma(h — y)heb(e — z), 3)

i=0 j=0 k=0

Wiena= Y 3 3 Cu oyt tiong - i — e — o,

i=0 j=0 k=0

where A;j, By and C;j are as yet undetermined linear coefficients. The index /x—, depends
on the geometric boundary conditions on the surface x = 0 for the U displacement and
takes the value O for no restraint (U # 0) and 1 for full restraint (U = 0). Similarly, indices
IY_o and I, depend upon the restraints imposed upon V and W in the x = 0 plane and
indices (x as Z)Ic/ as lW:a)’ (ly 0> y 0> :0)’ (ly b> ly b> y b) (lz 0> lz 0> lz=0) and
(1, 1Y- ., 1) depend on the restraints in the U, VV and W directions on the other five faces
of the solid shell (at x =a, y =0, y=b, z=0 and z = ¢).

The maximum strain energy V.. can be expressed straightforwardly in terms of the
normal and shear strains:

1
Foos =5 |[[ Do+ 4 0207 + 26068+ 6+ 620 + G2 + 23 + 720 dw dy e, @

where 2 = vE/(1 + v)(1 — 2v) and G = E/2(1 + v) are the Lamé parameters.

By substituting equations (2) into equation (4), V... can be expressed in terms of the
displacements integrated over the volume of the solid.

The maximum kinetic energy T, can also be expressed in terms of the displacements as

Thax = <p7a)2> HJ(U2 +V?+ W?dxdydz, (5)

where p is the density of the element material and the integration is again performed over
the volume of the solid.

Finally, the trial function series (3) are substituted for U, V and W in the maximum
kinetic and strain energy expressions and the Lagrangian functional L., = (Tuux — Viax) 18
minimized with respect to the undetermined linear coefficients A;j, B and C;j to give
a homogeneous linear system of equations. Eigenvalues and the corresponding eigenvectors
can then be obtained by a number of methods (in the present paper using subspace
iteration). It should be noted that since the polynomial trial function series described by
equations (3) form a mathematically complete set of functions, the results obtained from the
Ritz minimization process will converge monotonically from above to the exact frequencies
(of the approximated problem) as the number of terms in each series tends to infinity.

2.3, ENFORCEMENT OF CONTINUITY CONDITIONS TO MODEL SHELLS OF REVOLUTION

The approach described above can be used to treat cylindrically shaped closed shells by
creating a fictitious seam or cut in the shell along the axial length. The shell can then be
unwraped into the Cartesian co-ordinate system so long as continuity of geometric
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boundary conditions along the cut edge is ensured. For a closed cylindrical shell with axial
co-ordinate in the y direction and with x = 2ITR, = a, these continuity conditions are given
by Ueco = Uiy, Vico = Vioy and Woe_o = W,—,. In the present paper, the continuity
conditions are satisfied by using connecting springs of very high stiffness value K, K- and
Ky to enforce continuity of displacements U, V, and W at x = 0 and a. The strain energy
contribution Vy, Vy and Vy, of these springs is then simply added to the strain energy V.. of
the shell

1
I/u = 5 Ku JJ(Ux—O - sza)2 dy dZ,

1

=5 K | [ o = Ve aya ©
1 2

V= 5 K, (Wx=0 - Wx=a) dy dz.

The use of penalty functions or artificial springs to enforce continuity could usefully be
applied even when cylindircal co-ordinates are used (for example, polynomial functions
could be used instead of the more usual Fourier series). In general, the technique of using
artificial springs to enforce continuity of geometric, and if required, natural boundary
conditions at two points along a non-periodic function, extends the range of functions
which can be used as trial functions in a number of problems.

3. NUMERICAL RESULTS

In order to validate the proposed approach as well as to explore the limits of
applicability, numerical results have been generated for a range of problems and are
compared with results published in the open literature or with results generated by the
author using the finite element method. For all cases considered, Poisson’s ratio was taken
as 0-3.

