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Model degrees-of-freedom reduction and frequency windowing via interpolation are
combined for application to acoustic "nite element analysis problems. Projection operators
are employed for the model reduction or condensation process. Interpolation is then
introduced over a user de"ned frequency window, which can have real and imaginary
boundaries and be quite large. Hermitian interpolation functions (which require derivative
information) as well as standard Lagrangian functions, which can be linear, quadratic or
cubic, have been used to construct the windows. For one-dimensional windows, the location
of interior evaluation points can be varied to increase accuracy. Results are excellent for
example problems, even for large d.o.f. reduction and large frequency windows containing
numerous resonances (eigenvalues). The reduced models within the windows appear to
indicate accurately the location of the resonances.

( 2000 Academic Press
1. INTRODUCTION

The e$cient and accurate solution of large degree-of-freedom (d.o.f.) problems remains
di$cult for linear, dynamic and steady state analyses. Many problems have become very
large and complex to solve in an economic fashion, especially if, for example, a large number
of frequency responses are required for a structural acoustic analysis. In addition, the
problem of the interaction of scales, which can extend from the micro- to the macro-scale,
has not been adequately addressed. This is especially true for an heterogeneous media such
as composite materials and structures. For linear problems, the use of substructuring
methods [1, 2] can be very e!ective. However, when applied to acoustic steady state
analyses, substructuring methods introduce further approximations and still require the
solution of the reduced problem at each desired frequency.

Flippen [3, 4] has developed a general-purpose, dynamic, condensation model reduction
(CMR) theory which utilizes projection operators on governing di!erential equations. This
approach allows general d.o.f. reduction in spatially discretized models of heterogeneous
material and is not restricted to periodic media or other homogenization assumption. The
0022-460X/00/470327#24 $35.00/0 ( 2000 Academic Press
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CMR method is applicable to general second order di!erential equations in time. This
methodology [5] was implemented in a linear "nite element environment and applied to
dynamic analysis (time domain) of transient elasticity problems.

In reference [6], Flippen extended this condensation model reduction (CMR) theory to
include frequency domain analysis. The use of projection operators on the governing
di!erential equations allowed interpolation across selected frequency windows to be
accomplished. Hermitian interpolation function [1], which required derivative information
on the boundaries of the frequency window, were used. The CMR method was applied
to structural acoustics analysis and was implemented into a one-dimensional (1D)
"nite-volume environment. The method was applied to a complex 1D composite structure
and good results were obtained across wide-frequency windows for the reduced d.o.f.
solutions as compared to the full d.o.f. solution. The eigenvalues of the reduced system were
found to match quite well with those of the full system, even for signi"cant d.o.f. reduction.
In this particular article, a method was developed (though not implemented) to account for
singularities caused by resonances using singularity decomposition techniques. In a recent
e!ort, Flippen [7] has extended this work into a general model reduction theory, which
unites and generalizes the reduced basis and frequency window class of methods as
submethods.

In this present work, the CMR method has been extended to frequency windowing
directly into a 2D and 3D "nite element method (FEM) environment and applied to
structural acoustics. The method is referred to as the frequency window reduction (FWR)
method for d.o.f. reduction of spatially discrete time-transformed linear models. In this case
frequency windows are chosen in which a discretized model can be reduced in its d.o.f. The
method consists of discretizing a FEM model and selecting the &&master'' node point d.o.f.s,
which are to be retained in the analysis. The contribution of the &&slave'' node points, which
are to be condensed out, is reformulated and is used to generate an interpolation of the
functional dependence of the &&slave'' response across a selected frequency window.
A &&reduced'' system operator now may be constructed, which consists of the &&master'' d.o.f.s,
and the in#uence of the interpolated &&slave'' response. The reduced system response can
then be solved across a selected frequency interpolation window.

In addition to the Hermitian interpolation functions (two-point interpolation)
of the &&slave'' response "rst employed with this method [6], standard Lagrangian
interpolation functions (linear, quadratic and cubic not requiring derivative calculations)
have been included [8]. These latter functions, which do not require derivative information
at the evaluation points, are an important addition that are far simpler to implement,
very e$cient and provide function evaluation within the window of interest that can
increase accuracy. Also, for the standard quadratic and cubic interpolation schemes, the
location of the evaluation points that are within the interior of the frequency window can be
varied for a 1D frequency window (a line in frequency space). This is an important
capability that can substantially increase the accuracy within the selected regions and
within the interpolation window. The use of evaluation points within the window was
extended to include higher order Hermitian functions with one and two interior
interpolation evaluation points for 1D windows. This led to a further improvement in
accuracy.

Computational analyses were performed using a program developed in Fortran 90 which
can read in and solve third party generated "nite element models. Two-dimensional results
from the FWR program are presented and show excellent results for the &&reduced'' system
solutions as compared to the full d.o.f. solutions. Accurate results are obtained for large
d.o.f. reduction and large-frequency windows, even while not explicitly accounting for the
presence of numerous resonances (eigenvalues) within the window.
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2. FWR FORMULATION FOR MECHANICAL SYSTEMS

For a discretized mechanical system, the governing equations of the equilibrium can be
expressed in matrix form as

M
L2u

Lt2
#D

Lu

Lt
#Ku"f, (1)

where M, D and K are the mass, damping and sti!ness matrices, respectively, u are the
system displacements and f are the system loads. Expressed in operator form equation (1)
becomes

Lu"f, (2)

in which the matrix of operator L is de"ned as

L"M
L2

Lt2
#D

L
Lt
#K . (3)

The frequency domain is obtained from the exponential form of the Fourier transform,
F"e*ut, applied to equation (3), so that the operator L becomes

L),!u2M#iuD#K. (4)

The mechanical system operator L) is now a function of the continuous independent
variable u and equation (2) may then be explicitly rewritten as

L< (u)u; (u)"f< (u). (5)

The displacement and load terms in the above equation can be written in complex form as

u;"Du De*ut and f<"D f De*ut. Note that i"J!1.
Applying P, a permutation matrix operator [5], on the operator matrix L< in equation (4)

as L3 "PLP~1, such that L< can now be reordered and partitioned as

L3 "A
L3

11
L3
12

L<
21

L3
22
B . (6)

In this equation, the index &&1'' represents the &&master'' d.o.f. and the index &&2'' represents the
&&slave'' d.o.f. The term &&master'' d.o.f. refers to the independent (retained) d.o.f.s of the
reduced system in the FEM model. The master d.o.f.s are typically chosen as d.o.f.s, which
have applied loads or constraints such as "xed boundary conditions in an FEM model. The
term &&slave'' d.o.f. refers to the dependent d.o.f.s or those that are to be condensed or
reduced out of the full FEM model. These are d.o.f.s which typically do not have applied
loads or constraints. In general, the number of master d.o.f.s will be considerably less than
the number of slave d.o.f.s. In addition, for the present work, it is assumed that any node
which has an applied external loading or boundary condition is included in the list of
master d.o.f.s.

