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An experimental technique to predict the onset of aeroelastic #utter of an enclosed
computer memory disk is presented. The aerodynamic pressure is modelled as the sum of
dissipative and circulatory linear operators, which subsumes as a special case the pressure
generated in a thin hydrodynamic "lm between the disk and the wall. It is shown that the
aeroelastic model parameters can be extracted from the frequency response function of the
disk spinning at subcritical speeds. The aeroelastic parameters for an acoustically excited
single disk at di!erent enclosure gaps are derived for the speed range 6,000}19,800 rpm. The
#utter speed predicted is strongly in#uenced by the enclosure gap and the substrate
damping. A #utter speed as low as 35,000 rpm has been predicted. The technique can also be
extended to predict the #utter speed in other systems including DVD and CDROM drives.

( 2000 Academic Press
1. INTRODUCTION

The new generation of hard disk drives is expected to pack high track densities
(20,000#TPI) and rotate at very high speeds (20,000#rpm). At rotation speed near and
beyond 20,000 rpm the aeroelastic coupling between the disk vibration and the air around
the disk is expected to be signi"cant. This coupling leads to disk #utter, which can
contribute signi"cantly to the track misregistration and disk drive failure. Thus, the
prediction of the aeroelastic #utter speed is crucial for the design of the new generation of
disk drives.

The stability of the equilibrium con"guration of #oppy disks coupled through thin gas
"lms to a rigid enclosure has been studied by a number of researchers [1}5]. While Chonan
et al. [1] modelled the "lm as a linear elastic foundation, Hosaka and Crandall [2] and
Renshaw [5] utilized thin "lm lubrication equations neglecting the e!ect of radial #ow.
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Huang and Mote [4] included the e!ect of radial #ow and concluded that non-symmetric
sti!ening caused by the radial #ow can cause combination instabilities in addition to the
aeroelastic #utter. These have hitherto been mainly theoretical and numerical studies only.

The onset of aeroelastic #utter in disks spinning without enclosure (unbounded domains)
has also been studied both analytically and experimentally. These include the works of
D'Angelo and Mote [6], D'Angelo et al. [7] and Yasuda and Torii [8]. D'Angelo and Mote
[6] and D'Angelo et al. [7] indicated that inviscid, compressible and incompressible
potential #ow models signi"cantly overestimate the onset of the aeroelastic #utter speed.
Yasuda and Torii [8] used an experiment-based #ow}structure interaction model where the
model parameters were calculated from the experimental knowledge of the #utter speed
only. The present work can be considered as a generalization of Yasuda and Torii's work
and includes a careful measurement of the speed dependence of the model parameters at
pre-#utter speed.

The aeroelastic coupling problems in a hard disk are distinct from those of a disk in an
unbounded enclosure or in a #oppy disk for the following reasons.

(1) The #ow boundary conditions in the disk drives are bounded radially and axially. The
acoustic wavelengths are larger than the characteristic gap widths and this can cause
a signi"cant di!erence between #utter speed of the enclosed disk and the open disk.

(2) The rotation speeds in hard disk drives are greater than in #oppy disks, and the gap
widths are greater. This leads to a substantially greater #ow Reynolds number and the
use of hydrodynamic lubrication theory can lead to an inaccurate model of the
aerodynamic pressure. The Reynolds number, for a commercially available 3)5 in. hard
disk rotating at 10,000 rpm (X is the disk speed, R

2
is the outer disk radius, d is the gap

spacing between the disk and the wall) is substantially greater than 1 (R
e
"XR

2
d/l"

633A1). Note that the Reynolds number of the #ow between two corotating disks in
a disk stack will be greater than this value because the inter-disk spacing is usually
greater than the spacing between disk and the wall.

(3) The hard disks have high bending sti!ness and for the satisfactory operations the disk
must maintain a near #at equilibrium.

(4) The aluminum substrate in the disk has signi"cant material damping, which must be
modelled.

(5) The multiple disk stacks are normal and the outer disks in a stack are subject to
a dissimilar #ow conditions on their faces. A shear #ow between the disk and rigid
enclosure exists on one surface and #ow in a corotating enclosure is present on the other
side raising the question whether the outer disks are more susceptible to #utter than the
inner ones.

