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A structural analysis using dynamic substructuring with Ritz vectors is presented for
predicting the dynamic response of an engine crankshaft, based on the "nite-element
method. A two-level dynamic substructuring is performed using a set of load-dependent Ritz
vectors. The rotating crankshaft is properly coupled with the non-rotating, compliant engine
block. The block compliance is represented by a distributed linear elastic foundation at each
main bearing location. The sti!ness of the elastic foundation can be di!erent in the vertical
and horizontal planes, thereby considering the anisotropy of the engine block compliance
with respect to the crankshaft rotation. The analysis accounts for the kinematic
non-linearity resulting from the crankangle-dependent circumferential contact location
between each journal and the corresponding bore of the engine block. Crankshaft &&bent''
and block &&misboring'' e!ects due to manufacturing imperfections are considered in the
analysis. The superior accuracy and reduced computational e!ort of the present method as
compared with the equivalent superelement analysis in MSC/NASTRAN, are demonstrated
using the free and forced vibrations of a slender cylindrical beam and free vibrations of
a four-cylinder engine crankshaft. Subsequently, the accuracy of the present method in
calculating the dynamic response of engine crankshafts is shown through comparisons
between the analytical predictions and experimental results for the torsional vibrations of an
in-line "ve cylinder engine and the bending vibrations of the crankshaft-#ywheel assembly of
a V6 engine.
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1. INTRODUCTION

Legislative and customer pressures on engine design call for maximization of engine power,
minimization of engine size and improvement of fuel economy, simultaneously. This
requires optimized engine components, if competitive designs must be realized. Therefore,
sophisticated tools are needed to analyze engine components. This is particularly true of
crankshafts, one of the most analyzed engine components.

Many sophisticated crankshaft analysis methods have been reported in the past years.
This has been facilitated mostly by the use of the "nite-element method on high-speed
computers and the availability of elaborate "nite-element preprocessors which can
construct complex "nite-element models. For engine crankshafts, sophisticated analyses
have been mainly used in two areas. First, in accurate prediction of crankshaft "llet stresses
[1}3], and second in free and forced vibration analysis tailored towards engine noise
predictions [4}13].

To analyze the engine crankshaft, a system model of the whole engine must be used. Such
a system consists of the crankshaft and the engine block coupled by the hydrodynamically
0022-460X/00/480495#33 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic of the crankshaft*engine block system.
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lubricated main bearings (see Figure 1). The loading on the system comes from the cylinder
pressure and the piston-connecting rod inertia. The cylinder pressure applied on the piston
crown is transmitted to the crankpin through the piston-connecting rod assembly. The
inertia of the piston-connecting rod provides a load on the crankpin as well. The crankpin
loads deform the crankshaft structure and are transmitted to the engine block at the main
bearing locations through the main bearing hydrodynamics. Both the deformation of the
crankshaft and engine block a!ect the main bearing "lm thickness and therefore, the
bearing hydrodynamics. For this reason, the mathematical modelling of the described
engine system requires three individual submodels which are coupled together. First,
a structural model of the crankshaft, second a structural model of the engine block, and
third a lubrication model of the main bearings.

This work describes a "nite-element based dynamic crankshaft-engine block structural
model using dynamic substructuring with Ritz vectors. It couples the crankshaft model with
the engine block #exibility accounting for the crankshaft rotation as seen by the "xed in
space engine block. The engine block #exibility is represented by linear springs at the main
bearing locations accounting for the block static (not dynamic) sti!ness. It has been
observed, from extensive application of the present work in crankshaft analysis studies, that
the use of the static block sti!ness, instead of the dynamic sti!ness, can give very good
results for a variety of crankshaft studies of practical importance. Some of these studies are
presented in Sections 6.3 and 6.4. The block dynamic sti!ness however, is ultimately needed
for detailed bearing cup stress analysis and noise and vibration studies of the lower engine
block. Although not presented in this paper, the present crankshaft-engine block model can
be also coupled with a main bearing hydrodynamics model to provide a complete engine
crankshaft system model.

Previous crankshaft analyses are either static [1], or use a beam representation of the
crankshaft [4, 5]. In an attempt to improve the accuracy, static crankshaft analysis with
a correction for the #ywheel dynamic behavior was used in references [6, 7]. However, all
analyses in references [1, 4}7] fail to represent the crankshaft dynamic behavior, which can
be very important under certain operating conditions or even essential for noise and
vibration analysis of a crankshaft-engine block system. The idea of using dynamic
substructuring in crankshaft analysis has been introduced in references [8, 9]. The
MSC/NASTRAN superelement capability [14] was used to perform a dynamic analysis of
a long stroke diesel engine crankshaft using component mode synthesis. The modal matrix,
composed of the "rst few crankshaft eigenvectors, was used as the transformation basis. The
present analysis does not rely on any of the simplifying assumptions of references
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[1, 4}7]. Furthermore, it can be even more accurate and computationally more e$cient
than the analysis of references [8, 9] since it uses Ritz vectors instead of eigenvectors to form
the transformation basis. Ritz vectors are easier to compute and provide a more accurate
dynamic representation of the structure.

The "nite-element method has been extensively used in static and dynamic analyses of
large structures. Due to the structural complexity of the crankshaft, a model with
20 000}30 000 degrees of freedom is common. Although a static analysis of such a model can
be easily performed, a dynamic analysis may be impractical due to limitations in computer
storage, computing time and cost. To overcome this di$culty, transfer matrix approaches
[13] or dynamic substructuring [14] have been proposed in the literature. A dynamic
substructuring analysis using special Ritz vectors is used in this work. In a dynamic
substructuring analysis, the structure is divided into parts, which are analyzed
independently and subsequently, synthesized in order to determine the response of the
whole structure. This is similar to conventional modal synthesis techniques [15] using
eigenvectors.

A two-level dynamic substructuring analysis, using Ritz vectors, which can accurately
predict the dynamic behavior of an engine crankshaft with minimal computational e!ort, is
described here. A representation of the engine block #exibility is given and the combined
crankshaft-engine block structural model is formulated. The superior accuracy and reduced
computational e!ort of the present method as compared with the equivalent superelement
analysis in MSC/NASTRAN [4, 16], are demonstrated using the free and forced vibrations
of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft.
Subsequently, the accuracy of the present method in calculating the dynamic response of
engine crankshafts is showed through comparisons between the analytical predictions and
experimental results for the torsional vibrations of an in-line "ve-cylinder engine and the
bending vibrations of the crankshaft}#ywheel assembly of a V6 engine.

The present analysis can also be used to predict crankshaft dynamic stresses, which are
essential in assessing durability and fatigue limits of engine crankshafts. It is currently
common practice to represent a crankshaft with beams and concentrated masses [13]. The
sti!ness of the beams and the distribution of masses are commonly chosen so that the "rst
eigenproperties of the beam structure are similar to those of the actual crankshaft. The
beam model is subsequently used to calculate the dynamic main bearing reactions, which
are then applied back to the three-dimensional crankshaft solid model to obtain the
dynamic stresses. This approach is not accurate enough for the following reasons. First, the
beam model does not represent the dynamics of the crankshaft correctly since it matches
only the "rst eigenproperties of the actual crankshaft. Second, the beam model cannot
represent the damping distribution of the crankshaft, which can greatly a!ect the magnitude
of the dynamic displacements. Furthermore, for correct stress levels, one needs the reaction
force distribution (not the concentrated reaction force) around the crankshaft journals.
This is especially true for calculations of bearing cap stress levels. The present dynamic
substructuring approach addresses all of the above problems. Furthermore, it allows
stress calculation only on critical stress areas such as crankshaft "llet regions, without
calculating the stress "eld on the entire crankshaft. This can considerably speed up the
computational time allowing crankshaft stress analysis to be performed routinely at the
design phase.

The present work represents only the structural part of a computer program named
CRANKSYM (Crankshaft System Model). This program can be used to predict the
crankshaft dynamic response and main bearing performance considering (1) the crankshaft
structural dynamics, (2) the main bearing hydrodynamics and (3) the engine block static
#exibility simultaneously, using a system approach.
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2. TWO-LEVEL DYNAMIC SUBSTRUCTURING ANALYSIS USING RITZ VECTORS

Dynamic substructuring analysis is commonly used for large complex structures. If the
"nite-element model of the entire structure consists of a large number of degrees of freedom
(d.o.f.), it may be impractical to perform a dynamic analysis based on the "nite-element
equations of the entire system. There are practical advantages in subdividing the complex
crankshaft structure into substructures. If some substructures are identical, substantial
savings in computer time can be achieved. Furthermore, if structural modi"cations are
made to one substructure, only that substructure must be modi"ed and therefore, the
computational cost of a reanalysis can be signi"cantly reduced. In the developed model,
each crankthrow (crankshaft structure between two adjacent main bearings) constitutes
a separate substructure. The crankshaft nose and tail (#ywheel end) are also treated as
separate substructures (see Figure 2).