The mechanical system operator, L< equation (4), may now be transformed using
a generalized complex variable, q"q

1
#iq

2
by q,iu, so that it becomes

L< (q)"q2M#qD#K. (7)
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It is assumed that the matrices M, D, and K are not functions of the generalized variable
q (or frequency u). From this equation, the system operator L3 in the generalized complex
variable is obtained from the partitioned operator matrix, equation (6), as

L3 ,q2 A
M3

11
M3

12
M3

21
M3

22
B#q A

D3
11

D3
12

D3
21

D3
22
B#A

K3
11

K3
12

K3
21

K3
22
B . (8)

Further applying the permutation matrix to the system stimuli, fK, according to

P"P~1 A
I 0
a 0BP , (9)

results in the system loads are being partitioned as

f3"Pf"A
f3
m

f3
s
,a f3

m
B . (10)

Here the subscripts &&m'' and &&s'' refer to the &&master'' and &&slave'' d.o.f.s respectively. The
matrix a is de"ned such that f3

s
"a f3

m
, and I is the identity matrix.

The a matrix, the &&slave-master'' response matrix, is an operator matrix, which is used to
relate &&slave'' d.o.f. properties such as constraints, forces and applied loads to the master
d.o.f.s. Usually slave d.o.f.s are chosen, which do not have constraints or loads. However, for
very large complex FEM models, in order to reduce the total number of d.o.f.s, it may
desirable to also condense out d.o.f.s which have constraints or applied loads. Hence, the
a operator matrix can be used to interpolate from the &&master'' d.o.f.s for example an
applied load or boundary condition to the &&slave'' d.o.f.s. In this present work it has been
assumed that the a operator matrix is zero based on the choice of the &&master'' and &&slave''
d.o.f.s. However, the application of a non-zero a operator matrix as well as completely
arbitrary constraint and loading conditions of the d.o.f.s will be the subject of future work.

3. DEGREE OF FREEDOM REDUCTION

The condensation model reduction (CMR) [3}6] theory has shown that the general d.o.f.
reduction of an operator matrix may be obtained from the condensation equation

(L3
22
!aL3

12
)b"aL3

11
!L3

21
, (11)

where

L3 "A
L3
11

L3
12

L3
21

L3
22
B

is the reordered/partitioned operator matrix (6) and the a matrix, the &&slave}master''
response matrix, is de"ned. The goal is to solve for the b matrix in order to construct the
reduced system operator. The complex b matrix in the generalized complex variable can be
found directly as

b (q)"G~1(q)H(q) (12)
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in which the G~1 matrix is the matrix inverse of

G(q),L3
22

(q)!a(q)L3
12

(q) (13a)

and the H matrix is

H (q),a (q)L3
11

(q)!L3
21

(q). (13b)

Having determined the form of b, the "nal &&reduced'' operator, L1
0
, may be also written

explicitly as a function of the generalized variable as

L1
0
(q)"L3

11
(q)#L3

12
(q)b (q) (14)

and hence the reduced system equation to be solved is

L1
0
(q)u

m
"f3

m
, (15)

where Pf3"f3
m

and P"(I 0)P. The column matrix (vector) u
m

represents the &&master'' or
independent d.o.f. system response. Finally, the &&slave'' response can be obtained directly
from the &&master'' response by reconstruction via

u
4
"b (q)u

.
. (16a)

Hence, the &&total'' reduced solution (&&master'' and reconstructed &&slave'' results) is then

u
Reduced

"A
u
m

u
s
B . (16b)

The goal in the general CMR method is to reduce the number of d.o.f., in order to allow
e$cient computational solutions to a problem, while maintaining good accuracy. The
primary consideration is the accuracy of the reduced solution, as compared to the full
system solution. Hence, there will be trade-o!s among the degree of reduction, e.g., the
number of d.o.f.s condensed out from the full system, the computational e$ciency and the
accuracy of the reduced solution.

In order to obtain the reduced system operator, equation (14), L1
0
(q), it is necessary to

determine b (q) from equations (12) and (13), G~1 (q) at every point, q (or frequency). This
requires the G~1(q) matrix to be calculated at every solution point in order to determine
b(q). It is desired to minimize the work necessary in obtaining G~1(q) at every point q, since
the inversion of G(q) would involve inverting a &&slave'' d.o.f. by a &&slave'' d.o.f. sized matrix
each point. So, rather than determine G~1(q) at every solution point, a method has been
devised in order to obtain an interpolated GK ~1(q), to be valid within a speci"ed frequency
&&window''. This may be expressed as

b (q):GK ~1(q) H (q) . (17)

Two methods, Hermitian interpolation and Lagrangian shape function interpolation are
employed to interpolate GK ~1(q) at points within a window based on the assumption that
G~1(q) is a relatively smooth varying function of q within the bounds of the de"ning
window. This assumes that any eigenvalues, which are within the de"ning window, do not
signi"cantly a!ect the smooth interpolation of G~1(q). The interpolation method of GK ~1(q)
allows the formulation and calculation of the interpolation or &&constructor''matrices prior



332 R. P. INGEL E¹ A¸.
to any solution. These matrices are then valid for any point within the window. Hence, the
main work involved in the matrix inversion and matrix interpolation calculations can be
performed as pre-processing steps. This approach can signi"cantly reduce the amount of
computation required to generate the reduced system operator, L1

0
, and solve the reduced

system equation, (15). The reduced computation required for the solution of equation (15)
would allow more frequencies and loading conditions to be examined within an
interpolation window at reduced computational costs.