This paper presents an experimental estimation technique for the #utter speed of a hard
disk based on the measurements taken at subcritical speed. The technique is based on
a simple #uid pressure model represented by a distributed, viscous pressure that rotates
with respect to the disk, in a manner analogous to Hansen et al. [9]. This model approaches
the special case of the pressure generated in a narrow gap at low Reynolds number. It is
shown analytically that this form of aerodynamic loading di!erentially damps the forward
and backward travelling waves. To illustrate this point, the frequency response function of
an acoustically excited disk spinning at 19,800 rpm is shown in Figure 1. The excitation is
su$ciently broadband to excite the modes of interest. The peaks representing travelling
wave frequencies and the modes are labelled as shown. It is seen that the forward travelling
waves are signi"cantly more damped than the backward travelling waves. For instance, the
forward travelling wave peak magnitude for the (0, 2) mode is nearly 17 dB lower than the
backward travelling wave peak magnitude. The 3 dB bandwidth for the forward travelling



Figure 1. Magnitude of the frequency response function of an aerodynamically excited disk (disk speed:
19,800 rpm; *, runout frequencies). (m, n) refers to number of nodal circles and diameters, respectively, of the
travelling wave. B and F represent the backward and forward travelling waves.
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wave (+10 Hz) is much greater than for the backward travelling wave (+4 Hz). This
di!erential damping is primarily due to air#ow e!ects because in vacuum the damping of
the forward and backward travelling waves is identical (Hansen et al. [9]). At higher-speeds
damping of the backward travelling waves can vanish entirely leading to a travelling wave
#utter instability. This result is exploited to extract model parameters from the frequency
response function (FRF) of the acoustically excited disk at subcritical speeds. The method of
Hansen et al. [9] is used to predict the supercritical speed at which the damping of
a backward travelling wave vanishes and aeroelastic #utter occurs.

The results show that the #utter speed and mode are strongly dependent on the enclosure
gap width. The #utter speed can be as low as 35,000 rpm. A strong dependence of the #utter
speed on the gap width con"rms that the onset of #utter can be a!ected through air#ow
control through the enclosure design. The results also indicate that the onset of the
aeroelastic #utter should not be a concern for the impending generation of 20 000 rpm
drives, but possibly for the next generation of 30,000#rpm drives. Lastly, the technique
used here can be applied to predict the #utter speed of optical disk systems used in the
CDROM and DVD drives. Because the bending sti!ness and natural frequencies are much
smaller in these polycarbonate substrate disks, their #utter speed will also be lower. We note
that CDROM drives have recently been shown to operate at supercritical speed [10] and
thus operate much closer to their aeroelastic #utter speed.

2. THEORETICAL BACKGROUND

The theoretical development here is based on the work of Hansen et al. [9]. Consider
a single annular disk of thickness h, clamping radius a, and outer radius b. Each disk in
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a stack can be modelled as isolated if the e!ects of spindle #exibility and bearing clearance
are neglected. The disk substrate is assumed to be isotropic, with Young's modulus E,
Poisson's ratio l, and density o. The disk spins at a constant speed X*. A ground-"xed
cylindrical co-ordinate frame (r*, u, z*) is introduced. The acoustic waves from a speaker,
over a small circular area centered about the point (r*

f
, u

f
), are used to excite the disk

transversely. The aerodynamic pressure di!erence across the two faces of the disk is Dp*.
Because of the large bending sti!ness the disk remains #at at equilibrium in the presence of
aerodynamic pressure gradients. The governing equations for small amplitude transverse
oscillations, w (r*, u, t*), of a #at, spinning, linearly elastic disk has been presented by
several authors [2, 5, 9]. With the inclusion of the aerodynamic loading and acoustic
excitation and the introduction of the dimensionless quantities
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where f (t) is the acoustic excitation and A is the surface of excitation. Further,
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is the self-adjoint sti!ness operator modelling the bending sti!ness and sti!ness caused by
the membrane stresses (N

rr
, Nuu) of rotation. Substrate material viscoelastic e!ects are

introduced through the self-adjoint, positive de"nite operator D[w
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,t
, where the

material damping is assumed to be proportional to the rate of bending strain [2, 9]. Finally,
the boundary and the periodicity conditions for the plate de#ection and the aerodynamic
pressure are given by
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w (r, u, t)"w (r, u#2n, t), Dp(i, u, t)"0, Dp(1, u, t)"0.

Note that there are other boundary conditions governing the in-plane displacements
of the disk, which are taken into account in calculating the membrane stresses due to
rotation [11].

2.1. AEROELASTIC COUPLING

The Reynolds number of the #ow in a hard disk drive is greater than that encountered in
a #oppy disk drive. Accordingly, hydrodynamic lubrication theory, describing the pressure
in a thin "lm between the disk and a rigid enclosure, is not directly applicable in this
problem. At the same time, a model of the pressure loading based on the complete
Navier}Stokes equation is highly complicated to provide analytical design tools. For this
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reason, we desire a simple model of aerodynamic loading that retains some features of the
lubrication model.