In Table 1, the lowest five frequency parameters Q2 = w./(p/E) as obtained using the
present approach are given for a fully simply supported cylindrical panel for ¢/R, = 0-01,
b/R, = 052356 and for a/R, ranging from 02618 (0 =15°) to 2:0942 (6 = 120°).
Comparison results obtained by Mizusawa [ 10] using a spline strip approach in a deep thin
shell theory based on the equations proposed by Novozhilov [9] are also given. For the
cases considered here, the only assumptions made in using the present approach are (i) that
the planform can be approximated as a parallepiped (rather than actual truncated wedge)
and (ii) that the radius of curvature R, is constant through the thickness ¢ of the panel (both
of which are very closely approximated since the shell is thin). Agreement between the
present results and those obtained by Mizusawa can be seen to be excellent with at most
a 1:3% difference in the results for all cases except for 0 = 120° where at most a 5%
discrepancy is observed. From the brief convergence study given, the present results can be
seen to converge rapidly and in many cases to 4 significant figures. It might also be noted
that in all cases but one (Mode 4, 90°), the present results are lower than those obtained by
Mizusawa and are therefore more accurate as the Ritz approach leads to upper bounds on
the natural frequencies (the author believes the results obtained for the 120° case by
Mizusawa would converge closer to the present results if a larger number of strips were used
in the solution).
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TaBLE 1

Frequency parameters Q = w\/ (p/E) for a fully supported cylindrical panel for b/R, = 0-52356,
¢/R, =001, and R,/R, =0

Mode number

a/R, 0 iy X 0y X 1, 1 2 3 4 5
02618 15° 8x8x4 0-3002 0-5214 0-8178 09575 1-129
10x10x 4 0-3002 0-5214 0-8177 09574 1-129
Mizusawa [10] 0-3009 0-5233 0-8232 09675 1143
0-5236 30° 8x8x4 0-2821 0-3003 0-5043 0-5214 1-5669
10x10x4 0-2821 0-3002 0-5043 0-5214 1-5667
Mizusawa [10] 0-2821 0-3009 0-5050 0-5233 15701
0-7853 45° 8x8x4 0-2432 0-3005 03674 0-4868 0-4912
10x10x4 0-2432 0-3002 0-3674 0-4632 0-4868
Mizusawa [10] 0-2433 0-3010 03674 0-4645 0-4877
1-5707 90° 10x 10x 4 0-2437 0-2556 0-2821 0-3128 0-3674
12x6x4 0-2432 0-2531 0-2821 0-3067 03674
Mizusawa [10] 0-2443 02552 0-2825 0-3042 0-3675
2:0942 120° 10x10x 4 0-2425 0-2481 02619 02821 0-3013
12x6x4 0-2425 0-2481 02619 02821 0-3003

Mizusawa [10] 0-2452 0-2492 0-2682 0-2826 0-3148

TABLE 2

Frequency parameters Q* = wa*\/(12(1 — v*)p/(Ec?)) for a cylindrical panel cantilevered at
y =0 with bla=1, R)/R, = ©

Symmetric modes Antisymmetric modes
a/R, alc S1 S2 S3 S4 Al A2 A3 A4
07 40 Present 8x8x4 1124 2620 4033 6330 9:097 3486 6133 7736

Deep [11] 1124 2629 4064 6355 9150 3509 6188 7949
Shallow [11] 10-81 2735 4045 6411 9219 3511 6469 79:61

1-6 40 Present 8x8x4 1773 33:63 4714 8859 12:55 4535 5103 8692
Deep [11] 1791 3347 4769 8974 12:63 4564 5161 87-33
Shallow [11] 18:69 3196 4955 9712 1142 4622 6496 8724

0-7 500 Present §8x8x4 3026 9348 1222 1616 3570 8210 93-:02 1709
Deep [11] 3029 9360 1223 1619 3574 8222 9315 1749
Shallow [11] 3034 9362 1271 1565 3542 8255 9322 1749

1-6 500 Present 8 x8x4 4992 1242 1339 2255 4733 1322 1581 1820
Deep [11] 4998 1244 1340 2254 4736 1318 1573 1823
Shallow [11] 4692 1296 1406 2417 4943 1319 1458 2069

In Table 2, the frequency parameters Q* = wa’\/(12(1 — v?)p/(Ec?)) for the first four
symmetric and antisymmetric modes of a cylindrical panel cantilevered at y = 0 as obtained
using the present approach for both a very thin ¢/a = 1/500 and a thin ¢/a = 1/40 panel and
for both a relatively shallow a/R, =07 and a deeper a/R, = 16 curved panel (all
combinations for a total of four cases) are compared with results published by Lee et al.
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[11]. Again, for the cases considered, here, the only simplifying assumptions made in the
present approach are (i) parallepiped platform and (ii) a constant radius of curvature R,
(again these are both very closely approximated since the shell is for all cases relatively thin).
Lee et al. generated results using both a shallow-shell theory and a deep-shell theory and, as
can be seen from Table 2, agreement of the present results with their published deep-shell
theory based results is excellent with at most a 2-7% discrepancy. Again it should be noted
that in the vast majority of cases, the present results are lower than those presented by Lee
et al. and can therefore be considered more accurate.