4. INTERPOLATION METHODS FOR A FREQUENCY WINDOW

Hermitian [5] and standard Lagrangian [8] (linear, quadratic and cubic) interpolation
methods have been implemented to interpolate G~1(q). It is assumed that G~1(q) is
a relatively smooth varying function of q (or frequency) within the bounds of the window.
Also it is assumed that within the window, the interpolation of G~1 (q) is not a!ected by the
presence of eigenvalues. Based upon our experience to date, this latter assumption is
appropriate.

The Hermitian method for the interpolation of GK ~1(q) requires the determination of G(q)
as de"ned by equation (13a), its inverse, G~1(q), and the derivatives of G~1(q) with respect
to qN

i
, at the points de"ning the interpolation window. The bi-cubic Hermitian interpolation

of a rectangular 2D window as well as a generalized Hermitian interpolation of a 1D linear
window (line) have been used to approximate GK ~1(q) at any point q within a window
de"ned by the interpolation points qN

i
. Both of these methods have been implemented,

however, only the 1D Hermitian interpolation method will be discussed here. The reader is
referred to reference [9] for further details.

The generalized 1D Hermitian interpolation method may be used to approximate GK ~1(q)
at any point, q, as

GK ~1(q)"=
1
(qN )#q=

2
(qN )#q2=

3
(qN )#2#q*(Order`1)N+~1=

(Order`1)N
(qN ), (18)

where qN are the N number of interpolation points and the Order represents the number of
derivatives of the function required for the interpolation. However, here, we shall restrict the
analysis to "rst order Hermitian interpolation with up to 4 interpolation points. For a "rst
order Hermitian interpolation, there will be 2N, i.e., (Order#1)N, =

i
&&constructor''

matrices needed for the approximation of GK ~1(q) in equation (18). These matrices may be
calculated as

A
=

1

=
2

F

=
2N
B"B~1(qN )

3 A
G~1(qN

1
)

LG~1(qN
1
)

Lq

G~1(qN
2
)

LG~1(qN
2
)

Lq

F

G~1(qN
N
)

LG~1(qN
N
)

Lq

B .
(19)
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In the above equation, the derivatives as well as function evaluation at the boundaries of the
frequency window and at any interior interpolation points are required. In reference [6], the
following approximation for the "rst derivative of G~1(q) with respect to q was successfully
introduced:

L[G~1(q)]

Lq
j

:!G~1(q)
LG(q)

Lq
j

G~1 (q) , (20)

where G~1(q) is the matrix inverse of G (q) as de"ned in equation (13a). The interpolation
coe$cient matrix B(qN

j
) is calculated from the matrix as

B(qN )"A
0 (qN

1
)

L0 (qN
1
)

Lq

0 (qN
2
)

L0 (qN
2
)

Lq

F

0(qN
N
)

L0(qN
N
)

Lq

B ,
(21)

de"ning a,(Order#1)N!1 and the following coe$cient vectors at each of the
N interpolation points, qN

i
:

0 (qN
i
)"(1, qN

i
, qN 2

i
, qN 3

i
, qN 4

i
,2, q6 a

i
),

L0(qN
i
)

Lq
i

"(0, 1, 2qN
i
, 3qN 2

i
, 4qN 3

i
,2, aqN a~1

i
). (22)

From equation (21) the inverse may be easily obtained and used to calculate the
&&constructor'' matrices of equation (19). These matrices now may be used to calculate via
equation (18), the interpolated GK ~1(q) at any point within the window.

For the Lagrangian interpolation method, isoparametric 2D quadratic (or cubic) shape
functions of a rectangular &&element'' can be used to interpolate any point within the
element. A rectangular FEM element with 4 to 9 (or 16) nodes may be used to represent the
frequency window to be interpolated. Also, isoparametric 1D shape functions of a linear
&&element'' can be used to interpolate any point along a selected line. A 1D linear element
with 2 to 4 nodes is used to represent a line either along or parallel to the &&real'' or the
&&imaginary'' frequency axes. The value of GK ~1(q) can then be interpolated by the shape
functions evaluated at q from the 2D isoparametric co-ordinates (r, s) and the G~1(q)
matrices previously calculated at each of the window interpolation points, qN

i
, by

GK ~1(q)"
d/4 509,16

+
i/1

h
i
(r, s)G~1

i
(qN ) (23)

or from the 1D isoparametric co-ordinate r and the G~1(qN
j
) by

GK ~1 (q)"
d/2,3or4

+
i/1

h
i
(r) G~1

i
(qN ) . (24)
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As with the Hermitian interpolation, only 1D linear interpolations con"ned to the real
frequency axes are presented (u, the loading frequency is real, but the response of the system
can be complex).

An additional capability included in both the standard Lagrangian and Hermitian
interpolation functions was the ability to vary the position of the interior evaluation points
within the frequency window for 1D interpolation only, in which case the window becomes
a line. The ability to vary the position of the interior evaluation can further improve the
accuracy by e!ectively producing a window within a window.

5. IMPLEMENTATION INTO A FEM ENVIRONMENT

As in our earlier work [5] on model reduction, the use of projection operators for model
reduction coupled with a complex frequency windowing method required to build our own
"nite element program for frequency window reduction (FWR), to demonstrate the utility
and accuracy of this new approach. FWR is written in portable Fortran 90 [10] to take the
advantage of this rich programming environment, especially for matrix manipulations,
dynamic memory allocation, new constructs such as name lists, and to help this work
transition to a parallel environment in future.

Initially, the FEM models were generated by the FWR program. The ABAQUS FEM
program [11] was then used to check the original FWR models and to develop further
FEM models for use in the FWR method. The global mass and sti!ness matrices for the
models used in these examples were generated by ABAQUS and imported into the FWR
programs. FWR requires the co-ordinates of the nodes; element types (for d.o.f. per node)
and connectivity; either the global or local element sti!ness, mass or damping matrices; and
loading or constraint information. Then these matrices were reordered and partitioned
according to the user-de"ned choices of &&master''node points by the FWR program. This
approach allows much more #exibility for the development of the FWR program, without
the need for building a more general-purpose internal "nite element capability directly
into FWR.