A main feature of this lubrication model is that Dp can be described in terms of
a distributed viscous damping that rotates at half the rotation speed of the disk [2]. The
rotating damping speed being half of the disk rotation speed arises because at very low
Reynolds numbers, the mean #ow speed in the gap is half of the disk speed. In our
modelling, we retain the rotating damping model because it describes qualitatively many of
the experimental observations. However, no prescription of the speed of the rotating
damping is provided. Instead, the speed will be deduced experimentally. Further, in the
lubrication model, the speed of rotating damping is independent of the mode of vibration of
the disk. We now allow the rotating damping speed to depend on the number of nodal
diameters of the excited mode. This allows the following generalization of the aerodynamic
loading (in a ground-"xed frame):

+ 2(Dp)"!a (w
,t
#(X!X

dmn
)w

,u
). (5)

where +2 is the Laplacian operator, a is a positive parameter dependent on the viscosity of
the #uid, the rotation speed X and the gap width. Further, (m, n) are the nodal circle and
nodal diameter number of the particular mode of vibration respectively. Thus, this
generalization allows the rotating damping speed to depend on the excited mode, as well as
allowing a non-linear variation of the rotating damping speed with disk speed. Choosing
the speed of rotating damping X

dmn
"X/2 yields the lubrication theory model for pressure

loading. Note also that we are neglecting the e!ects of radial #ow [4] in this analysis
because the radial #ow e!ect in this shrouded disk is shown experimentally not to be
signi"cant. This is borne out by the experiments presented later in this paper. Lastly, to
address a question: are outer disks in a disk stack more susceptible to #utter? The speed of
rotating damping with respect to the disk is expected to be greater in the gap between the
disk and rigid enclosure than between the two corotating disks since the mean #ow in the
disk-rigid enclosure gap is smaller because of the high transverse shear. For this reason the
highest probability for #utter occurs in a single disk with a base plate and a rigid cover on
each side. Based on this reasoning we focus on a single disk in the disk stack. The following
subsections on the &&coupled eigenvalue problem'' and &&extraction of model parameters'' are
based on Hansen et al. [9].

2.2. COUPLED EIGENVALUE PROBLEM

Noting that the Laplacian is a self-adjoint operator and considering the boundary
conditions on Dp, the assumed aerodynamic loading (5) can be inverted with the help of
Green functions [5], Dp"!C[w

,t
#(X!X

dmn
)w

,u
], with C being a self-adjoint operator.

A solution of the separable form is assumed,
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where R
mn

(r) are in general normalized complex valued functions and (m, n) are the number
of nodal circles and diameters, respectively, of the mode in question. Substituting this form
into equation (2), in the absence of acoustic excitation, yields the coupled aeroelastic
eigenvalue problem
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where (Kr
n
, Dr
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) are one-dimensional di!erential operators obtained by the substitution

of the assumed mode shape into the spatial operators (K, D, C). Aeroelastic coupling
between the modes possessing di!erent number of nodal circles is neglected [9]. Taking the
inner products Su (r), l (r)T":1
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conjugate, of equation (7) with each normalized eigenfunction gives
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represents the combined e!ects of structural and corotating #uid damping, and
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where X @
dmn

is the e!ective rotating damping speed modi"ed by the ratio of aerodynamic
corotating damping to the total corotating damping of the mode. Thus, the greater the
structural dissipation of the substrate material, the lower the e!ective rotating damping
speed. Solution for the eigenvalues under assumption of weak damping yields
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where the superscripts F and B refer to forward or backward travelling waves that
propagate in the direction of disk rotation or against it respectively. These waves are
abbreviated FTW and BTW respectively. Thus, the immediate e!ect of the circulatory term
in the aerodynamic pressure is to cause forward travelling waves to be more highly damped
than the backward travelling waves. This phenomenon is seen in the hard disk drive at
subcritical speeds (see section 1). Further, the damping of a backward travelling wave in
equation (12) can vanish at the onset of aeroelastic #utter. The condition for the onset of
aeroelastic travelling wave #utter is

u
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n
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or when the e!ective rotating damping speed equals an uncoupled wave speed on the disk.
Similarly, from equation (12), we see that the frequencies of the backward and forward
travelling waves split and at a critical speed, X

c
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/n, the frequency of a BTW equals

zero. Lastly, we note that the FRF of the disk, acoustically excited at (r*
f
, 0) and measured at
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), corresponding to the eigenvalue problem (8), is [12]
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A detailed derivation of equation (14) is presented in Hansen et al. [9].
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2.3. EXTRACTION OF MODELS PARAMETERS