Due to the structural complexity of the crankshaft, even the analysis of a single
substructure is computationally expensive. The computational cost increases even more if
the analysis is repeated in a design loop. For this reason, dynamic reduction of the d.o.f. is
performed for each crankshaft substructure. A set of very e$ciently computed orthonormal
Ritz vectors is used as transformation basis. In conventional dynamic reduction methods,
the transformation basis consists of the "rst exact or approximate eigenvectors of the
structure (Modal Analysis and Generalized Dynamic Reduction respectively, in
MSC/NASTRAN [16]).

The calculation of eigenvectors for a large structure is computationally expensive.
Besides, the participation of a particular eigenvector in the "nal solution depends on the
applied dynamic loading. If the loading frequency is close to a natural frequency of the
structure, then the corresponding eigenvector participates signi"cantly in the solution.
Furthermore, eigenvectors orthogonal to the applied loading do not participate in the
solution even if their frequency (corresponding eigenvalue) is contained in the loading. For
the above reasons, the eigenvectors may not be the most e$cient basis for a dynamic
reduction of a complex structure subjected to certain external loading.
Figure 2. Some de"nitions on the crankshaft substructuring. M;
r
N: vector of retained d.o.f.; Mu

i
N: vector of

internal d.o.f.
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It has been demonstrated that use of orthonormal Ritz vectors instead of the same
number of eigenvectors, can result in better accuracy in dynamic analysis of complex
structures [17}22]. The reason is that Ritz vectors consider the spatial distribution of the
applied loading, whereas the eigenvectors neglect that important information. The "rst Ritz
vector is the static solution to the applied loading. The subsequent Ritz vectors are
generated by multiplying the mass matrix by the previous Ritz vector and use the result as
a load vector for a new static solution [17].

2.1. USE OF RITZ VECTORS IN DYNAMIC REDUCTION

The dynamic equilibrium of a structural system modelled using the "nite-element
method, are written as

[M]M;G N#[C]M;Q N#[K]M;N"MF(s, t)N, (1)

where [M], [C], [K] and MFN are the mass matrix, damping matrix, sti!ness matrix and
load vector respectively. The load and displacement (or response) vectors are a function of
space (s) and time (t). Equation ((1)) can be solved for the displacement vector M;N.

If the response vector M;N is expressed as

M;(s, t)N"[X(s)]Mu(t)N,

(n]1) (n]m) (m]1)
(2)

the original equations (1) reduce to

[MM ]MuK N#[CM ]Mu5 N#[KM ]MuN"MFM N, (3)
where

[MM ]"[X]T[M][X] (m]m), MFM N"[X]TMF(s, t)N (m]1). (4)

Similar expressions hold for [CM ] and [KM ]. In the above equations [X(s)] is a transformation
basis matrix and Mu(t)N is the generalized displacement vector. The dimension m is always
much less than n. The dynamic reduction methods are di!erentiated by the way the
transformation basis [X] is formed. MSC/NASTRAN uses the "rst few exact eigenvectors
to form [X] in the modal analysis method and the "rst approximate eigenvectors in the
generalized dynamic reduction method [16]. Superior accuracy and reduced computational
e!ort have been demonstrated with the use of load-dependent Ritz vectors instead of
eigenvectors [17}22]. For this reason, Ritz vectors are chosen in this work to form [X].

If the load vector can be represented as the product of one vector of space (s) functions
and one time (t) function as

MF(s, t)N"M f (s)Ng(t), (5)

then the Wilson et al. [17] algorithm is a more economical alternative to conventional
dynamic reduction techniques which use eigenvectors to form the transformation basis. The
Wilson et al. algorithm, referred here as single vector Ritz algorithm, uses load-dependent
Ritz vectors for the transformation basis. Those vectors are generated by an inverse
iteration type of recurrence procedure from the "xed spatial (s) distribution of the dynamic
load. The single vector Ritz algorithm has been proven very e$cient and accurate for
a variety of applications [18}20, 23].
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However, for most practical problems, including the crankshaft dynamic response
problem, the load vector cannot be expressed as a product of a single space vector and
a single time function as in equation (5). Instead, it can be expressed as the superposition of
k spatial vectors and k time functions as

MF(s, t)N"
k
+
i/1

M f
i
(s)NMg

i
(t)N. (6)

In such a case, the single vector Ritz algorithm can be used only if k di!erent reduced
subsystems are formed and solved independently. For the ith subsystem, a transformation
basis is generated corresponding to the ith spatial load vector f

i
(s). If the original system is

linear, its solution is the superposition of all the subsystem solutions.
This approach can be very ine$cient since k di!erent subsystems are solved

independently. Furthermore, if the dynamic substructuring is used, the solution of each
subsystem may be inaccurate. In dynamic substructuring, each subsystem will have only
one loaded substructure. The transformation basis for each substructure exists only for the
loaded substructure since it is based on load-dependent Ritz vectors. Although the loaded
substructure will be accurately reduced, the unloaded substructures will be reduced by
Guyan reduction [17, 24] which may be inaccurate. This point will be fully illustrated in the
next section.

For the above reasons, if there is a multispatial load on the structure described by
equation (6), the single vector Ritz algorithm may be ine$cient and more importantly
inaccurate in dynamic substructuring calculations. In this work, a load-dependent subspace
reduction method which is a modi"cation of the methods presented in references [21, 25] is
used. It is an extension of the single vector Ritz algorithm and eliminates the described
de"ciencies of the single vector Ritz algorithm in dynamic substructuring. The
transformation basis consists of load-dependent vectors generated by a recurrence sequence
which uses blocks of vectors corresponding to the multiload spatial vectors of the initial
system. The method is described in Appendix A.

The initial block of vectors [X*] corresponding to the static de#ection of the structure
subjected to the speci"ed multiload spatial vectors [F] is "rst generated (step 3a) and all
vectors in [X*] are M-normalized (step 3b) to form block [X]. Subsequently, the vectors in
[X] are M-orthogonalized using Gram}Schmidt orthogonalization to remove common
components in the transformation basis (step 3c) and M-normalized again (step 3d). The
M-normalization of step 3b was found necessary for the M-orthogonalization of the next
step to produce M-orthogonal vectors. The recurrence procedure of step 4 is used to
generate additional blocks of Ritz vectors. A block of vectors [X*

i
] representing the static

response of the structure subjected to an updated static vector block is found (step 4a). The
block [X*

i
] is subsequently M-orthogonalized twice against all previous blocks (steps 4b

and c) to form [X
i
]. Finally, all vectors in [X

i
] are M-orthonormalized (step 4d) and added

to the transformation basis. Double orthogonalization was found necessary because single
orthogonalization fails to produce orthogonal blocks of vectors after the "rst few steps.
Double orthogonalization is also used during the generation of approximate eigenvectors
for the generalized dynamic reduction method in MSC/NASTRAN [16].

The proposed subspace reduction method is more e$cient compared with the classical
subspace or Lanczos eigensolvers since no iteration on the reduced eigenproblem needs to
be performed, no convergence test is performed for the computed Ritz vectors and no Sturm
sequence is required to verify the acceptance of computed eigenvectors as is normally done
for the Lanczos method [16, 26].
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The e$ciency and accuracy of the present subspace reduction method depends on the
number of independent spatial load vectors k in block [F] and the number of blocks of Ritz
vectors, or steps in the algorithm, p. The number of orthonormal Ritz vectors m"k * p in
the "nal transformation basis determines the dimension of the reduced dynamic system of
equation (3). For computational e$ciency, m should be as small as possible without
jeopardizing the accuracy of the reduced system. If k is large, then p should be kept small
which may lead to poor approximation of the dynamic e!ects and consequently poor
accuracy. Therefore, k should be as small as possible.

In the present dynamic substructuring analysis of engine crankshaft structures, the
crankshaft segment between two adjacent main bearings constitutes a substructure. The
external load on each substructure is applied on each crankpin. For in-line engine
con"gurations there is only one crankpin per substructure while for V-engine
con"gurations there are two crankpins per substructure. The load on each crankpin is
decomposed into a vertical and a horizontal component. Therefore, k is equal to two for
in-line engines and equal to four for V-engines. Since it is not necessary to use all the
independent spatial vectors [25], only one vertical and one horizontal spatial vector for
each substructure are used in the present work for both in-line and V-engines. This reduces
k to two.