Calculations were performed using both the Hermitian and Lagrangian interpolation
methods in order to obtain a reduced solution via equations (15) and (16) for direct
comparison to solutions of the full d.o.f. model, equation (5). The interpolation method for
a 2D rectangular window [9] was performed on several examples. However, since the
frequency sweep calculations were con"ned to the real frequency axis only, the 2D analyses
gave identical results when compared to the appropriate 1D analyses. The 2D Hermitian
interpolation method has two interpolation (inversion) points on the real axis, hence its
results were the same as the 1D two point (215) Hermitian interpolation method. Similarly,
the 2D Lagrangian method, which has three interpolation points on the real frequency axis,
was identical to the 1D three-point (315) Lagrangian method.

In all the following examples, results are shown for the 1D line interpolation method
con"ned to the real frequency axis. Also, the analyses for all examples were performed using
the higher point interpolations, four-point (415) Hermitian and four-point (415) Lagrangian.
These methods gave more accurate results for comparison to the full d.o.f. solutions.

Error analysis was performed utilizing the relative error of the in"nity norms of the
solution matrices. The relative error is de"ned as

Relative Error"
E(u

reduced
!u

full
)E

=
Eu

full
E
=

, (25)
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where u
reduced

and u
full

are the displacement magnitudes for the reduced and full d.o.f.
problem, respectively, and represent the entire solution. The in"nity norm of an m]n
matrix, A, is de"ned as EAE

=
"max

1)i)m
+n

j/1
Da

ij
D . The relative error as de"ned above is

a measure of the decimal digit precision of u
reduced

as compared to u
full

. This relative error
represents a stringent global error estimate.

The magnitude of the displacement for individual d.o.f.s as obtained from the full d.o.f.
solution and as well as from the FWR interpolation reduced solutions were compared.
Error analysis was performed on speci"c d.o.f.s to directly compare these solutions. The D%
or the percent error is de"ned as

D%"A
Du

reduced
!u

full
D

Du
full

D B
$.0.&.

100, (26)

where u
reduced

and u
full

here represent the magnitude of the displacement solution of
a speci"c individual d.o.f. Also the averages of both the relative error and % error across the
entire frequency window were done in order to summarize and compare speci"c results.

6. RESULTS

6.1. 2D THREE-LAYER LAMINATE

A 2D model of a three-layer laminate is presented as a "rst example. The laminate was
comprised of layers of steel and polystyrene, as shown in Figure 1. The properties used in
the model were 256)7 GPa as Young's modulus, 0)25 as Poisson's ratio, a density of
7900 kg/m3 for the steel; and 9)387 GPa as Young's modulus, 0)25 as Poisson's ratio and
a density of 1050 kg/m3 for the polystyrene. The FEM model was formed from 88
ABAQUS 2D plain stress elements consisting of 115 node points representing 230 d.o.f.s
(two-degrees-of-freedom per node point). Thirty-"ve &&master'' nodes with (2-d.o.f.) per node
(70 d.o.f.s) were chosen and are shown in the "gure as &&d'' symbols. These were selected as
loaded and constrained node points and as material interfaces and material midpoints. This
represents a 70% reduction in the d.o.f., i.e, 230-d.o.f.s for the full model to 70-d.o.f.s for the
reduced problem.

Interpolation windows comparing the di!erent interpolation methods for both full and
partial frequency window sweeps are summarized in Table 1. Generally, from the table as
Figure 1. Three-layer steel-polystyrene laminate 2D model.



TABLE 1

Frequency interpolation window analysis for 2D laminate model

SRelative errorT S% errorT of d.o.f.
Frequency

Range (kHz) 415 Lagrangian 415 Hermitian 215 Hermitian 415 Lagrangian 415 Hermitian 215 Hermitian d.o.f.t

0}10 8)9468]10~2 9)9113]10~6 1)4631]10~1 13)1839 1)9479]10~3 21)0456 Du D
1x

0}5 1)2757]10~2 5)3985]10~8 2)1946]10~2 1)5983 7)5272]10~6 3)2371 Du D
1x

1)6126 7)3496]10~6 3)5791 Du D
11x

0}5s 5)3469]10~3 2)6331]10~7 6)6452]10~2 5)3999]10~1 2)6190]10~6 6)8923 Du D
1x

5)4079]10~1 2)6076]10~6 6)9612 Du D
11x

0}3 3)5339]10~3 1)9719]10~9 5)0678]10~3 3)8868]10~1 2)0958]10~7 1)0189 Du D
1x

4)1186]10~1 2)2025]10~7 1)2206 Du D
11x

0}3s 4)2943]10~4 1)7130]10~10 6)0678]10~3 4)5839]10~2 1)9610]10~8 6)4892]10~1 Du D
1x

4)6741]10~2 2)0058]10~8 6)6201]10~1 Du D
11x

sPrtial frequency sweeps 1)5}2)5 kHz within the frequency interpolation window at a step size of 5 Hz.
t Du D

1x
is a &&master'' d.o.f. solution and Du D

11x
is a reconstructed &&slave'' d.o.f. solution via equation (16).
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Figure 2. Relative error comparing the 415 Lagrangian interpolation (**), the 415 Hermitian interpolation
(- - - -), and the 215 Hermitian interpolation (} } }}) methods for the window range 0}5 kHz and a step size of 25 Hz.
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expected, a decrease in the interpolation window size increases the accuracy of the reduced
system response, i.e. a smaller error as compared to the full d.o.f. solution. This arises from the
increased accuracy of the interpolation function and the ability to use smaller-frequency step
sizes across the window. It can also be seen that the 415 Lagrangian, because of the interior
point information, is more accurate that the 215 Hermitian, even though the Hermitian has
derivative information at the interpolation (end) points. Clearly, the 415 Hermitian, with both
interior point and derivative information, has the lowest associated error.