From equations (9) and (12) we see that the model parameters that need to be identi"ed
from the experiment are (s

mn
, c

mn
, X @

dmn
) for each mode at each disk rotation speed. These

parameters represent, respectively, the sti!ness coe$cient due to rotation for the modal
natural frequency, the total corotating modal damping, and the e!ective rotating damping
speed in that mode. These parameters can be obtained from the FRF. Once the wave poles,
(aF
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), corresponding to the forward and backward travelling waves are

identi"ed in the FRF, equations (9) and (12) give
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The experimentally obtained damping factors of the wave poles in the FRF, (aF
mn

, aB
mn

) are
usually small, and to avoid errors in calculating X @

dmn
through division by c

mn
, we will

calculate directly c
mn

and the product c
mn

X @
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through the above relations.

3. EXPERIMENTAL ANALYSIS

Experiments were performed to estimate the #utter speed of a 3)5 in. hard disk drive. The
#utter speed was estimated from condition (13) through the extrapolation of the e!ective
rotating damping speeds and wave speeds. The e!ects of the air gap, and the distance
between the disk surface and cover on the critical speeds and #utter speeds was also
investigated by performing the test with the cover positioned at di!erent gaps.

3.1. EXPERIMENTAL SET-UP

The out-of-plane vibration of the disk was measured using a laser Doppler displacement
meter (LDDM) through a hole (1 mm in diameter) in the cover as shown in Figure 2.
A speaker (0)1 W, 8 X, 2 in in diameter) was used to excite the disk through a hole (20 mm in
Figure 2. Experimental set-up for measuring the FRF of a disk.
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diameter) in the cover. The current to the speaker gave a measure of the input to the
frequency response function and the signal from the disk vibration was the output.
A white-noise excitation signal was input to the speaker and the FRF was measured at the
disk speeds from 6,000 to 19,800 rpm.

LABVIEW was used to collect the data and calculate the FRF from the input/output
signals. The damping factors of each mode were calculated by curve "ts in MATLAB to the
measured FRF.

3.2. ESTIMATION OF WAVE FREQUENCIES AND DAMPING FACTORS

In this experiment, the frequency resolution was 0)183 Hz (6 kHz cut-o! frequency and
65,536 frame size) and the 3 dB bandwidth of the resonance peaks was in the range of
0)5}5 Hz. With this frequency resolution, su$cient data were recorded for both the forward
and backward resonance peaks to estimate the damping factors.

The FRF was processed on a PC to obtain the wave frequencies and damping factors of
four modes (m"0 and n"2, 3, 4, 5). Because the (0, 1) mode has no critical speed, i.e.,
u

01
'X, ∀X [13], and assuming X

d01
(X, it is expected that no #utter can occur in this

mode. For this reason, the (0, 1) mode was not measured. To improve the estimation of
modal parameters, a large number of averages were required (approximately 100). Because
of the large frame size in the FRF, the higher-frequency resolution required extended
recording time to collect the data with su$cient averaging. Fluctuation of the disk speed
was found during the extended recording time. This rotation speed #uctuation can cause
error in calculating the modal parameters. For example, a 0)5 Hz #uctuation in rotation
speed during the measurement will cause approximately $0)5]nHz di!erence in the
forward and backward wave frequency peak for (0, n) mode. This speed #uctuation causes
signi"cant error in evaluating the damping factor. Because the typical 3 dB bandwidth of
the backward resonance peaks in this experiment is in the range of 0)5}2 H, an error of
$2)5 Hz (say, for (0, 5) mode) by speed #uctuation causes the evaluated damping factors to
be much larger than the correct value. For this reason, a frequency response spectrum
averaged over 100 ensembles causes signi"cant error in the damping measurement. To
minimize the error in the damping factors due to speed #uctuation, the FRF was averaged
after only three ensembles and the speed #uctuation was monitored through the runout
frequency of the disk vibration. For each such data set, the speed was constant. Thirty three
such averaged data sets were collected (each from three averaged ensembles). The speed may
vary from one data set to another. These speed #uctuations, D f, were used to correct the
resonance peaks for di!erent data sets by shifting frequencies by $n]D f Hz. The peaks in
each data set were adjusted to coincide and an average FRF over 33 data sets was
calculated and used to obtain the wave frequencies and damping factors.