2.2. FIRST LEVEL OF DYNAMIC SUBSTRUCTURING ANALYSIS

The crankshaft is divided into a number of substructures by splitting it at the middle of
each main bearing location. The initial displacement vector M;N of equation (1) is
partitioned into internal displacements M;

i
N and retained displacements M;

r
N. The vector

M;
r
N consists of all the displacements of the common interfaces of the substructures plus the

displacements of points on the crankshaft centerline at the two ends of each main bearing
(see Figure 2). The latter points are used to determine the slope of each main bearing
journal. M;

i
N includes all other displacements in M;N. Based on this partitioning, the initial

displacement vector M;N, load vector MFN and the mass matrix in equations (1) are rewritten
as

M;N"M;1
i
;2

i 2
D;

r
NT, MFN"MF1

i
F2

i 2
DF

r
NT, (7, 8)

[M]"C
M

i
M

ir

MT
ir

M
i
D"C

M1
i

0 2 M1
ir

0 M2
i

2 M2
ir

F }

M1T
ir

M2T
ir

2 M
r
D . (9)

Similar expressions hold for C and K matrices. In equations (9), the zeros represent null
matrices of the appropriate dimensions. Subscripts i and r denote internal and retained
degrees of freedom, respectively, and superscripts denote the substructure number or the
transpose of a matrix. Each crankthrow (crank bay) and the crankshaft nose and tail
constitute separate substructures.

According to equation (2), the internal displacement vector M;l

i
N for the lth substructure

is transformed as

M;l

i
N"[Xl]MulN. (10)
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The transformation matrix [Xl] consists of a set of M-orthonormal Ritz vectors calculated
with the algorithm of Appendix A based on matrices [Ml

i
], [Kl

i
] and [Fl

i
] for the lth

substructure. Matrix [Fl

i
] consists of only two spatial load vectors (k"2). For in-line

engines, they are the vertical and horizontal spatial loads on the single crankpin. For
V-engines, they are the vertical spatial load on one crankpin and the horizontal spatial load
on the second crankpin.

By using matrices [M
i
], [K

i
] and [F

i
] in the calculation of [X], the retained d.o.f M;

r
N

are assumed equal to zero. This is similar to calculating "xed-interface modes in the
traditional Craig}Bampton method [27]. However, M;

r
N is not zero and therefore, results in

additional internal displacements M;l

i
N which are assumed to satisfy the static relationship

[Kl

i
]M;l

i
N#[Kl

ir
]M;

r
N"0 (11a)

from which we get

M;l

i
N"![Kl

i
]~1[Kl

ir
]M;

r
N"[¹l]M;

r
N, (11b)

where

[¹l]"![Kl

i
]~1[Kl

ir
] (12)

is the static transformation matrix between M;l

i
N and M;

r
N. If equations (10) and (11) are

grouped together for all substructures, we get

M;N"

;1
i

F

;l

i
F
} } }

;
r

"

X1 2 0 2 ¹1

F F F

0 2 Xl 2 ¹
l

F F F

0 2 0 2 I

u1

F

ul

F
} } }

;
r

"[U]MuN N. (13)

} } } } } } } } } } } } } } } } } } } } } }

Substitution of equation (13) in the partitioned equation (1) and premultiplication with
[U]T yields

[MM ]Mu6K N#[CM ]Mu65 N#[KM ]Mu6 N"MFM N, (14)

where

[MM ]"[U]T[M][U]"C
MM 1

i
2 0 2 MM 1

ir
F F F

0 2 MM l
i

2 MM l
ir

F F F

MM 1T
ir

2 MM lT
ir

2 MM
r
D , (15)

MM l
i
"XlTMl

i
Xl, MM l

ir
"XlT(Ml

i
¹

l
#Ml

ir
), (15a, b)

MM
r
"M

r
#+

l

(¹lTMl

i
¹

l
#MlT

ir
¹

l
#¹

lTMl

ir
). (15c)

Similar expressions hold for CM and KM . The reduced load vector MFM N is given by

MFM N"MFM 1
i
2FM l

i
2FM

r
NT, (16)
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where

FM l
i
"XlFl

i
, FM

r
"F

r
#+

l

¹
lFl

i
. (16a, b)

Since the Ritz vectors are M-orthonormalized,

MM l
i
"XlTMl

i
Xl

"I. (17)

Furthermore, due to equation (11),

KM l
ir
"XlT(Kl

i
¹

l
#Kl

ir
)"0. (18)

If the number of Ritz vectors, or equivalently the number of generalized coordinates u, is
zero for every substructure, equation (13) reduces to

[MM
r
]M;$

r
N#[CM

r
]M;Q

r
N#[KM

r
]M;

r
N"MFM

r
N, (19)

which is the Guyan dynamic reduction technique. The Guyan reduction is exact for static
loading. However, depending on the selection of the retained d.o.f., it can be inaccurate for
dynamic analysis [16].

2.3. SECOND LEVEL OF DYNAMIC SUBSTRUCTURING ANALYSIS

In the "rst level of substructuring analysis, equation (14) is solved for the reduced
displacement vector

Mu6 N"Mu1 u2 2 ul
2 D;

r
NT, (20)

where ul is the generalized displacement vector of the lth substructure and M;
r
N is the

vector of the retained displacements. Recall that M;
r
N contains all the displacements of the

common interfaces of the substructures plus the displacements of points on the crankshaft
centerline at the two ends of each main bearing (see Figure 2). Even for a coarse
"nite-element mesh of the crankshaft, the number of the retained displacements for the
substructure interfaces can be fairly large. For this reason, a second level of substructuring is
performed which further reduces the number of retained degrees of freedom.

For the second level of substructure analysis, M;
r
N is partitioned as

M
1
;

r
N"M

2
;

i 2
;

r
NT, (21)

where the left subscript indicates the level of substructuring analysis. M
2
;

r
N contains the

displacements of three points at the left end, middle and right end of each main bearing on
the crankshaft centerline. M

2
;

i
N includes all the other displacements of the substructure

interfaces which were retained in the "rst level of substructuring. Due to the partitioning of
equation (21), equation (20) becomes

M
1
u6 N"M

2
u
i 2
;

r
NT, (22a)

where

M
2
u
i
N"M

1
u1 2 1

ul
2 2

;
i
NT. (22b)
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The reduced matrices [MM ], [CM ] and [KM ] and the load vector MFM N from the "rst level of
substructuring are partitioned according to equation (22), and the process described in the
previous paragraph is repeated. A new Ritz transformation matrix [X] is calculated using
again the algorithm of Appendix A, and a new reduced system, similar to that of equation
(14), is formed.

3. IMPLEMENTATION OF THE DYNAMIC SUBSTRUCTURE ANALYSIS

The previously described two-level dynamic substructure analysis and the algorithm to
"nd the Ritz vectors (see Appendix A) can be easily coded into a FORTRAN code.
However, there is a serious problem with data management. The original crankshaft
"nite-element model commonly consists of more than 20 000 d.o.f. The sti!ness, mass and
damping matrices as well as a variety of other auxiliary large matrices cannot be stored in
core computer memory due to computer storage limitations. For this reason, the data
management capabilities of the general purpose code MSC/NASTRAN [16, 26] are used.

Initially, MSC/NASTRAN calculates the mass and sti!ness matrices of the model. Then
two separate DMAP ALTERS [28], instruct MSC/NASTRAN to implement the Ritz
vector algorithm of Appendix A for the two levels of substructuring. An MSC/NASTRAN
job for each substructure is submitted to perform the "rst level of dynamic substructuring
calculations. MSC/NASTRAN calculates and stores internally the sti!ness and mass
matrices of the original substructure models. Then it implements the algorithm to "nd the
"rst level Ritz vectors and also calculates and stores the reduced matrices of equation (14) in
separate "les for each substructure. After the "rst level of calculations has been completed,
another MSC/NASTRAN job is submitted for the second level of substructuring.
MSC/NASTRAN "rst reads the "rst-level reduced matrices and then assembles all the
substructures. Subsequently, it partitions the "rst level reduced displacement vector
according to equation (22) and "nds the second-level Ritz vectors. Finally, it calculates the
"nal reduced sti!ness and mass matrices for the whole crankshaft and stores the results in
a "le. These are subsequently read by a FORTRAN code, which performs the time
integration of the reduced model.

After the two reductions, the reduced model consists of approximately 50}100 d.o.f. only.
This translates to substantial computational savings in performing a crankshaft dynamic
analysis. The computational savings become even more important when the crankshaft
dynamic analysis is coupled with the main bearing hydrodynamics to calculate the
combined system response.

4. ENGINE BLOCK STIFFNESS

The reduced crankshaft model, as described in the previous paragraphs, is supported at
the main bearing locations. The support is provided by the engine block. The engine block
sti!ness can be represented by a vertical and horizontal value for each main bearing. In
practice, the vertical and horizontal sti!nesses are always di!erent. The vertical sti!ness can
be an order of magnitude larger than the horizontal sti!ness. Besides, both the vertical and
the horizontal sti!nesses vary around the circumference of each main bearing.