In Table 3, the lowest seven non-dimensional frequency parameters Q = wa\/ (p/E) for
axial wave number 1 are given for a cylinder of thickness to radius ratio ¢/R, = 0-3 and
thickness to length ratio ¢/b = 0-3 with shear diaphragm boundary conditions on each end
as obtained by modelling: (i) a quarter of the cylinder as a 90° shell panel and applying all
distinct combinations of symmetry and antisymmetry conditions at x = 0 and at x = I1/2
R, = a; (ii) half the cylinder as a 180° shell panel applying all combinations of symmetry and
antisymmetry conditions at x =0 and at x = [IR, = a; (iii) a full cylinder ensuring
continuity of displacements at x =0 and at x =2 [IR, = a by using artificial springs
(penalty functions) with stiffness parameters Ky = Ky/E, Ky = Ky/E and Ky = Ky/E
equal to 10°. For the full cylinder case and for 12 x4 x 4 terms in the series a brief con-
vergence study for penalty function stiffness Ky = K}, = Kj = 10% and 10* is also included
in the table. The present approach assumes (i) that the radius of curvature R, =1 is
constant through the thickness ¢ whereas R, actually varies from 0-85 to 1-15 as shown in
Figure 4(a) and (ii) that the unravelled planform of the cylinder is a parellelepiped, rather
than a truncated wedge, as shown in Figure 4(b). In spite of these assumptions, excellent
agreement is achieved with the results obtained by Armenakas et al. [20] using an exact
solution (at most 1:5% difference in predicted non-dimensional frequency). As the
circumferential wave number of a mode increases, more terms in the polynomial expansion
in the circumferential direction are required to achieve convergence using the present
approach particularly when symmetry is not exploited and the full shell is modelled.

TABLE 3

Frequency parameters Q = a)Rx\/(p/E)for a cylindrical shell with shear diaphragm conditions
at both ends of ¢c/R, =03 and b/R, =1

Mode type (axial wave number, circumferential wave number)

n,xn, xn, (1,2 (L1 (1,00 (1,3) (1,4 TORS (1,1) (1,5
90° 6x6x3 1173 1185 1247 1353 1711 1948 2094  2:176
9%9%6 1162 11179 1242 1333 1673 1948 2094 2120
180° 8x8x5 1162 11179 1242 1333 1714 1948 2094 2223
12x4 x4 1162 11179 1242 1333 1674 1948 2094  *

n.xn,xn, K,K,,K,
360° 12x4 x4 10? 11162 1179 1241 1338 1918 1947 2:085
10* 1-162  1-179 1242 1341 1923 1948 2:093
10° 11162 1179 1242 1341 1923 1948 2:094
14 x4 x4 106 1-162  1-179 1242 1334 1715 1948 2094
Exact [20] 1161 1173 1232 1340 1690 1948 2-085 2:146°
Y%Error’ 01 0-5 0-8 -05 —10 00 0-4 —12

P

T 9%Error = 100 x (9 x 9 x 6 result 90° — exact)/exact.
#Numerical problems experienced.
$Results obtained by Soldatos et al. [19].
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Figure 4. (a) Cylindrical shell of radius R, = 1, axial length b = 1 and thickness ¢ = 0-3; (b) cylindrical shell of
Figure 4(a) unravelled into Cartesian co-ordinates showing approximated parallelepiped cross-section used
overlaid on actual truncated wedge cross-section.

In Table 4, the lowest five non-dimensional frequency parameters Q = a)Rx\/(p/E) for
a fully simply supported closed cylindrical shell with a non-dimensional thickness to radius
of curvature ratio ¢/R, ranging from 0-1 to 1-0, and a length to radius of curvature ratio
b/R, =1 are compared with the exact results obtained by Amenakas et al. [20]. As can be
seen in Table 4, agreement between the approximate and exact results becomes poorer as
the shell becomes thicker. However, it is still remarkably good even for very thick shells (e.g.,
¢/R, = 1) where the simplifying assumptions ((i) planform approximated as a parellepiped,
and (ii) R, constant through thickness) of the present approach become significant.