The peak from each wave frequency was assumed to describe the single-degree-of-
freedom (s.d.o.f.) the oscillator. The curve "tting was performed on the amplitude of the
FRF near each peak to obtain the modal parameters. The wave frequencies and damping
factors are calculated with di!erent bandwidth taken near the peak in curve "tting. The
curve "ts were performed for 12 di!erent bandwidths for the same peak. The modal
parameters from the bandwidth that result in the largest correlation coe$cient during curve
"tting were chosen as the values of the wave frequency and damping factor.

The forward and backward wave frequencies were measured at disk speeds from 6,000 to
19,800 rpm. This experiment was repeated with changing air gaps between the disk and the
cover, d. The natural frequencies at each speed from forward and backward wave
frequencies are obtained using the relationships uF

0n
"u

0n
#nX, uB

0n
+u

0n
!nX and are



FLUTTER IN DISK DRIVE 317
curve "tted by equation (9), u2
0n
"ust2

0n
#s

0n
X2. The results of the curve "ts are shown in

Table 1. The correlation coe$cients R2 in Table 1 show that equation (9) is a reasonable
approximation of the relationship between the disk speed and the natural frequency for all
the tests. The wave frequencies from experiments are shown in Figure 3. Also shown in
Figure 3 are the wave frequencies after curve "tting based on relationship (9).

The estimated critical speeds with changing air gap are shown in Figure 4. It is observed
that the critical speeds of the four modes are higher when the disk is uncovered. The
Figure 3. Wave frequencies: ( * ), from measurement, and (**), from corresponding curve "t on u
0n

for the
covered drive (d"0)35 in); (s), from measurement, and ( - - - - - ), from curve "t on u

0n
for the uncovered drive.

TABLE 1

Natural frequencies ust
0n

, centrifugal sti+ening coe.cients s
0n

and correlation coe.cients of
curve ,ts

d (in) (0, 2)B (0, 2)F (0, 3)B (0, 3)F (0, 4)B (0, 4)F (0, 5)B (0, 5)F

0)05 719)58 708)47 1161)4 1154)3 1911)9 1904)0 2899)5 2891)4
0)1 722)16 711)23 1164)4 1158)4 1916)1 1909)3 2904)9 2897)7

ust
0n

0)15 721)21 712)13 1164)7 1160)3 1916)3 1911)1 2904)7 2899)6
0)25 723)23 713)91 1166)1 1161)7 1917)7 1912)6 2906)5 2900)7
0)35 724)70 715)01 1167)0 1162)8 1919)0 1914)2 2908)3 2903)2

Open 724)38 715)47 1166)4 1162)7 1918)2 1913)9 2907)7 2903)0

0)05 1)5434 1)4751 1)9984 1)8822 2)4164 2)2718 2)7831 2)5803
0)1 1)5416 1)5001 1)9844 1)9053 2)4029 2)2997 2)7775 2)6345

s
0n

0)15 1)5525 1)5096 1)9955 1)9174 2)4205 2)3191 2)8070 2)6596
0)25 1)5428 1)5083 1)9846 1)9151 2)4070 2)3143 2)7826 2)6565
0)35 1)5399 1)5066 1)9852 1)9187 2)4103 2)3198 2)7975 2)6678

Open 1)5810 1)5470 2)0670 2)0020 2)5565 2)4657 3)0314 2)9045

0)05 0)99996 0)99998 0)99995 0)99997 0)99998 0)99998 0)99998 0)99998
0)1 0)99998 0)99999 0)99998 0)99998 0)99998 0)99999 0)99999 0)99999

R2
0)15 0)99986 0)99999 0)99998 0)99999 0)99999 0)99999 0)99999 0)99999
0)25 0)99998 0)99999 0)99997 0)99999 0)99998 0)99999 0)99999 0)99999
0)35 0)99997 0)99999 0)99997 0)99998 0)99998 0)99999 0)99999 0)99999

Open 0)99998 0)99999 0)99998 0)99999 0)99999 0)99999 0)99999 0)99999



Figure 4. Critical speed versus air gap d: (a) (0, 2) mode; (b) (0, 34 mode; (c) (0, 4) mode; (d) (0, 5) mode.

Figure 5. Damping factors versus disk speed: (a) d"0)05; (b) d"0)1; (c) d"0)15; (d) d"0)25; (e) d"0)35 in; (f )
uncovered, (s), (0, 2) mode; (]) (0, 3) mode; (n) (0, 4) mode; (#) (0, 5) mode (large marker, FTW; small marker,
BTW).