The engine block support can be modelled by a concentrated sti!ness at the midbearing
position or by a distributed sti!ness along the bearing length. In the former case, the bearing
loads consist of reaction forces only. If these loads are used in a traditional main bearing
lubrication analysis, there will be no journal misalignment. However, dynamic



Figure 3. Representation of the engine block sti!ness. (a) Distributed engine block sti!ness, (b) equivalent
distributed engine block sti!ness.
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misalignment can have a signi"cant in#uence on the main bearing performance. The issue of
dynamic misalignment can be of concern with the increasing number of four-cylinder
engines and V6 con"gurations where adequate main bearing performance remains a design
challenge.

The journal misalignment can be calculated by modelling the engine block #exibility with
a distributed sti!ness along the bearing length (see Figure 3(a)). In this study, three linear
springs are used along the bearing length (one spring at each bearing end and one spring at
the midbearing location) to represent the distributed engine block #exibility in both the
vertical and horizontal planes (see Figure 3(b)). This representation accounts for the
translational and rotational engine block sti!ness. As a result, the bearing loads consist of
reaction forces and reaction moments. If the translational bearing sti!ness is k, the three
springs have sti!nesses k/6, 2k/3 and k/6 (see Figure 3(b)). These sti!nesses have been
calculated so that the translational and rotational bearing sti!nesses with respect to the
midbearing location are the same between the distributed block sti!ness and the equivalent
distributed block sti!ness models.

The engine block sti!ness is normally not considered in crankshaft analysis unless
a coupled engine block and crankshaft model is used as in the present work. An oil "lm
hydrodynamic pressure always exists between the main journal and the engine block. This
pressure extends only to a small journal arc for a heavily loaded bearing (see Figure 4).
Integration of the hydrodynamic pressure results in the reaction force R which is applied on
point C of the journal. Point C is crankangle dependent. If the oil "lm hydrodynamics are
neglected, the crankshaft journal will touch the bulkhead around point C. The engine block
sti!ness, as seen by the crankshaft, is the local circumferential sti!ness of the engine block at
point C. At each time step during the dynamic simulation, the bearing reactions R depend
on the local engine block sti!ness which depends on the location of point C. For this reason,
an iterative process is needed to calculate the bearing reactions R and their points of
application C, simultaneously. In this work, a non-linear solver is used which iterates
between assumed local engine block sti!nesses for each bearing and the resulting bearing
reactions R until it "nds points C with reasonable accuracy. For computational e$ciency,
the reaction R from the previous time step can also be used to estimate the local bulkhead
sti!ness needed at the current time step.

In summary, the vertical and horizontal engine block sti!nesses are distributed along the
bearing length and can be di!erent for each main bearing. The circumferential variation of
both the vertical and horizontal sti!nesses is also considered for each bearing. These
features constitute a unique engine block sti!ness representation, which fully accounts for
the anisotropy of the engine block #exibility as seen by a rotating crankshaft. The coupling



Figure 4. Representation of the actual engine block sti!ness.
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sti!ness between the vertical and horizontal planes of the same bearing has been neglected.
The coupling sti!ness among di!erent bearings has also been neglected.

5. CRANKSHAFT*ENGINE BLOCK MODEL

In order to "nd the dynamic response of the crankshaft}engine block system, the rotating
crankshaft must be combined with the non-rotating ("xed) engine block. A common
coordinate system must be used for the combined model. The crankshaft dynamic analysis
described in this report assumes that the crankshaft mass and sti!ness matrices are time
invariant. For this reason, the analysis is performed with respect to a right-handed rotating
coordinate system (x, y, z) which is attached to the crankshaft. The x coordinate points
always to crankpin d1 (see Figure 5) and the z coordinate is along the crankshaft axis
towards the #ywheel end.

The engine block sti!ness is given with respect to a right-handed, non-rotating
coordinate system (X, >, Z ). The X coordinate is positive upwards and the Z coordinate is
along the crankshaft axis towards the #ywheel end. At a crank angle h, the coordinate
transformation of Figure 5 holds between the rotating and non-rotating coordinate
systems. If k

X
and k

Y
represent the vertical and horizontal engine block sti!nesses,

respectively, in the "xed coordinate system, the engine block sti!ness in the rotating
coordinate system is
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Figure 5. De"nition of the rotating (x}y}z) and "xed (X}>}Z) coordinate systems. (a) Sideview of crank,
(b) front view of piston}crank mechanism. The transformation is
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The matrix [Kb] is added to the reduced sti!ness matrix of the crankshaft to get the
combined sti!ness matrix for the crankshaft}engine block model. The combined sti!ness
matrix is crankangle dependent. If the engine block sti!ness in the vertical and horizontal
directions are the same (k

X
"k

Y
), [Kb] is crankangle independent in the rotating coordinate

system. In this case, the dynamic matrices of the reduced crankshaft}engine block model are
formulated and decomposed once. This not only simpli"es the analysis but also results in
additional computational savings.

5.1. STRUCTURAL DAMPING

In the reduced crankshaft}engine block model of equation (14), [CM ] is the structural
damping matrix. A particularly convenient form of [CM ] is the Rayleigh damping matrix

[CM ]"a[MM ]#b[KM ], (26)

where a and b are two constants to be determined from two speci"ed damping ratios which
correspond to two unequal natural frequencies of the system. If has been shown [29] that if
the system eigenvectors are [C]-orthogonal, the following equation holds:

a#bu2
i
"2f

i
u

i
, (27)

where u
i
is the ith natural frequency of the system and f

i
is the damping ratio for the ith

mode. Given the natural frequencies and damping ratios of two di!erent modes, the
coe$cients a and b can be determined by solving equation (27). Subsequently, equation (27)
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can be used to calculate f
i
at any frequency u

i
. The Rayleigh damping is a computationally

convenient way to approximate the actual structural damping.

5.2. CRANKSHAFT LOADING

The crankshaft is mainly loaded by the engine operating load which comes from the
cylinder combustion. This load is transmitted through the piston and connecting rod to the
crankpin. The piston and the connection rod are treated as rigid bodies and their inertia
loads are calculated and combined with the combustion load. The combined load is applied
on the crankpin in the rotating coordinate system. The belt loads are also applied on the
crankshaft. Since the analysis is performed in the rotating coordinate system, the crankshaft
inertia load due to centrifugal forces is also applied on the crankshaft. For a particular "nite
element model of the crankshaft, this inertia load is equal to mru2, where m is the mass of
the solid element, r is the distance of its center of gravity from the crankshaft rotating axis
and u is the crankshaft rotational velocity. The coriolis forces are neglected.

5.3. CRANKSHAFT &&BENT'' AND ENGINE BLOCK MISBORING

Crankshaft &&bent'' and engine block misboring (see Figure 6) represent manufacturing
imperfections. The forging, heat treating and machining operations necessary to produce
a crankshaft sometimes produce a slightly bent crankshaft. Since this e!ect is expected, the
crankshaft is subsequently straightened so that it conforms to certain "nished tolerances.
However, it is very di$cult to straighten the crankshaft perfectly.

Similarly, the main bearings in the block structure may lie on di!erent centerlines due to
slight misboring. It has been found [30] that signi"cant bearing loads were induced when
bearings 1 and 4 of a six-throw engine were 0)02 mm below the common centerline. The
e!ect of both crankshaft &&bent'' and engine block misboring are included in the formulation
of the combined crankshaft}engine block model which is presented next.
Figure 6. (a) Schematic of crankshaft &&bent'', (b) schematic of engine block misboring.
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5.4. FORMULATION OF THE CRANKSHAFT}ENGINE BLOCK MODEL

The reduced crankshaft model is described in the rotating coordinate system by

[Mc]MuK cN#[Cc]Mu5 cN#[Kc]MucN"MFcN, (28)

where

MucN"Muc
i
D;c

r
NT, (28a)

where Muc
i
N is the generalized displacement vector after second level of substructuring, M;c

r
N

the crankshaft retained (subscript r) displacement vector, and MFcN the vector of applied
forces on the crankshaft.
The superscript c denotes the crankshaft in the above quantities. The engine block model is
described in the rotating coordinate system by

[Cb]M;b
r
N#[Kb]M;b

r
N"MFbN, (29)

where M;b
r
N is the block retained (subscript r) displacement vector, and MFbN the vector of

applied forces on the block.
Superscript b denotes the block in the above quantities.

The mass inertia e!ect is neglected for the block model. The block sti!ness matrix [Kb] is
given in the rotating coordinate system by equation (23). The block damping matrix [Cb] is
similarly de"ned. Inclusion of the block damping is necessary because it dampens any
crankshaft free-body motion.