For the frequency window range 0}5 kHz, a full frequency sweep was examined with step
size of 25 Hz. The relative error plotted in Figure 2 for this interpolation window compares
the Lagrangian and Hermitian interpolation functions over the entire interpolated window.
It should be noted that at the end points and the two interior points (approximately 1)667
and 3)333 kHz) the error is very small. This is because these are points at which the inverse,
G~1(q), is obtained directly, hence the solution is nearly exact. From this "gure, the 415

Lagrangian can be seen to have approximately the same error as the 215 Hermitian, even
though derivative information is contained in the Hermitian interpolation. However, it is
obvious that the 415 Hermitian has a signi"cantly lower relative error, as well as capturing
more accurately the eigenvalues or resonances of the system. The gray vertical lines in the
"gure represent the calculated constrained eigenvalues of the full d.o.f. model (see Table 2).
It can be shown that the eigenvalues of the reduced d.o.f. model are nearly the same as those
of the full d.o.f. model, although not identical.

The % error of the resultant displacement magnitude for the &&master'' d.o.f. 1
x
is shown in

Figure 3. This "gure shows the overall accuracy as well as the errors associated near the
resonances of the system. The 415 Lagrangian and the 215 Hermitian interpolation functions
show errors of approximately 1%, as compared to the full d.o.f. solution. However, the 415
Hermitian method has an extremely small error (1]10~5) over the entire frequency range
at a 70% d.o.f. reduction. The comparison of the 415 Lagrangian and the 415 Hermitian
interpolation to the full d.o.f. solution for the displacement magnitude for the &&master'' d.o.f. 1

x
is shown in Figure 4. Both interpolation methods produce the excellent agreement, as
compared to the full d.o.f. response.

The results from the 415 Hermitian interpolation method are indistinguishable from those
for the full d.o.f. response. The % error as well as the actual magnitude of the
&&reconstructed'' response for the &&slave'' d.o.f. 15

x
, as expected, are identical to that for



TABLE 2

Calculated eigenvalues for the full d.o.f. model

Unconstrained Constrained
eigenvalues (Hz) eigenvalues (Hz)

0)0114380 265)1966
0)0135609 2091)7864
0)0179301 2109)2300

1113)0007 4607)8162
3056)8175 11665)5341
3493)2803 15225)6105

11826)8041 16479)0445

Figure 3. % error for the &&master'' d.o.f. 1
x
comparing the 415 Lagrangian interpolation (**), the 415 Hermitian

interpolation (- - - -), and the 215 Hermitian interpolation (} } } }) methods for the window range 0}5 kHz and a step
size of 25 Hz.

Figure 4. The &&master'' d.o.f. 1
x
displacement magnitude comparing the Du D

1x
response for the full d.o.f. solution

(**) and the reduced d.o.f. solutions: (- - - -), Du D
1x

response for the 415 Lagrangian interpolation method; (f)
response for the 415 Hermitian interpolation method.
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Figure 5. Partial frequency sweep for the &&master'' d.o.f. 1
x

comparing interpolation functions at a full d.o.f.
system resonance: Du D

1x
response for the full d.o.f. solution; (- - - -), Du D

1x
response for the 415 Lagrangian

interpolation method; (} } }}) , response for the 215 Hermitian interpolation method. Note: the response for the 415

Hermitian interpolation method (f) is identical to that of the full d.o.f. response.

TABLE 3

<ariable interior interpolation point for frequency range 0}10 kHz

SRelative errorT S% errorT of &&master'' d.o.f. Du D
1x

Interpolation point
415 Lagrangian 415 Hermitian 415 Lagrangian 415 Hermitian location (kHz)

8)9468]10~2 9)9113]10~6 13)1839 1)9479]10~3 3)333 and 6)667
1)1701]10~1 1)1713]10~5 14)0507 2)0283]10~3 1)500 and 7)500
6)9364]10~2 2)3604]10~6 8)4686 1)0666]10~3 1)500 and 4)000
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&&master'' d.o.f.s, since the &&slave'' d.o.f. response is reconstructed directly from the &&master''
d.o.f. solution according to equation (16). Further reduction of the frequency window range,
0}3 kHz, was examined for a frequency sweep step size of 10 Hz. This smaller window
improves both the overall accuracy by an order of magnitude and as well reduces the
interpolation error associated with the resonances.

Using a frequency window range for the interpolation functions and only performing
a partial sweep within the frequency window, it is possible to see more clearly the e!ects the
di!erent interpolation functions have near a resonance. For an interpolation window of
0}5 kHz but for a frequency sweep of 2)0}2)2 kHz with a step size of 1 Hz, the displacement
magnitude for the &&master'' d.o.f. 1

x
is shown in Figure 5. It is easily seen that the 415

Lagrangian interpolation and the the 215 Hermitian overshoot the eigenvalue. However, the
415 Hermitian exactly matches the eigenvalue response based on the full d.o.f. solution.

It is possible within the FWR method to vary the placement of the interior interpolation
(inversion) points for both the Lagrangian and Hermitian interpolation methods. In
order to demonstrate this, a frequency window of 0}10 kHz with a step size of 50 Hz
was examined by placing the interior points at di!erent interior locations as summarized
in Table 3. From this table, the error remains essentially the same for the variable



Figure 6. % error for the &&master'' d.o.f. 1
x
comparing the 415 Hermitian interpolation function for the range of

0}10 kHz and a step size of 50 Hz with variable interior point locations: (**), interior point locations (3)333 and
6)667 kHz); (- - - -), interior point locations (1)500 and 7)500 kHz); (} } } }), interior point locations (1)500 and
4)000 kHz).
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placement of the interior interpolation points. The placement of the interior points does
not generally reduce the overall error but reduces the error within the selected regions
within a window. The variable placement does however tend to soften the error more
uniformly across the entire window. This can most readily be seen in the % error of the
displacement magnitude for the &&master'' d.o.f. 1

x
for the Hermitian interpolation function

in Figure 6. It is clear that the variable placement of the interior point does a!ect the error
in smaller local frequency regions within the window. The selection of an interior point near
eigenvalues tends to reduce the error associated with the resonance. There was no
signi"cant e!ect on the actual response and its accuracy, i.e., displacement magnitude for
a particular d.o.f.