318 B. C. KIM E¹ A¸.
percentage increases in critical speeds of the uncovered case, compared to the averaged
critical speeds for covered cases, are 4)1, 3)4, 3)9, 4)5% for the 2, 3, 4, 5 modes respectively.

The estimated damping factors of the forward/backward travelling waves for the four
modes at di!erent gap width, as function of disk speed, are shown in Figure 5. It is observed
that the damping factors of FTWs are substantially larger than those of the BTWs. The
di!erences increase with the increasing disk speed. We also see in Figure 6 that the absolute
values of damping factors of the FTWs and BTWs tend to decrease with increasing
air gap.



Figure 6. Damping factors versus air gap d: (a) (0, 2) mode; (b) (0, 3) mode; (c) (0, 4) mode; (d) (0, 5) mode. (s)
13,800 rpm; (]) 15,600 rpm; (n) 17,400 rpm; (#), 19,800 rpm (large marker, FTW; small marker, BTW).
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3.3. ESTIMATION OF AEROELASTIC PARAMETERS AND FLUTTER SPEED IN DISK DRIVE

After the damping factors aF
0n

and aB
0n

are obtained, the two aeroelastic parameters
c
0n

and c
0n

X @
d0n

can be extracted as shown in equation (15)

c
0n
+aF

0n
#aB

0n
, c

0n
X @

d0n
"u

0n

(aF
0n
!aB

0n
)

n
.

The damping coe$cients c
0n

tend to increase linearly with disk speed, whereas the
product c

0n
X @

d0n
tends to increase non-linearly with disk speed. The linear and second order

polynomial functions of the disk speed were chosen to curve "t the two aeroelastic
parameters c

0n
and c

0n
X @

d0n
, respectively,

c
0n
+c

1
#c

2
X, c

0n
X @

d0n
+c

3
X#c

4
X2. (16)

Typical values of c
0n

and c
0n

X @
d0n

of the four modes with the increasing disk speed and
their curve "ts based on equations (16) are shown in Figure 7 (d"0)15 in). The four "tting
coe$cients c

1
, c

2
, c

3
, c

4
and the correlation coe$cients R2 for the four modes are shown in

Table 2.
With these expressions for c

0n
and c

0n
X @

d0n
the e!ective damping speed X @

d0n
can be

estimated as

X @
d0n

+

c
3
X#c

4
X2

c
1
#c

2
X

. (17)

By extrapolating the curves for the e!ective damping speed, the #utter speed of each case
tested here can be estimated by the intersection of the wave speed curve u

0n
/n and the

e!ective damping speed curve X @
d0n

of each mode. The e!ective damping speed estimated in
this manner together with wave speed for each mode and air gap are shown in Figure 8.



Figure 7. Aeroelastic parameters (a) c
0n

and (b) c
0n

X @
d0n

and their curve "ts: (s), mode; (]) (0, 3) mode, (n), (0, 4)
mode; (#) (0, 5) mode.

TABLE 2

Curve ,t coe.cients to c
0n

and c
0n

X @
d0n

and their correlation coe.cients

Mode d (in) c
1

c
2
]100 R2 (c

0n
) c

3
c
4
]100 R2 (c

0n
X @

d0n
)

0)05 2)9522 1)3799 0)97695 1)0893 1)0676 0)95266
0)1 1)0753 1)4102 0)98259 !0)1260 1)2273 0)98578

(0, 2)
0)15 1)7703 0)8978 0)98582 !1)0339 1)3136 0)98184
0)25 1)7014 0)7632 0)89043 !0)5847 1)0146 0)97915
0)35 1)4710 0)7498 0)96845 !0)1855 0)79367 0)96430

Open 1)1776 0)4731 0)92048 !0)3222 0)63575 0)95530

0)05 1)1601 1)6783 0)99000 1)26250 1)17030 0)96069
0)1 1)3046 0)8527 0)93587 0)40608 0)84232 0)94322

(0, 3)
0)15 0)9622 0)8110 0)96367 0)27104 0)73037 0)95423
0)25 1)1576 0)6635 0)93922 0)00745 0)73655 0)96577
0)35 0)9253 0)6602 0)97175 !0)4134 0)83367 0)97644

Open 0)7348 0)4969 0)95462 !0)1303 0)60916 0)96551

0)05 1)4375 1)0963 0)96456 3)4340 0)14476 0)93886
0)1 0)4031 1)0163 0)93717 0)89724 0)44442 0)92928