In Table 5, the lowest five non-dimensional frequency parameters Q = wa\/ (o/E) are
given for thin (¢/R, = 0-01) doubly curved closed shells similar to those shown in Figure 3(a)
and 3(b), with axial length to radius of curvature ratio b/R, =5, and for R,/R, =
(cylinder), R,/R, = 40, 20 and 10 (increasingly “barrelled” shells as shown in Figure 3(a))
and R,/R, = —40, —20 and —10 (increasingly “cooling tower” shaped shells as shown in
Figure 3(b)). For all cases considered the shell is clamped at both ends. Results obtained
using the present approach are compared with very accurate values obtained using the
commercial finite element software package ANSYS 5.3 [21]. The most significant
assumption made using the present approach is that the curvature R, is constant along the
axial length whereas, as is shown in Appendix A, it is in actual fact a function of R, (except
for the special case of the cylinder). A second, less significant, assumption is that the
unravelled planform of the doubly curved shell is rectangular in planform (with side-length
ratios b/R, =5 and a/R, = 2II). Very good agreement is obtained between the present
results and the comparison based on an accurate three-dimensional finite element model of
the problem (i.e., without the assumptions made in the present approach). As might be
expected, as the shell becomes more curved along its axial length, and therefore deviates
more significantly from the actual problem, the discrepancy between numerical results
obtained using the present approach and the finite element results becomes larger.

4. CONCLUDING REMARKS

Natural frequencies using the proposed strain-displacement equations for
“deep-shallow” shells have been shown to give remarkably accurate results when compared
with values available in the open literature. It should again be stressed that although the full
three-dimensional strain—displacement equations were derived, these could be further
simplified for thin shells by introducing the usual Love-Kirchoff approximations to give
a deep—shallow thin shell theory.



TABLE 4

Frequency parameters Q = wa\/(p/E)for cylindrical shells with shear diaphragm conditions at both ends, with b/R, = 1, and c¢/R, varying from

01¢t01
¢/R, Ay X Ny X 1, MODE type (axial wave number, circumferential wave number) Y%Error
0-1 (1,3) (1,2) (1, 1) (1, 4) (1, 5) (1,0) (1,7 (L7 ! !
8x8x5 071211 0-7758 0-9332 0-7900 0-9845 1-033 1-258 1-:590 / 03
Exact [20] 0-7098 0-7739 0-9317 0-7880 0-9842° 1-031 / /
02 (1,2) (L 1) (1,3) (1,0) (1,4) (1,5) TORS (1,1) ! !
8x8x5 0-9689 1-047 1-051 1-1277 1-303 1-670* 1-948 2-088 0-5 05
Exact [20] 0-9656 1-043 1-050 1-121 1-306 1-679° 1-948 2-084
03 (1,2) (1, 1) (1,0) (1,3) (1,4) TORS (1,1) (1,5)
8x8x5 1-162 1-179 1-242F 1-333 1673 1-948 2:094 2:120¢ 12 0-8
Exact [20] 1-161 1-173 1232 1-340 1:690 1:948" 2-085 2146
0-4 (1, 1) (1,2) (1,0) (1,3) (1,4) TORS (1,1) (1,2) ! !
8x8x5 1-300 1-320 1-355 1-539* 1922 1948 2-102 24237 12 1-4
Exact [20] 1-303 1-325 1-341 1-558 1957 1-948 2:087 2-390
05 (1, 1) (1,2) (1,0) (1, 3) TORS (1,4) (1, 1) (1,2) ; !
8x8x5 1-402 1-455 1-441 1-686 1-948 2:090* 2:112 24417 2:5 2:0
Exact [20] 1-398 1-439 1454 1-719 1:948" 2-143 2:090 2-393
0-7 (1, 1) (1,2) (1,0) (1,3) TORS (1,1) (1,4) (1,2) ; !
8x8x5 1-548 1-600 1611 1-865 1-948 2-134 2-284 24777 36 32
Exact [20] 1-552 1-631 1-591 1925 1-948" 2-095 2-360 2-392
09 (1,1) (1,2) (1,0) (1,3) TORS (1,1) (1,2) (1,4) i !
TxTx1T 1-638 1-692 1-718 1-961* 1-948 21547 2-383 2-501 37 27
Exact [20] 1-651 1739 1698 2:036 1:948' 2-097 2-379 2:433
1-0 (1, 1) (1,2) (1,0) TORS (1,3) (1 1) (1,2) (1,4) ; !
TxTxT 1-669 1-723 1757 1-948 1-993% 2:1607 2:415 2-502 35 30
Exact [20] 1687 1776 1738 1-948° 2:066 2:097 2-368 2:430

T Max positive error = 100 x (present — exact)/exact.
#Max negative error = 100 x (exact — present)/exact.
$Results obtained by Soldatos et al. [19].