6.2. SPHERICAL HALF SHELL

The second example presented is a simple spherical shell as shown in Figure 7. The
properties of the steel spherical shell were 180)0 GPa as Young's modulus, 0)333 as
Poisson's ratio and a density of 7670 kg/m3. A similar problem is discussed in the ABAQUS
User's Manual [11]. The model is constructed using 50 quadratic axisymmetric SAX2
isoparametric shell elements for the undamped, free vibration problem. The total number of
node points is 101, with 3 d.o.f.s per node point; hence, the total d.o.f.s for this model is 303.
The number of &&master'' node points was chosen as 29, so the degree of reduction of the
model is 71% (303}87-d.o.f.s). The selected &&master'' node points are shown in Figure 7 as
&&d'' symbols (node nos. 1, 51 and 101) which represent the loaded and constrained nodes.
The remaining &&master'' nodes were arbitrarily chosen from the model (node nos. 5, 9, 13,
17, 21, 25, 27, 29, 33 and 37).

A number of frequency interpolation windows were examined for this model, and the
results are summarized in Table 4. For these analyses, only the 415 Lagrangian and the 415

Hermitian interpolation methods were used. Initially, large-frequency interpolation
windows were examined with fairly coarse frequency sweep step sizes. As can be seen from
the table, even for a very large window, 0}500 Hz, the Hermitian interpolation has a very



Figure 7. Spherical shell model.
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low error, on the order of 0)01%. The relative error for an interpolation window of
0}300 Hz and frequency sweep step size of 1 Hz plotted in Figure 8. As can be seen in the
"gure, there are a very large number of eigenvalues within this window. Both interpolation
functions capture the functional behavior at all of the eigenvalues, despite the large window
and coarse step size. From Figure 9, the Lagrangian interpolation function shows a larger
% error for the &&master d.o.f. 51

x
of approximately 1%, whereas the Hermitian shown an

approximate error of only 0)001%. From this "gure and the actual displacement magnitude
the &&master'' d.o.f. 51

x
, it can be seen that the functional behavior at every eigenvalue is

represented. The response for other &&master'' and &&slave'' d.o.f.s showed identical behavior.
The frequency window size was now further reduced to 0}200 Hz with the sweep step size

to 1 Hz. Within this particular window now only two eigenvalues are present near the end
points of the window. A plot of the % error of &&master'' d.o.f. 51

x
(Figure 10) shows a further

decrease in the error from the previous window. The 415 Hermitian has an extreme accuracy
in this frequency range, with a % error of less than 1]10~4% at 71% d.o.f. reduction
(Figure 10(a)). At these levels of accuracy, there is no discernable di!erence between the
reduced interpolated solutions and the full d.o.f. solution. This same window range was then
examined with a higher level of d.o.f. reduction of 303}29 d.o.f.s, or an 87% d.o.f. reduction.
The relative error and the % error, shown in Figure 10(b), changed little, increasing by
approximately one order of magnitude. Only a careful examination of the "gure shows that
the 415 Lagrangian does not exactly match the eigenvalue behavior at the low range of the
frequency window. However, the error even for this signi"cant reduction is surprisingly
small, at 1% for the Lagrangian and 0)001% for the Hermitian methods.

As is seen in Figures 8 and 9 and from Table 5, there are large number of eigenvalues
within the frequency range of 200}300 Hz. The frequency window range of 200}300 Hz was



TABLE 4

Frequency interpolation window analysis for spherical shell model

SRelative errorT S% errorT of d.o.f.
Frequency range (Hz)
(d.o.f. % reduction) 415 Lagrangian 415 Hermitian 415 Lagrangian 415 Hermitian d.o.f.s

0}500 (71%) 3)82455]10~1 1)88293]10~4 43)88975 2)45161]10~2 Du D
51x

84)89385 4)53325]10~2 Du D
101y

39)31291 2)13927]10~2 Du D
75x

48)19275 2)22450]10~2 Du D
75y

62)98936 4)18929]10~2 Du D
75r

0}300 (71%) 3)85561]10~2 2)70192]10~6 4)47868 3)08129]10~4 Du D
51x

0}200 (71%) 8)17052]10~3 6)78324]10~8 9)32031]10~1 8)41653]10~6 Du D
51x

7)80872]10~1 7)15517]10~6 Du D
75x

100}200 (71%) 9)24500]10~5 5)30811]10~7 1)61164]10~2 1)40703]10~4 Du D
51x

200}300 (71%) 1)04594]10~3 4)09726]10~5 1)17638]10~1 5)65539]10~3 Du D
51x

0}200 and 200}300 (71%)t 4)60823]10~3 2)05202]10~5 5)24834]10~1 2)83190]10~3 Du D
51x

100}200 and 200}300 (71%)A 5)69196]10~4 2)07517]10~5 6)68771]10~2 2)89805]10~3 Du D
51x

0}200 (71%) 8)17052]10~3 6)78324]10~8 9)32031]10~1 8)41653]10~6 Du D
51x

0}200 (87%) 1)05201]10~1 4)15087]10~5 11)94890 5)36735]10~3 Du D
51x

200}300 (71%) 1)04594]10~3 4)09726]10~5 1)17638]10~1 5)65539]10~3 Du D
51x

200}300 (87%) 7)59079]10~2 1)40523]10~4 9)08258 1)45554]10~2 Du D
51x

s Du D
51x

is a &&master'' d.o.f. solution and Du D
75x

is a reconstructed &&slave'' d.o.f. solution.
tResults for frequency windows 0}200 Hz are combined with the results for 200}300 Hz
AResults for frequency windows 100}200 Hz are combined with the results for 200}300 Hz.
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Figure 8. Relative error comparing the 415 Lagrangian interpolation method (**) and the 415 Hermitian
interpolation method (- - - -) for the window range 0}300 Hz and a step size of 1 Hz.

Figure 9. % error for the &&master'' d.o.f. 51
x
comparing the 415 Lagrangian interpolation method (**) and the

415 Hermitian interpolation method (} } }}) for the window range 0}300 Hz and a step size of 1 Hz.
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examined at both the 71% d.o.f. reduction and the 87% d.o.f. reduction level. This window
range was chosen in order to characterize the behavior and accuracy of the FWR method
with a large number of eigenvalues within a small interpolation window. Figure 11 shows
the relative error at 71% reduction for the window range and the sweep step size of 0)5 Hz.
Both interpolation methods result in a very low error of less than 1% over the entire
window with highly accurate responses, as compared to the full d.o.f. solution. The
characterization at 87% d.o.f. reduction showed identical trends as described above, with
the error increasing by one order of magnitude. However, the Hermitian interpolation
method still showed only an approximate error of 0)01% at 87% d.o.f. reduction. It should
be noted that, as in the cases discussed above, all eigenvalue responses are clearly captured
at both d.o.f. reduction levels.