(0, 4)
0)15 0)3813 0)8705 0)98368 0)28137 0)64845 0)96922
0)25 0)3729 0)8034 0)94507 !0)1344 0)70821 0)96945
0)35 0)3272 0)6872 0)98362 0)20321 0)50276 0)98952

Open 0)4050 0)5183 0)96570 0)35333 0)31367 0)91999

0)05 1)3301 0)9142 0)89593 1)16730 0)78628 0)91255
0)1 0)3695 0)8762 0)92372 0)08672 0)74092 0)94534

(0, 5)
0)15 0)6704 0)6003 0)98087 0)04142 0)63089 0)99232
0)25 0)5874 0)6482 0)94424 0)25690 0)52775 0)94665
0)35 0)4117 0)5111 0)97414 0)50409 0)29189 0)89809

Open 0)5737 0)3843 0)95549 0)65017 0)08712 0)89376
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The trend of e!ective damping speed in each mode with varying air gap can be observed
in this plot. For example, in the (0, 4) mode there exists no #utter speed when the air gap is
0)05 in. As the air gap increases, the e!ective damping speed intersects the wave speed curve
when the air gap lies between 0)1 and 0)15 in. As the air gap increases further, the slope of
the e!ective damping speed curve decreases and the intersection with the wave speed
vanishes for 0)35(d(R. Even though this behavior for other modes is not as clear as for



Figure 8. Wave speeds u
0n

/n and damping speeds X @
d0n

for each mode under air gap change.
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the (0, 4) mode in Figure 8, the general trend can be seen in Figure 9. For the (0, 2) and (0, 3)
modes, the #utter speed decreases with increasing air gap, whereas for the (0, 5) mode the
#utter speed increases with the increasing air gap. The #utter speed for each mode and each
air gap is listed in Table 3.

The aeroelastic #utter is predicted to occur in the (0, 3) mode at each air gap except
d"0)15 in. The smallest #utter speed was predicted to be 34 970 rpm (d"0)35 in,
(0, 3) mode).



Figure 9. Flutter speed of each mode versus air gap: (a) (0, 2) mode; (b) (0, 3) mode; (c) (0, 4) mode; (d) (0, 5) mode.

TABLE 3

Flutter speeds (rpm) in the four modes under the change of air gap

d (in) (0, 2) mode (0, 3) mode (0, 4) mode (0, 5) mode

0)05 None 74,418 None 51,451
0)1 74,592 40,738 None 56,600
0)15 36,693 46,931 63,420 46,567
0)25 39,780 39,404 50,853 61,770
0)35 41,585 34,970 67,950 None
Open 43,195 35,420 None None
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4. DISCUSSION

The natural frequencies and critical speeds of (0, 2) (0, 3), (0, 4) and (0, 5) modes were found
to be consistently greater for an uncovered disk (see Figures 2 and 3). The removal of the
cover decreases the bending sti!ness of the spindle. Because only (0, 1) mode on the disk is
coupled to spindle bending [14] it is expected that the removal of the cover decreases the
frequency of (0, 1) mode while maintaining an unchanged frequencies of the higher modes.
For this reason, the observed increase in the frequencies of the higher modes for the
uncovered disk were unexpected. One possible reason for this phenomenon is based on the
presence of thermal gradients on the rotating disk. Due to friction, heat is generated in the
bearings and transferred through the collars to the disk. The resulting temperature
gradients modify the membrane stresses and thus the frequencies of the rotating disk.
Owing to #ow re-circulation in a covered disk, the temperature of the air#ow is signi"cantly
greater than in an uncovered case. Consequently, the radial temperature gradient of the
uncovered disk is expected to be larger than in the covered disk. This can result in higher
natural frequencies in the uncovered case compared to the covered case. This agrees with



FLUTTER IN DISK DRIVE 323
the results of Nieh and Mote [15], who found the increased critical speeds (for the (0, 2) and
(0, 4) modes, numerically and experimentally) when bearing heating was applied at the inner
radius of the rotating disk.

The decreasing air gap between the disk and the cover leads to increased damping factors
(see Figure 6). Recently, Ono et al. [16] studied the e!ect of a partial squeeze air bearing
plate, which is located on the top of the disk, on the amplitude of disk vibration. They found
that the amplitude of the travelling wave of the lowest frequency decreases with the
decreasing air gap between the disk surface and the air bearing plate at 7200 and 9600 rpm.
The present paper supports and explains their observation.

