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E!ectiveness of the global sound "eld control inside a slightly damped rectangular
enclosure by using the potential energy, the squared pressure and the energy density as the
cost function is investigated numerically in the present study. A detailed comparison
between results obtained using pressure-squared sensing and energy density sensing is
presented and the distributions of the zones of quiet are discussed. Three-dimensional
visualization of the sound "elds con"rms that signi"cant localized sound attenuation can be
achieved in speci"c areas even an overall ampli"cation of total potential energy in the
enclosure results. The present results also show the occurrence of the detrimental e!ects and
spillovers under the pressure-squared sensing, while they can be removed by using the
energy density control. The energy density control results in more uniform sound "elds, but
is not e!ective if the error sensor is located between the primary and secondary sound
sources. The present "nding on producing large quiet zones using a simple system has
signi"cant implication for building noise control.

( 2000 Academic Press
1. INTRODUCTION

Building services equipment is a major source of noise inside buildings. While the
structure-borne sound may be reduced by an appropriate vibration isolation design, the
low-frequency noise remains a problem, especially to the people staying in adjacent rooms
or working in a control room inside/next to the plantroom. The technique of active noise
control (ANC) [1] is expected to be a promising solution to this problem.

Two main categories of ANC strategies have been proposed for use in an enclosed space.
They are the global and the local controls. The former concerns the attenuation of sound
pressure at all points inside an enclosure [2, 3] whilst the latter is aimed at creating a quiet
zone inside the enclosure [4, 5]. Nelson et al. [3] developed a theory for global control in an
enclosure by minimizing the total time-averaged acoustic potential energy. This total
acoustic potential energy, PE, is de"ned as

PE"

1

4oc2 P
V

Dp D2 d<, (1)

where o is the air density, c the speed of sound, < the volume of the enclosure and p the
sound pressure. Though PE simply represents the total acoustical energy inside an
enclosure and its minimization would directly imply a lowering of the average sound
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pressure level within the whole enclosed space, the implementation of this control in reality
is di$cult as a large number of sound pressure sensors are required.

The traditional squared-pressure control algorithm for ANC cannot produce a global
sound reduction due to the limitation of local information, but it does produce a quiet zone
in a con"ned small area inside an enclosed space. Elliott et al. [6] observed that a quiet zone
can be formed within a diameter of about one-tenth of the acoustic wavelength around the
error sensor in a fully di!used near sound "eld, within which at least 10 dB attenuation in
sound pressure level can be achieved. Joseph et al. [4] found that this 10 dB quiet zone can
be enlarged by increasing the separation between the secondary control source and error
microphone. They also found that there is negligible increase in the sound pressure level far
from this 10 dB quiet zone if the point of cancellation is very close to the secondary source.
However, it may not be the case for a non-di!used sound "eld.

Recently, the energy density control algorithm was developed in the hope that a more
e!ective global sound "eld control can be achieved [7}9]. The energy density, ED, is a local
variable that sums up the acoustic potential energy density and kinetic energy density at
a selected point X:

ED"

Dp (X) D2
2oc2

#

oDu (X) D2
2

, (2)

where u (X) is the air particle velocity due to acoustics. ED provides a more global
information to the controller. In the one-dimensional application, the performance of ANC
under this control algorithm is less dependent on the error sensor position [8]. Qiu et al. [9]
have shown that this ED control is also e!ective in the middle free "eld. So far, however, the
assessment of global control is only done in terms of the total potential energy PE
reduction. There may then be a problem that the minimization of the total acoustic
potential energy is done at the expense of sound pressure ampli"cations at some locations.

Apart from the control algorithm, another important issue in the design of a physical
ANC system is to lay the error sensors and the secondary control sources in the best
positions according to the primary noise characteristics. Some strategies for the selection of
optimal placement of error sensors and secondary sources have been proposed in recent
years as reviewed, for instance, by Hansen and Synder [10]. Natural algorithms [11] such
as the genetic algorithms [12] and the simulated annealing algorithms [13] are useful for
locating the secondary control sources, while the multiple regression method is proposed by
Synder and Hansen [14, 15] for optimizing the position of error sensor. Nelson and Elliott
[16] and Maa [17] proposed to locate the error sensor at a corner for global control of
low-frequency sound using the squared-pressure method. However, the actual sound "eld
and the distribution of quiet zones under this corner ANC are not well documented. The
performance of this system under the energy density sensing has not been explored.