Results obtained by the author.
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TABLE 5

Frequency parameters Q = wa\/(p/E) for closed barrel shells clamped at both ends with ¢/R, = 0-01 and b/R, = 5

%AR /R, =
R,/R, b?/(8RR,) x 100 MODE type (axial wave number, circumferential wave number) % difference
0 0% Ry X 1y X 1, (1,4) (1, 5) (1, 3) (1, 6) 2,5) — +
6x6x3 0-0681 0-0818 00842 0-186 0-130
8x8x5 0-0664 0-0796 0-0810 0-109 0-113
8 x 14 x 3f 0-0659 0-0795 0-0800 0-109 0112 09 00
FE* 0-0661 00799 0-0801 0-110 0-113
40 8% Ry X 1y X 1, (1,4) (1, 3) (1, 5) (1, 6) 2,5) — +
6x6x3 00792 00918 00937 0-123 0-129
8x8x5 0-0776 0-0876 00926 0-114 0-126
8 x 14 x 3f 0-0707 0-0874 0-0915 0-113 0-125 62 44
FE?* 0-0751 00867 0-0875 0-113 0-124
—40 8% Ry X Ty X 1, (1,4) (1, 5) (1, 3) 2,5) (1, 6) — +
6x6x3 0-0638 00749 0-0828 0-107 0-118
8x8x5 00620 00742 0-0782 0-103 0-109
8 x 14 x 3f 00617 00742 0-0782 0-103 0-108 42 19
FE* 00630 00773 00777 0-103 0-106
20 16% Ry X 1y X 1 (1,4) (1, 3) (1,5) (1, 6) 2,5) — +
6x6x3 0-0948 0-104 0-109 0132 0-144
8x8x5 0-0933 0-101 0-108 0123 0-141
8 x 14 x 3F 00927 0-100 0-107 0-123 0-140 2:4 56
FE* 0-0893 0-0985 0-101 0-126 0-138
—-20 16% Ry X 1y X 1 (1,4) (1, 3) (1,5) 2,5) 2,4) — +
6x6x3 00673 0-0740 0-0878 0-102 0-108
8x8x5 0-0656 0-0736 0-0834 0-0975 0-106
8 x 14 x 3F 0-0655 0-0730 0-0834 0-0971 0-106 10:0 14
FE* 0-0674 0-0803 0-0822 0-0975 0-110
10 32% Ry X 1y X 1 (1,4) (1, 3) (1, 5) (1,2) (1, 6) — +
6x6x3 0-133 0-139 0-145 0-160 0-184
8x8x5 0-132 0-136 0-144 0-153 0179
8 x 14 x 3f 0-131 0-136 0-143 0-152 0-180 00 14-4
FE?# 0124 0128 0-134 0-152 0-154
—10 32% Ry X 1y X 1 (1,4) (1, 3) (1, 5) 2,5) 2,4) — +
6x6x3 0-0906 0-0891 0-104 0-109 0-100
8x8x5 0-0891 0-0889 0-0996 0-105 00986
8 x 14 x 3f 0-0890 0-0888 00994 0-105 0-0982 110 1-0
FE* 0-0908 0-0983 0-100 0-104 0-109

T Lowest values obtained using 14 x 8 x 3 or 8 x 14 x 3 terms.

* Finite element results using 8000 brick elements.
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268 P. G. YOUNG

A technique for extending the range of problems which can be treated using the

“deep-shallow” strain displacement equations in a Ritz approach to closed shells by
enforcing continuity at the two connected ends of the shell was also proposed and the
applicability of this approach was demonstrated quite conclusively by comparing results
obtained with exact values for a hollow circular cylinder.
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Figure Al. Closed cooling tower-shaped shell (with constant negative meridional curvature R,).

APPENDIX A

As is shown in Figure A1, a closed shell with constant meridional curvature R, will have
a radial curvature R, which is a function of the axial position (in Cartesian co-ordinates
a function of y).

To approximate R, as a constant it is necessary that 4R, /R« 1.

Now from Figure Al,

AR,/R, = R,(1 — cos(0))/R, and sin(0) = (b/2)/R,.

If 0 is assumed small (as is implied by the requirement b/R,« 1, or in other words the
requirement that the shell is shallow in the y direction) then

0 =~ sin(0) = b/(2Ry) and cos(0) = 1 — 0%/2 =1 — b*/(8R3)

and 4R,/R, can now be expressed in terms of the axial length b and the curvature R, and R,
as AR/R, =~ b*/(8R,R,)« 1.
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