Increased material damping in the disk substrate suppresses the onset of #utter. The
increased modal damping of the substrate S=

0n
, D[=

0n
]T, results in a decreased e!ective

damping speed (equations (10) and (11)), and consequently a greater aeroelastic #utter
speed. For a disk of given clamping ratio and a bending sti!ness, it may be possible to
choose a substrate material with su$cient internal damping to eliminate aeroelastic
instability.

The damping factors predicted from the hydrodynamic lubrication theory correlate
poorly with experimental results. A lower bound for the speed of aeroelastic #utter in this
case is provided by the condition that the rotating damping speed X

d
"X/2 equals the

undamped wave speed u
0n

/n as the disk speed is increased. The inclusion of material
damping through the e!ective rotating damping speed will increase this estimate. However,
it is found in the experiments that there is no intersection of the rotating damping and wave
curves as speed changed. This implies that use of hydrodynamic lubrication theory will
never predict the #utter of the disk at any speed. The hydrodynamic lubrication theory for
Dp [2, 5, 17] prescribes that c

0n
and c

0n
X @

d0n
should be, respectively, constant and a linear

function of the disk speed:

c
0n
+c

5
, c

0n
X @

d0n
+c

6
X. (18)

R2 for c
0n

is zero by the de"nition of the correlation coe$cient. The correlation coe$cient
for c

0n
X @

d0n
based on the curve "ts (16) and (18) are shown in Figure 10. It can be seen that

the R2 values from the curve "t (16) lie within 0)9}1, whereas those from the curve "t (18) lie
Figure 10. Correlation coe$cients for c
0n

X @
d0n

based on the curve "ts: (s) (0, 2) mode; (]) (0, 3) mode; (n) (0, 4)
mode; (#) (0, 5) mode. Large markers, curve "t based on this work (equation (16)); small markers, curve "t based
on lubrication theory (equation (18)).
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in the range 0)75}0)85. From this, it can be said that hydrodynamic lubrication models of
the air#ow between a disk and the cover predict poorly the di!erential damping of the
forward and backward travelling waves observed in the experiment.

The experiments indicate that the radial #ow in the air gap does not signi"cantly e!ect
the aeroelastic #utter of the covered disk. Huang and Mote [3] note that secondary radial
#ow introduces a non-symmetric "lm sti!ness acting on the spinning disk. This e!ect
introduces an instability in addition to the rotating damping instability described in this
work. Huang and Mote [3] show that at pre-#utter speeds, the e!ect of the "lm sti!ness is to
split the wave speeds of a given mode. In the present work, wave speeds calculated for
a particular mode from the forward and backward travelling frequencies in the experiment,
were found to be less than 2)5% apart from each other. This indicates that the e!ects of
radial #ow are not signi"cant in the present disk drive. One reason for this could be that
because of the radial shroud, the radial #ow velocities are lower in a disk drive than in the
open disk case considered by Huang and Mote [3].

Lastly, owing to the high Reynolds number in the gap of an actual disk drive the resulting
#ow is usually unsteady. The unsteadiness in the pressure #uctuations causes wide band
excitation of the disk at all rotation speeds. The aeroelastic instability referred in this work,
arises due to bulk or average motion of the #uid in the gap with respect to the disk and
cannot predict the e!ects of turbulent pressure #uctuations on disk vibration at pre-#utter
speeds. For this reason, aeroelastic travelling wave #utter can be regarded as an upper
bound for the operation speeds in disk drives. The turbulence-induced vibration of disks
can prevent the operation of disk drives even at pre-#utter speed.

5. CONCLUSIONS

An experimental technique is presented to estimate the #utter speed of a hard disk drive.
Model parameters are extracted from the FRF of an acoustically excited disk spinning at
a sub-critical speed ranging from 6,000 to 19,800 rpm. The #utter speed was estimated
through the extrapolation of the e!ective rotating damping speed and wave speed. The
results indicate that the aeroelastic #utter speed can be as low as 35,000 rpm and depend
signi"cantly on the air gap between the disk and the cover. The aeroelastic #utter instability
is not predicted to occur near 20,000 rpm for the impending generation of the disk drives.
However, if the substrate material remains unchanged, it is expected to be a problem for
30,000#rpm drives. The technique presented in this paper can also be extended to estimate
the #utter speed in optical disks including DVD and CDROM drives, which are already
operating at supercritical speed and closer to their limits of aeroelastic instability. An
experimental estimation of #utter speed in these devices will be important for the design of
the impending generation of optical drives.
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