Let

M;c
T
N"M;c
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N, (30a, b)

where ;c
T
, ;b

T
are the total (subscript ¹) displacements of the crankshaft and block,

respectively, relative to a straight reference line at the mains (see Figures 6(a) and 6(b),
including elastic deformation.;c

o
,;b

o
are the crankshaft &&bent'' and engine block misboring,

respectively. They are known deviations or o!sets (subscript o) from the same reference line.
;c

r
, ;b

r
are the crankshaft and the block retained displacement vectors, respectively. They

represent the elastic deformation of the crankshaft and block from their undeformed
position.

All the above vectors include the crankshaft and block displacements at the left end,
middle position and right end of each main bearing. The reference line needed to de"ne the
vectors is arbitrarily taken as a straight line passing through the middles of the "rst (fan end)
and the last (#ywheel) bearings. The o!sets of the "rst and last bearings are arbitrarily set to
zero. The &&runout'' of the other bearings, or the amount they deviate from that straight line
in the rotating crankshaft coordinate system are then entered as o!sets. The engine block
misboring is speci"ed in a similar way but in a "xed coordinate system.

Based on the partitioning of equation (22a), equation (28) can be written as
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The bearing eccentricity is de"ned as the di!erence of the total displacements of the
crankshaft and block at the bearing locations,

MeN"M;c
T
N!M;b

T
N, (32)
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or due to equation (30),
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o
N#M;c

r
N!MeN. (33)

Also due to the action and reaction principle,

MFc
r
N"!MFbN. (34)

Combining equations (29), (33) and (34) yields
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(35)

Since the crankshaft &&bent'' M;c
o
N is a vector of constants in the rotating coordinate system,

its time derivative is always equal to zero. However, since the block misboring M;b
o
N is given

in the "xed coordinate system, it must be transformed to the rotating coordinate system
using equation (24). Due to that transformation, its time derivative is not zero unless the
block misboring has the same value in the vertical and horizontal directions at each
bulkhead location. Substitution of equation (35) into equation (31) gives
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where

MF*N"[Cb](Me5 N#M;Q b
o
N)#[Kb](MeN#M;b

o
N!M;c

o
N). (36b)

If the bearing hydrodynamics are neglected MeN"0. However, even in this case, the
crankshaft &&bent'' and block misboring produce equivalent forces according to equation
(36b)), which are applied on the crankshaft. All the quantities in equation (36) must be
expressed in the rotating coordinate system.

Equation (36) are integrated in time (or crankangle) to "nd the response of the reduced
system. Before this is done, a torsional boundary condition is applied at the #ywheel end of
the crankshaft to eliminate the rotational free-body motion. The Newmark method [31] is
used for the time integration. At each time step, equation (33) is used to calculate the block
de#ection M;b

r
N and equation (29) is subsequently used to calculate the bearing reaction

forces and moments.
Equation (36) gives the dynamic displacements of the reduced crankshaft}engine block

system model. The displacements of the original crankshaft model can be obtained by two
backwards transformations (one for each level of substructuring) given by equation (13).
The displacements of the original model can be subsequently be processed to calculate the
crankshaft operating dynamic stresses.

6. SELECTED RESULTS AND DISCUSSION

In this section, the accuracy and e$ciency of the developed method is "rst demonstrated
by comparison with MSC/NASTRAN Version 67.0. MSC/NASTRAN was used with and
without dynamic reduction. When dynamic reduction was performed in MSC/NASTRAN,



Figure 7. Schematic of the three-bearing slender cylindrical beam.
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the component mode synthesis (CMS) was utilized with the transformation basis consisting
of eigenvectors calculated with the Lanczos algorithm [26]. Two examples are used;
a slender cylindrical beam (section 6.1) and a four-cylinder engine crankshaft (section 6.2).
Both free and forced vibration results of the slender beam are presented. Free vibration
analysis of the engine crankshaft further illustrates the accuracy and e$ciency of the present
method. All computer simulations were performed on a CRAY M98 computer. The
accuracy of the present method in calculating the dynamic response of engine crankshafts is
further illustrated through comparisons with experimental results from the torsional
vibrations of an in-line "ve-cylinder engine (section 6.3) and the bending vibrations of the
crankshaft}#ywheel assembly of a V6 engine (section 6.4).

6.1. SLENDER CYLINDRICAL BEAM

A schematic of the cylindrical beam is shown in Figure 7. The beam is supported by three
equally spaced bearings and is loaded in the middle of the "rst two bearings by
a concentrated force. It is 480 mm long and has a diameter of 8 mm. Each bearing is
represented by a concentrated sti!ness k"40 000N/mm. The beam was discretized into
4480 solid "nite elements using 4777 nodes. Although this discretization is very "ne for
calculating the dynamic response of the beam, it was chosen in order to minimize the
discretization errors in the results. Furthermore, since the number of nodes between two
bearings is representative of that used in modelling an engine crankshaft bay (structure
between two adjacent bearings), it is expected that the computational e!ort will be
comparable to that of an actual engine crankshaft.

The "rst 15 non-zero natural frequencies of the free}free (unsupported) beam are
presented in Table 1. The present analysis and the MSC/NASTRAN superelement analysis
(Sol. 103) were used to calculate the natural frequencies of the beam. The &&exact'' natural
frequencies are also presented in the table for comparison reasons. They were calculated
using MSC/NASTRAN on the whole beam model (no superelements). Due to the "ne
discretization, the calculated natural frequencies are expected to be accurate. For this
reason, they are marked &&exact''. Since the beam is symmetric, the natural frequencies
appear in pairs. In Table 1, however, only the distinct natural frequencies are presented.
Two levels of superelement analysis were used in MSC/NASTRAN, similar to the two levels
of dynamic reduction used in the present method. Nine and 20 basis vectors were used.
A basis vector is a Ritz vector or an eigenvector for the present analysis and
MSC/NASTRAN analysis respectively. Only the accurately calculated natural frequencies



TABLE 1

Non-zero natural frequencies of the free}free cylindrical beam in Hz

9 basis vectors 20 basis vectors

MSC/ Present MSC/ Present
No. &&Exact'' NASTRAN analysis NASTRAN analysis

1 126)8 126)8 126)8 126)8 126)8
2 349)4 349)5 349)4 349)4 349)4
3 684)0 687)0 684)2 684)2 684)0
4 1128)7 1129)3 1128)8 1128)7 1128)7
5 1682)2 1727)4 1685)8 1684)2 1682)5
6 2343)2 2344)6 2343)6 2343)6
7 3035)4 3089)7 3111)0 3039)9
8 3109)9 3207)4 3127)6 3111)4
9 3980)5 3991)3 3987)2 3982)5

10 4868)9 4954)5 4870)3
11 4952)7 4963)7 4958)1
12 6024)3 6030)1
13 6070)8 6117)5
14 7192)7 7211)5
15 8455)4 8497)7
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are presented in Table 1. If the error in calculating a particular natural frequency exceeded
3 percent, the corresponding entry in Table 1 was left blank. As shown in Table 1, the
present analysis calculated accurately a larger number of natural frequencies both with nine
and 20 basis vectors. Furthermore, the present analysis with nine basis vectors calculated 11
natural frequencies accurately versus nine of MSC/NASTRAN with 20 basis vectors. This is
the "rst indication that superior accuracy can be achieved with the present analysis even
with a much smaller number of basis vectors. This translates to reduced computational
e!ort as compared to an equivalent MSC/NASTRAN superelement analysis.

Figure 8 presents a CPU time comparison between the present analysis and MSC/
NASTRAN for the free}free beam. Four separate cases are considered; an
MSC/NASTRAN Solution 103 analysis of the whole model without superelements
(NASTRAN; Whole Model), an MSC/NASTRAN Solution 103 superelement analysis
(NASTRAN; Superelements), a present analysis using Ritz vectors (PRESENT; Ritz
vectors) and a present analysis using eigenvectors (PRESENT; Eigenvectors). In the "rst
case, a modal reduction of the whole beam was performed, while in the second case
a two-level superelement reduction was performed. In the last case, instead of using the Ritz
transformation in the present analysis, the conventional modal transformation was used
similar to MSC/NASTRAN superelement analysis. This will allow a more fair comparison
of the Ritz vector approach with the conventional eigenvector approach through the same
analysis procedure. Again nine and 20 basis vectors were used. As shown in Figure 8, the
MSC/NASTRAN superelement analysis is always the most expensive while the present
analysis with the Ritz vectors is always the least expensive. The MSC/NASTRAN
superelement analysis is almost twice as expensive as the present Ritz analysis. The
MSC/NASTRAN modal analysis of the whole model is 51 and 32 per cent more expensive
than the present Ritz analysis for nine and 20 basis vectors respectively. The present
eigenvector analysis is 25 and 12 per cent more expensive than the present Ritz analysis for
nine and 20 basis vectors respectively. The present Ritz analysis with 20 basis vectors is



Figure 8. Comparison of CPU time in calculating the natural frequencies of the free}free cylindrical beam.
(a) NASTRAN, whole model; (b) NASTRAN, superelements; (c) PRESENT, Ritz vectors; (d) PRESENT, eigenvec-
tors.