Figure 10. % error for the &&master'' d.o.f. 51
x

at (a) 71% and (b) 87% d.o.f. reduction: (**), 415 Lagrangian
interpolation method; (} } } }), 415 Hermitian interpolation method.
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An important fact that can be observed with respect to the 415 Hermitian interpolation
curves in the above "gure as is that the end interpolation (inversion) points of the frequency
window does not approach a nearly zero value, as does the Lagrangian interpolation. It is
important to note that the Hermitian interpolation method includes derivative information
at all the interpolation points. As a result, if an eigenvalue is near an interpolation point
particularly at the frequency window end points, the function and its derivative are rapidly
varying near the point in the region of validity for the interpolation function. For this
window range of 200}300 Hz, it can be seen from Table 5 or Figures 8 and 9, that there are
eigenvalues lying just outside the interpolation window range (188)14 and 308)71 Hz).
Hence, the in#uence from these eigenvalues, even though outside the interpolation region,
does in fact contribute to the smoothness of the interpolation function and also to the
accuracy of the response. The Lagrangian value should always be nearly zero at an
interpolation (inversion) point.

Another very important point which applies to all the examples is that the eigenvalues of
the system were NO¹ known beforehand. The constrained eigenvalues of the full d.o.f.
models were calculated by standard routines [12] for comparison. Having shown how
accurately the response of the reduced d.o.f. problem can be obtained, it is clear that the



TABLE 5

Calculated eigenvalues for the full d.o.f. model

Unconstrained Constrained
eigenvalues (Hz) eigenvalues (Hz)

11)258 9)805
187)36 188)14
222)69 223)48
236)95 237)73
244)41s 245)23
249)30 250)23
253)30s 254)44
257)26 258)75
267)02 263)68
273)53 269)63
281)49 276)87
291)12 285)68
302)59 296)24
316)06 308)71

sUsed for Rayleigh damping calculation.

Figure 11. % error for the &&master'' d.o.f. 1
x
comparing interpolation functions at 71% d.o.f. Reduction: (**),

415 Lagrangian interpolation method; (- - - -), the 415 Hermitian interpolation method.
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eigenvalues of the full d.o.f. system may be closely approximated from the reduced d.o.f.
model analysis. It is important to note that these eigenvalues represent the resonances of the
&&reduced'' d.o.f. system, which generally are not signi"cantly di!erent from those of the full
d.o.f. system.

One additional aspect of FWR method is that the multiple frequency windows may be
analyzed independently and these solutions can then be combined to construct a large
frequency response window. From the above analyses of the frequency windows of
0}200 Hz and 200}300 Hz can be combined and compared to the full analysis for the
window range of 0}300 Hz. It is di$cult to compare the overall accuracy (error) of the



Figure 12. Displacement magnitude of the &&master'' d.o.f. 51
x
for the range 0}300 Hz: (**) full d.o.f. response;

(- - - -), 415 Hermitian response for the whole 0}300 Hz range; (} } } }), combined response for 0}200 Hz and
200}300 Hz ranges. Note expanded plot scale.
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combined data as compared to the full frequency range because of the analyses, which are
combined, have di!erent parameters (window and step size). The accuracy of combined
interpolation windows will strongly depend on the choice of parameters such as the window
location, size and sweep step size. Also, as noted above, the presence of an eigenvalue near
the interpolation window end points will a!ect the overall smoothness of the interpolated
function. However, it is clear from Figure 12 that the responses of the displacement
magnitude are nearly identical. Finally, this comparison of the combined responses of the
window analysis, demonstrates again the consistency of the FWR method.

Rayleigh damping was then introduced into the spherical shell model. The mass and
sti!ness matrices were obtained from an ABAQUS model and reordered according to the
selection of the &&master'' nodes. These matrices were then used to calculate the Rayleigh
damping de"ned as

D,aN M#b1 S, (27)

where the terms a and b are

b1 "
2(u

2
m
2
!u

1
m
1
)

u2
2
!u2

1

, a6 "2u
1
m
1
!b1 u2

1
"u

1
(2m

1
!b1 u

1
) . (28, 29)

Here, the terms m
1

and m
2

are the weightings or percentages of critical damping of the select
frequency modes, u

1
and u

2
. From the calculated eigenvalues of this model listed in Table 7,

the frequency modes of u
1
"244)41 Hz and u

2
"253)30 Hz were chosen as being

approximately in the middle of the interpolated frequency window range of 200}300 Hz. The
calculated values for a6 and b1 according to equations (28) and (29), at these selected
eigenvalues, are summarized in Table 6 for di!erent levels of critical damping (0)5, 1 and 5%).

Three di!erent levels of Rayleigh damping were examined for the frequency window
range of 200}300 Hz and are summarized in Table 7. Both real and imaginary solution



TABLE 6

Calculated values for aN and bM at selected eigenvalues u
1
"244)41 Hz and u

2
"253)30 Hz

m
1

m
2

a6 b1

0)05 0)05 78)1552 3)1977]10~5
0)01 0)01 15)6310 6)3955]10~6
0)005 0)005 7)81552 3)1977]10~6

TABLE 7

Frequency interpolation window analysis for spherical shell model with damping

SRelative errorT S% errorT of &&master'' d.o.f.Du D
51x

Frequency range
200}300 Hz 415 Lagrangian 415 Hermitian 415 Lagrangian 415 Hermitian

71% d.o.f. reduction Real Real

No damping 1)04594]10~3 4)09726]10~5 1)17638]10~1 5)65539]10~3
5% dampings 1)20912]10~5 2)73770]10~6 4)77508]10~2 2)04404]10~3
1% damping 9)17150]10~5 1)31038]10~5 8)71775]10~2 7)72954]10~3

0)5% damping 2)04280]10~4 1)39016]10~5 5)21610]10~2 3)52020]10~3

Imaginary Imaginary
No damping NA NA NA NA
5% dampings 3)06675]10~5 3)87553]10~6 3)82516]10~2 2)78551]10~3
1% damping 1)80707]10~4 2)34695]10~5 8)15489]10~2 1)20185]10~2

0)5% damping 3)52384]10~4 2)29230]10~5 1)09397]10~1 9)02209]10~3

sFrequency step size 0)25 Hz. All other frequency step sizes were 0)5 Hz.