TABLE 2

Non-zero natural frequencies of the supported cylindrical beam in Hz

9 basis vectors 20 basis vectors

MSC/ Present MSC/ Present
No. &&Exact'' NASTRAN analysis NASTRAN analysis

1 261)9 261)9 261)9 261)9 261)9
2 406)4 406)4 406)4 406)4 406)4
3 1037)1 1037)6 1037)4 1037)1 1037)1
4 1289)8 1292)3 1290)1 1289)9 1289)8
5 2295)8 2298)5 2296)2 2295)9
6 2605)3 2609)5 2608)0 2605)5
7 3035)3 3090)1 3049)1 3039)9
8 3980)3 3988)1 3982)3
9 4241)1 4254)2 4243)4

10 4868)9 4870)3
11 5649)8 5693)0 5677)7
12 5705)1 5735)0
13 6070)8 6117)3
14 6558)0 6576)8
15 8512)3 8541)2
16 8865)2 8897)4
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almost as expensive as the present eigenvector analysis with nine basis vectors. In summary,
based on Table 1 and Figure 8, the present Ritz analysis is the most accurate and least
expensive method for the free beam example.

The superior accuracy of the present Ritz analysis is further demonstrated in Table 2 and
Figures 10 and 11 for the supported slender cylindrical beam. Table 2 presents the "rst 16
non-zero natural frequencies. The arrangement of results is similar to that of Table 1. Again
the present Ritz analysis is more accurate than MSC/NASTRAN superelement analysis in
the sense that it calculates accurately a larger number of natural frequencies. The CPU time
comparison is exactly the same with the free}free beam and therefore not presented here.



Figure 9. Vertical loading of the cylindrical beam.

Figure 10. Reaction of bearing d2 of the cylindrical beam calculated by the present method: **, 20 Ritz
vectors; 2, nine Ritz vectors; - - - - -, "ve Ritz vectors.
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Figures 10 and 11 illustrate the accuracy of the present analysis for a forced vibration case
of the supported cylindrical beam. The beam is loaded in the middle of the "rst bay by
a vertical force F (see Figure 7). A step force F of 1 kN magnitude and duration of 35
non-dimensional time units, as shown in Figure 9, is used. Figure 10 shows the bearing d2
reaction force as calculated by the present method with "ve, nine and 20 Ritz vectors.
Although not shown in the "gure, the bearing reaction is almost exact throughout the non-
dimensional time range, when 20 Ritz vectors are used. It is also exact with only nine Ritz



Figure 11. Reaction of bearing d2 of the cylindrical beam calculated by MSC/NASTRAN superelement
analysis: **, &&exact'', 22, 15 eigenvectors; ----- nine eigenvectors.
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vectors. However, "ve Ritz vectors are not enough to give the same good accuracy. In
Figure 11, the bearing d2 reaction force has been calculated using MSC/NASTRAN
superelement analysis with nine and 15 eigenvectors. Although 15 eigenvectors give almost
exact results, nine eigenvectors do not provide the same accuracy. Recall that the nine Ritz
vectors gave exact results (Figure 10). Therefore, if the same number of Ritz vectors is used
instead of eigenvectors, superior accuracy is achieved.

6.2. ENGINE CRANKSHAFT

A free vibration analysis was also performed on a four-cylinder engine crankshaft in
order to demonstrate the superiority of the Ritz vector approach in dynamic analysis of
actual engine crankshafts. The "nite-element mesh is shown in Figure 12. The pulley and the
#ywheel are also included in the model. The mesh consists of 4498 solid elements and 6504
grids with a total of 19 512 d.o.f.s.

Table 3 presents the "rst 17 non-zero natural frequencies of the crankshaft as calculated
by the present analysis and MSC/NASTRAN superelement analysis with four and seven
basis vectors. The &&exact'' natural frequencies are also presented for comparison. The table
is arranged in the same way with Tables 1 and 2. It is shown that the present analysis
calculates accurately a larger number of natural frequencies than MSC/NASTRAN does
both with four and seven basis vectors. Furthermore, the present analysis with four basis
vectors calculates accurately more natural frequencies than MSC/NASTRAN does with
seven basis vectors.

A CPU time comparison between the present analysis and MSC/NASTRAN
superelement analysis for an in-line, four-cylinder engine crankshaft is shown in Figure 13.
Three di!erent cases are presented; the present analysis with Ritz vectors and eigenvectors



Figure 12. Finite-element mesh for a four-cylinder engine crankshaft.

TABLE 3

Non-zero natural frequencies of the free}free engine crankshaft in Hz

4 basis vectors 7 basis vectors

MSC/ Present MSC/ Present
No. &&Exact'' NASTRAN analysis NASTRAN analysis

1 163)8 163)9 163)7 163)9 163)9
2 176)1 176)1 176)1 176)1 176)1
3 236)1 236)6 237)0 236)6 236)5
4 282)1 283)2 283)2 283)1 283)1
5 386)1 388)0 387)3 388)0 387)9
6 396)7 397)8 396)0 396)9 396)9
7 397)6 404)1 401)1 404)1 404)1
8 421)3 425)3 425)9 425)0
9 502)1 502)7 509)7 503)4

10 619)9 593)5 625)2
11 668)6 665)9 673)7
12 793)2 785)3 802)4
13 896)1 873)2
14 1067)6 1081)1
15 1070)3 1086)3
16 1073)4 1100)5
17 1097)3
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and an MSC/NASTRAN two-level superelement analysis. In all three cases, four, seven and
25 basis vectors are used. The present analysis with Ritz vectors requires the least CPU time
while the MSC/NASTRAN analysis requires the most. This is in accordance with the CPU
time comparisons for the cylindrical beam (see Figure 8). MSC/NASTRAN needs 76, 69
and 24 per cent more CPU time than the present Ritz analysis for four, seven and 25 basis
vectors respectively. Although the CPU time for the present eigenvector analysis is less than
that of MSC/NASTRAN, it is however, higher than the CPU time for the present Ritz
analysis by 46, 43 and 10 percent for four, seven and 25 basis vectors respectively.
MSC/NASTRAN is more expensive than the present eigenvector analysis due to certain
overhead it has as a general purpose program. However, as observed from numerical
experimentations not presented in this work, the results of the present eigenvector analysis



Figure 13. Comparison of CPU time in calculating the natural frequencies of the free}free engine crankshaft.
(a) PRESENT, Ritz vectors; (b) PRESENT, eigenvectors; (c) NASTRAN, superelements.

CRANKSHAFT DYNAMICS 517
are identical with MSC/NASTRAN when the number of reduction levels and the number of
eigenvectors used for each reduction are the same for the two analyses. It should be pointed
out (see Figure 13) that the present Ritz analysis with 25 basis vectors requires less CPU
time than MSC/NASTRAN does with four basis vectors. This is one more indication of the
superior e$ciency of the present Ritz analysis.

6.3. DYNAMIC ANALYSIS OF AN IN-LINE FIVE-CYLINDER ENGINE

In order to experimentally validate the accuracy of the proposed methodology, the
dynamic analysis of a "ve-cylinder in-line (L5) engine crankshaft was performed using the
"nite-element based analytical tool CRANKSYM which implements the methodology
presented in this paper. The response of the L5 crankshaft under wide-open-throttle (WOT)
operating conditions was simulated and correlated with measurements.

Figures 14 and 15 show the measured and computed angular vibrations of the L5
crankshaft, respectively, in &&waterfall'' format. The torsional vibration amplitude in degrees
is plotted for di!erent engine orders and engine speeds. Note that the measured and
simulated vibration amplitudes are peak to peak and single amplitude (half to peak to peak)
respectively. There is a very good correlation between the simulated vibrations with
CRANKSYM and the measured vibrations at all engine speeds except around 6200 r.p.m.
at 2)5 engine order where CRANKSYM's prediction is about 20% higher than the
measurement. The di!erence is mainly due to two reasons. First, the inherent non-linearity
of the tuned torsional vibration absorber's elastomer and second the coupling between the
absorber's inertia ring and the accessory drive components.

The behavior of the non-linear tuned absorber is such that higher vibration amplitudes
would decrease the sti!ness and increase the damping of the elastomer. This change in the
elastomer material properties with deformation results in a decrease of the crankshaft
resonance frequency and an increase of the crankshaft damping. The conducted simulations
did not consider the non-linear e!ects of the tuned absorber elastomer and therefore, such
small di!erences between simulated and measured vibrations were expected.

The accessory drive components were found to interact with the tuned absorber's inertia
ring since the latter is used as a pulley. This interaction seems to manifest itself as a decrease
in the inertia of the ring, which e!ectively increases the tuning frequency of the absorber.
This inertia reduction e!ect was calculated and included in the simulations by decreasing



Figure 14. Measured engine crankshaft torsional vibration for an in-line, "ve-cylinder engine.

Figure 15. Simulated engine crankshaft torsional vibration for an in-line, "ve-cylinder engine.
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the ring's inertia and increasing the tuning frequency of the absorber appropriately. The
e!ect of the accessory drive components on the e!ective inertia of the absorber's ring can be
signi"cant and depends on which accessory components are present and whether A/C is
engaged.

In order to eliminate the inherent non-linearity of the tuned torsional vibration
absorber's elastomer, the absorber's ring was pinned to the hub (locked ring), deactivating,
therefore, the e!ect of the elastomer's damping. Furthermore, the coupling between the
absorber's inertia ring with the accessory drive components, was eliminated by
disconnecting the accessory drives from the crank pulley in a control dynamometer test.
Figures 16 and 17 show the measured and computed angular vibrations of the L5
crankshaft respectively in this case. The agreement now is excellent. Note also that the
peaks of the resonances are more pronounced since the absorber's damping is eliminated.

6.4. CRANKSHAFT}FLYWHEEL BENDING VIBRATIONS OF A V6 ENGINE

High vibration levels at the rear bearing cap and oil pump were observed in
dynamometer tests for a particular design of a V6 engine at a rated speed of 4800 r.p.m. The



Figure 16. Measured engine crankshaft torsional vibration for an in-line, "ve-cylinder engine with locked
absorber's ring.

Figure 17. Simulated engine crankshaft torsional vibration for an in-line, "ve-cylinder engine with locked
absorber's ring.
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axial (along the crankshaft axis) vibratory displacement of a point on the #ywheel rim was
measured relative to crankshaft "xed coordinates. The measured vibratory results are
presented in &&waterfall'' format (Figure 18). It was evident from the experimental results that
the crankshaft}#ywheel assembly had a bending resonance at 240 Hz which was excited at
around 4800 r.p.m. by third order forces on the crankshaft. CRANKSYM was used to
analytically verify the above "nding and propose possible solutions. The "nite-element
mesh of the crankshaft}#ywheel assembly consisted of approximately 3650 grids and 2330
solid elements. The structure was supported by linear springs and dampers at the main
bearing locations representing the engine block sti!ness and damping. Due to lack of actual
data, a 300 300 N/mm block sti!ness was assumed for each bulkhead both in the vertical
and lateral directions. A crankshaft structural damping of less than 1 per cent of critical was
used. The block structural damping was taken equal to 3 per cent of critical throughout the
whole frequency range. Lubrication analysis of the main bearings was not included.

The following three designs were examined with CRANKSYM. First, the baseline design
which was an externally balanced crankshaft with a balancing weight on the #ywheel
(denoted BASELINE). Second, an internally balanced crankshaft with the relatively heavy



Figure 18. Flywheel axial vibratory displacement relative to crankshaft-"xed coordinates.

TABLE 4

Calculated natural frequencies for the crankshaft}yywheel assembly

f
1

(Hz) f
2

(Hz) f
3

(Hz) f
4

(Hz)

BASELINE 219 252 339 414
HEAVYPIS 211 247 338 413
LIGHTMAS 287 322 372 427
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baseline pistons (denoted HEAVYPIS) and third, an internally balanced crankshaft with
the &&heavy'' baseline pistons but with 50 per cent #ywheel mass and therefore, 50 per cent
inertia (denoted LIGHTMAS). The dynamic response of the three designs was calculated
for the range of 4000}5000 r.p.m. with a 200 r.p.m. increment. At each r.p.m. a separate
program was used to calculate the crank pin load for all cylinders at each crankangle. This
load included both the gas pressure load and the inertia load for each cylinder, with the
appropriate phasing. The axial displacement of the #ywheel was calculated in a rotating
with the crankshaft coordinate system, since in this case the #ywheel axial motion reveals
the actual frequency content of the crankshaft}#ywheel vibration. The #ywheel vibration is
shifted by one order if the #ywheel displacement is calculated in a "xed coordinate system.
The axial #ywheel motion was also measured in a rotating coordinate system.

Table 4 presents the "rst four natural frequencies of the crankshaft}#ywheel assembly for
the three designs as calculated by CRANKSYM. The lowest natural frequency of the
baseline design was found to be 219 Hz which is lower than the experimentally found
frequency of 240 Hz (see Figure 18). The discrepancy is most likely due to the fact that the
assumed block sti!ness of 300 000 N/mm may not be accurate enough. From results not
presented in this paper, it was found that the lowest natural frequency can be increased by
15 Hz if the rear bulkhead sti!ness is increased by an order of three.

Figure 19 compares the #ywheel axial displacement throughout the engine cycle at
4800 r.p.m. for the BASELINE and HEAVYPIS designs. Both curves are similar in shape.
However, the mean axial displacement of HEAVYPIS is much closer to the equilibrium
value of zero. This indicates that the #ywheel bending displacement is greatly reduced
if the crankshaft is internally balanced. Note that small #ywheel bending
displacement yields small axial displacement. From the design standpoint, small mean
#ywheel axial displacement is desirable since it will reduce the dynamic load on the rear
main bearing.



Figure 19. Comparison of #ywheel axial displacement at 4800 r.p.m.: **, baseline, extenal balancing (avrg
value"!0)2411); - - - - -, heavypis; internal balancing (avrg value"0)0415).

TABLE 5

Fourier analysis of yywheel axial displacement (in millimeters) for the
BASELINE case; external balance

Order number k

r.p.m 0 2 2)5 3 3)5 4

4000 0)170 0)035 0)074 0)199 0)106 0)049
4200 0)186 0)039 0)087 0)411 0)069 0)035
4400 0)204 0)043 0)104 0)607 0)065 0)027
4600 0)222 0)049 0)131 0)418 0)046 0)021
4800 0)240 0)055 0)177 0)292 0)032 0)018
5000 0)259 0)063 0)266 0)232 0)023 0)015
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The baseline axial displacement of Figure 19 has six peaks and six valleys through the
engine cycle. This is indicative of a strong sixth-harmonic component or equivalently,
a strong third order component. The Fourier analysis results of the BASELINE #ywheel
axial displacement are shown in Table 5. The magnitude of the displacement at each order
and r.p.m. is given in millimeters. At each r.p.m., there is a large mean component (zeroth
order) and a large third order component. Both "ndings are consistent with the
experimental results of Figure 18. The third order resonance occurs at 4400 r.p.m. and has
a maximum axial displacement of 0)607 mm. Since the excitation frequency in Hz is
f"r.p.m. * engine/60, f equals to 220 Hz at 4400 r.p.m. This is a resonance condition with
the "rst natural frequency of 219 Hz (see Table 4) of the BASELINE design. It is also shown
in Table 5 that the 2)5 order component of the axial displacement has a sizable magnitude of
0)266 mm at 5000 r.p.m. Since the corresponding excitation frequency f"5000 * 2)5/60"
208)5 Hz is close to the 219 Hz natural frequency, a 2)5 order resonance at a little higher
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than 5000 r.p.m. will also occur. However, the magnitude of that resonance will be much
lower than the third order magnitude of 0)607 mm.

The Fourier analysis of the HEAVYPIS #ywheel axial displacement is shown in Table 6.
Unlike the previous case, the zero order component is small. A third order resonance
appears now at 4200 r.p.m. since the "rst natural frequency has dropped to 211 Hz and the
excitation frequency is f"4200 * 3/60"210 Hz. The magnitude of this resonance is
0)592 mm which is close to the magnitude of the third order BASELINE resonance. Again,
a sizable 2)5 order resonance appears at a little higher than 5000 r.p.m.

Figure 20 compares the vertical load for main bearing d4 (rear main) at 4800 r.p.m. for
the BASELINE and HEAVYPIS designs. The maximum load reduces from 31)6
(BASELINE) to 21)7 kN (HEAVYPIS); a 31)3 per cent reduction. The comparison between
BASELINE and HEAVYPIS indicates that balancing the crankshaft internally, greatly
reduces the mean bending vibration amplitude (zeroth order) of the #ywheel (see Figure 19),
Figure 20. Comparison of main d4 vertical load at 4800 r.p.m.: **, baseline, extenal balancing (minimum
value"!31)6519); - - - - -, heavypis, internal balancing (minimum value"!21)1721).