Figure 13. Real and imaginary displacement magnitudes for the &&master'' d.o.f. 51
x

comparing the full d.o.f.
solution response (**) to the 415 Hermitian interpolation method (f, j) at 1% of critical Rayleigh damping.
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responses are obtained. The error for both the real and imaginary solutions as compared to
the full solution were small and the % error for the displacement magnitude of d.o.f. 51

x
showed an error of less than 0)01%. Comparison of the error of the case in which damping is
present to the case of no damping showed nearly the same % error. A comparison of the



Figure 14. Real component of the relative error for the 415 Hermitian interpolation method comparing no
damping (**) to 1% damping (- - - -) and 5% damping (} } } }).

Figure 15. Real component of the relative error for the 415 Lagrangian interpolation method comparing no
damping (**) to 1% damping (- - - -) and 5% damping (} } } }).

348 R. P. INGEL E¹ A¸.
both the real and imaginary responses for the &&master'' d.o.f. 51
x

to those of the full d.o.f.
solution found that the FWR reduced solutions were indistinguishable from the full d.o.f.
response. This is seen in Figure 13, which shows both the real and imaginary response of the
displacement magnitude of the &&master'' d.o.f. 51

x
. The in#uence of the eigenvalues is clearly

present for this case of 1% damping.
A comparison of the most stringent error criteria, the relative error, for the case in which

there is no damping, to the cases with di!erent percentages of critical damping
demonstrates the e!ect that damping has on the overall response of this model, particularly
the response near the eigenvalues. The relative error for the undamped case is compared to
that of 1 and 5% damped cases (real components only) for the Hermitian (Figure 14) and
the Lagrangian interpolation methods (Figure 15). These "gures clearly show the gradual
decrease and smoothing of the peaks at (near) the resonances. Also the comparison of the
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% error of the displacement magnitude of the &&master'' d.o.f. 51
x

for the undamped and
damped cases shows that the overall error is approximately the same, at 0)01%. It appears
that the accuracy of the FWR method is related to the % d.o.f. reduction, the interpolation
window size and location, the sweep step size and the interpolation method used, and not
whether the damping is present (at least for small % damping).

7. CONCLUSIONS

The preceding results show the successful implementation of the FWR methodology into
a "nite element environment. They demonstrate the validity and accuracy of the technique
as applied to the structural acoustics analyses. They show, as well, the potential for the
FWR methodology to improve such frequency analyses, including the use of the FWR
method to extend and enhance the frequency analysis of the structural acoustic problems.
This can be done simultaneously while reducing the computational costs associated with
these types of analyses to a great extent.

The FWR method prototype algorithm, developed in standard Fortran 90, has been
tested using FEM models generated by the ABAQUS FEM code. The most general
formulation of the FWR method includes complex frequencies, complex frequency
interpolation windows and damping. The use of parameter matrices, such as mass and
sti!ness, obtained from third party FEM codes such as ABAQUS, allows the existing FEM
codes to generate the models directly for the FWR method.

The results given show that the FWR method may be used to optimize the d.o.f.
reduction for a given model based on the accuracy and frequency of the window
requirements. Re-ordering, according to a user-de"ned &&master'' node list, easily allows
control of the d.o.f. of models. It permits preliminary analyses to be done to characterize the
problem and response quickly, and to approximate the eigenvalues of the full d.o.f. system,
without doing the eigenvalue analysis of the full d.o.f. model. The frequency windowing
selection of interpolation points and interpolation methods can also be used to optimize the
accuracy of the results versus the computational e!ort required. The frequency
interpolation window location and the size can be selected to this end, as well as the variable
placement of internal interpolation points with a selected window. This can be used to
investigate "rst and then to narrow the regions of particular interest for the resultant system
response. This choice of frequency windowing options, together with full frequency sweeps
across an interpolation window, or partial frequency sweeps within an interpolation
window, can further re"ne the analysis, as desired. Finally, multiple interpolation windows
can be combined into a larger analysis window allowing the construction of the system
response over a large frequency range from that of the individual smaller windows, with
accuracy tailored as required for the smaller windows. The choice of interpolation methods
can also be used to examine the system response at appropriate levels of accuracy, with little
computational e!ort. The Lagrangian interpolation method is generally a less
computational work, with a slightly reduced accuracy. The Hermitian interpolation method
requires more computational e!ort, while it produces highly accurate results.

The FWR method, as implemented, minimizes computational e!ort by reuse of the
calculated matrices. This important aspect of the method allows multiple analyses to be
done without recalculation of the necessary matrices each time. For example, given the
unordered mass, sti!ness and damping matrices from an FEM code, di!erent levels of d.o.f.
reduction can be examined by changing the input &&master'' node list. Then, given this
reordered set of matrices, a selected interpolation window is used to calculate
the constructor matrices. These matrices are then valid for any frequency range within the
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de"ned interpolation window. The constructor matrices do not need to be recalculated for
any frequency sweep within this window, permitting a multiple frequency sweep analyses at
di!erent resolutions, with minimal computational cost. The same savings apply to the
analyses for various loading and boundary conditions, which can be done without
recalculation of the constructor matrices, permitting such analyses to be done at a minimal
cost.

The varied aspects of the FWR method, as brie#y discussed here, clearly have the
potential to signi"cantly impact the way frequency analyses are performed on large and
complex models as applied to structural acoustic problems. This method, and its
implementation as a computational tool, now o!ers a more e!ective and e$cient
environment, in which frequency sweeps of reduced models can be performed at greatly
reduced computational cost while maintaining the requisite accuracy of the results. The
direct incorporation of the resonance or modal response into the computational
methodology will be undertaken and tested on FEM models. A "nal note. While this
technique has been applied here to structural acoustic problems, the mathematics are such
that the same techniques could be applied readily to other frequency-dependent problems,
such as electromagnetic FEM models and inverse scattering problems, where the accuracy
of calculations is also severely constrained by computational capabilities and costs.
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