TABLE 6

Fourier analysis of yywheel axial displacement (in millimeters) for the
HEAVYPIS case; internal balance

Order number k

r.p.m. 0 2 2)5 3 3)5 4

4000 0)025 0)037 0)085 0)312 0)073 0)041
4200 0)029 0)042 0)103 0)592 0)063 0)031
4400 0)032 0)047 0)131 0)417 0)053 0)024
4600 0)036 0)054 0)179 0)275 0)038 0)020
4800 0)041 0)062 0)279 0)217 0)028 0)017
5000 0)046 0)073 0)464 0)182 0)021 0)015



TABLE 7

Fourier analysis of yywheel axial displacement (in millimeters) for the
LIGHTMAS case; internal balance, 50 per cent yy wheel inertia

Order number k

r.pm. 0 2)5 3 3)5 4 4)5

4000 0)017 0)047 0)068 0)056 0)133 0)024
4200 0)019 0)050 0)085 0)067 0)234 0)023
4400 0)020 0)054 0)107 0)086 0)245 0)034
4600 0)021 0)058 0)140 0)121 0)151 0)029
4800 0)021 0)062 0)188 0)192 0)130 0)029
5000 0)022 0)067 0)263 0)201 0)093 0)029
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resulting in a large reduction of the rear main load (see Figure 20). However, internal
balancing does not eliminate, or even reduce, the third order resonance (see Tables 5 and 6).

In order to push the resonance to a higher order and therefore, reduce the amplitude of
vibration, a reduced #ywheel mass design (LIGHTMAS) was studied. The #ywheel mass
was arti"cially reduced to 50 per cent of the original mass, thus reducing the #ywheel inertia
by the same amount. The crankshaft was internally balanced with the baseline &&heavy''
pistons. The LIGHTMAS and HEAVYPIS cases were compared in order to demonstrate
potential improvements to the #ywheel dynamics due to reduced #ywheel inertia.
Table 4 indicates a considerable increase in the "rst natural frequency from 211 to 287 Hz.
Table 7 gives the Fourier analysis of the #ywheel axial displacement. Again, the zero order
displacement is small since the crankshaft is internally balanced. There is a fourth order
resonance at 4400 r.p.m. with a 0)245 mm magnitude. This magnitude is less than half the
third order resonant magnitude of 0)592 mm for the HEAVYPIS case. Therefore, moving
the resonant order higher reduces the magnitude of vibration, as expected. As shown in
Table 7, there is also a 3)5 order resonance around 5000 r.p.m. ( f"5000 * 3)5/60"
291)7 Hz). Also, the third order magnitude increases with increasing r.p.m., indicating that
a third order resonance will appear at a little higher than 5000 r.p.m. For both those
resonances, the vibration magnitude is less than half the third order resonant magnitude of
0)592 mm for the HEAVYPIS case.

In this example, the proposed analytical methodology for calculating the dynamic
behavior of engine crankshafts clearly predicted the experimentally observed vibratory
behavior of the crankshaft}#ywheel assembly (see Figure 18) and correctly indicated the
dominant third order resonance around 4800 r.p.m. and the high DC (mean) value of the
#ywheel axial vibratory displacement. It also showed analytically that internal balancing of
the crankshaft with simultaneous reduction of the #ywheel mass could eliminate the
problem of high vibration levels at the rear bearing cap. This "nding was subsequently
validated experimentally.

7. SUMMARY AND CONCLUSIONS

This paper describes a structural analysis using dynamic substructuring with Ritz vectors
for predicting the dynamic response of an engine crankshaft, based on the "nite-element
method. A two-level dynamic substructuring is used. Initially, a given three-dimensional



524 Z. P. MOURELATOS
"nite-element model of the crankshaft is divided into substructures. Each substructure is
dynamically reduced using a set of load-dependent Ritz vectors. Subsequently, all
substructures are assembled and a second dynamic reduction is performed using a new set
of Ritz vectors. A subspace algorithm is used to generate the load-dependent Ritz vectors.
The algorithm is implemented in MSC/NASTRAN using developed DMAP ALTERS in
order to utilize the excellent data management capabilities of MSC/NASTRAN. After the
two dynamic reductions, the reduced model is integrated in time using Newmark's method.

In the model, the rotating crankshaft is properly coupled with the non-rotating,
compliant engine block. The block compliance is represented by a distributed linear elastic
foundation at each main bearing location. The sti!ness of the elastic foundation can be
di!erent in the vertical and horizontal planes, thereby considering the anisotropy of the
engine block compliance with respect to the crankshaft rotation. The analysis accounts for
the kinematic non-linearity resulting from the crankangle-dependent circumferential
contact location between each journal and the corresponding bore of the engine block.
Crankshaft &&bent'' and block &&misboring'' e!ects, due to manufacturing imperfections, are
also considered in the analysis.

The accuracy and e$ciency of the developed method was demonstrated by comparison
with the equivalent superelement analysis in MSC/NASTRAN. Free and forced vibrations
of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft were
examined. In all cases, the present method gave superior accuracy with less computational
e!ort compared with MSC/NASTRAN. Furthermore, the accuracy of the present method
is illustrated through comparisons with experimental results for the torsional vibrations of
an in-line "ve-cylinder engine and the bending vibrations of the crankshaft-#ywheel
assembly of a V6 engine.

The present analysis can be used to predict the crankshaft dynamic response, main
bearing loads and dynamic stresses throughout the engine cycle. The e!ect of a wide variety
of design variables can be studied. Such variables include, among others, counterweights,
reciprocating and rotating masses, crankshaft geometry, crankshaft &&bent'' and engine
block &&misboring'', lower block design (bulkhead and bearing cap sti!ness, mounting
positions), #ywheel design (dimensions, material) and belt loads. The presented structural
analysis can be also coupled with the main bearing hydrodynamics in a crankshaft-main
bearing-engine block system model. Such a model can predict the main bearing loads very
accurately resulting in better assessment of (1) main bearing performance and (2) engine
block radiated noise due to main bearing load excitation.
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APPENDIX A. A SUBSPACE ALGORITHM TO CALCULATE LOAD-DEPENDENT
RITZ VECTORS

1. Given input matrices
[M]: mass matrix (n]n)
[K]: sti!ness matrix (n]n)
[F]: block of k independent spatial load vectors (n]k)

2. Triangularize sti+ness matrix

[K]"[¸]T[D][¸]

3. Solve for initial static block [X
1
]

(a) Solve for block [x*]"[x*
1
, x*

2
,2,x*

k
],

[K][x*]"[F].

(b) Get block [XM ]"[x6
1
, x6

2
,2, x6

k
] by M-normalization of vectors Mx*

j
N,

j"1, 2,2, k : Mx*
j
NT[M]Mx*

j
N"a, Mx6

j
N"a~1@2Mx*

j
N.

(c) Get block [XK ]"[x(
1
, x(

2
,2,x(

k
] by M-orthogonalization of vectors in [XM ]. Repeat

for j"2, 3,2, k:

[C
j
]"[x6

1
, x6

2
,2,x6

j~1
]T[M]Mx6

j
N, Mx(

j
N"Mx6

j
N![x6

1
, x6

2
,2,x6

j~1
][C

j
].

(d) M-normalize block [XK ]: [XK ]T[M][XK ]"[K], [X
1
]"[XK ][K]~1@2.

4. Solve for subsequent blocks [X
i
], i"2, 3,2, p

(a) Solve for block [X*
i
]: [K][X*

i
]"[M][X

i~1
].

(b) Get block [XK
i
] by M-orthogonalization of [X*

i
] against all previous blocks:

[C]"[[X
1
],2, [X

i~1
]]T[M][X*

i
],

[XK
i
]"[X*

i
]![[X

1
],2, [X

i~1
]][C].

(c) Get block [XM
i
] by M-orthogonalization of [XK

i
] against all previous blocks according

to step 4b.
(d) Get block [X

i
] by M-orthogonalization of block [XM

i
] according to steps 3c and d.

APPENDIX B: NOMENCLATURE

[C] damping matrix
f (s) space function
MFN load vector
g(t) time function
[I] identity matrix
k translational engine block sti!ness at main bearing locations
[K] sti!ness matrix
[M] mass matrix
s space
t time
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[¹] static transformation matrix
MuN generalized displacement vector
M;N displacement vector
M;

i
N internal displacement vector

M;
r
N retained displacement vector

M;c
o
N vector representing the crankshaft `benta

M;b
o
N vector representing the engine block `misboringa

(x, y, z) right-handed rotating coordinate system
(X,>,Z) right-handed "xed coordinate system
[X] transformation basis matrix

Greek symbols
a, b constants to describe Rayleigh damping
MeN bearing eccentricity vector
f damping ratio
h crankangle
[/] total transformation matrix
u rotational speed or natural frequency

Subscripts
i internal quantities (displacement, sti!ness, mass, etc.)
o o!set
r retained quantities (displacement, sti!ness, mass, etc.)
¹ total displacement
x, y vertical and horizontal directions, respectively, in rotating coordinate system
X, > vertical and horizontal directions, respectively, in "xed coordinate system
1, 2 levels of substructuring

Superscripts
b engine block
c crankshaft
T transpose
l substructure number
1, 2, 3,2 substructure number

Miscellaneous
} reduced matrix or vector
) single time di!erentiation
) ) double time di!erentiation
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