Though a global reduction of sound is ideal, it is not that important in building noise
control in general as sound transmission or radiation may only relate to some particular
parts inside an enclosure. It is the sound "eld pattern that really matters. In the present
study, a detailed study on the sound "eld in a slightly damped rectangular enclosure under
ANC implemented by using di!erent cost functions, namely the potential energy, squared
pressure and energy density, inside an enclosed space is carried out. E!ects of error sensor
locations are also examined. It is hoped that the present results can provide a clearer picture
on the overall performance of the ANC inside enclosed space and give guidance for a more
e!ective use of ANC in buildings. Since the noisy building services equipment are installed
in the mechanical plantrooms, which are basically rectangular enclosures with limited
sound absorption especially at low frequencies, the present study is focussed on the
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application of ANC in a slightly damped rectangular enclosure. Practising engineers would
not favour complicated internal geometry as it reduces the #exibility of equipment
installation and space utilization, and may also make maintenance di$cult. In noise
control, it will result in higher modal density, making the prediction of sound "eld and the
implementation of ANC di$cult.

2. OPTIMIZATION OF SECONDARY SOURCE STRENGTHS

Sound "eld inside an enclosure can be found by the summation of in"nite sets of modal
components. The sound pressure at any point X(x, y, z) inside the enclosed space due to
steady primary and secondary sound sources in the ANC system can be determined by the
following modal equation as in Park and Sommerfeldt [8]:

p (X)"
=
+
n/0
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n
(X), (3)

where A
n

and B
n

are the modal weights for the primary and secondary sound "elds,
respectively, U

n
represents the nth eigenfunction of the acoustic modal pressure distribution

inside the enclosed space and Q
s
is the secondary source strength.

The optimal secondary source strength, Q
s
, depends on the locations of the error sensor,

primary source and secondary source (hereinafter denoted by X
e
, X

p
and X

s
respectively). It

is also related to the strength of primary sources and the choice of the cost function. In
the foregoing discussions, su$ces PE, SP and ED denote quantities associated with the
potential energy, squared-pressure and energy density control algorithms respectively. The
theoretical solutions of optimized secondary sound source strengths to minimize the cost
functions can be expressed respectively as [8]
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k is the acoustic wave number and * denotes the complex conjugate. The subscripts m and
n are the mode numbers. The sound pressure throughout the enclosed space can be found
by equation (3) with the optimized source strengths depicted in equations (4)}(6). Though
in"nite number of modes are contributing to the enclosed sound "eld, only a "nite number
of them are practically important in the calculation as far as engineering accuracy is
concerned. The choice of this number will be discussed in the next section. A formal
derivation for equation (4)}(6) can be found in Park and Sommerfeldt [8].
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3. NUMERICAL MODEL AND CONVERGENCE

The rectangular enclosure and the co-ordinate system adopted in the present study are
illustrated in Figure 1. We chose its dimensions ¸

x
(length), ¸

y
(width) and ¸

z
(height) in

such a way that ¸
x
:¸

y
:¸

z
"1 : e/n : 1/n, where e denotes the exponential constant, in order

to avoid the degenerate modes as in Joseph et al. [18]. The secondary sound source S
s
was

located at a corner throughout the numerical experiment. So represents the primary noise
source, which was located either at (0)5¸

x
, 0)5¸

y
, 0)5¸

z
) or (0)25¸

x
, 0)5¸

y
, 0)5¸

z
) in the

present investigation. This is a typical situation found in a plantroom where the noisy
machine (primary noise source) is usually located su$ciently far away from the walls or
near to the centre of the room in order to maintain a reasonable degree of accessibility for
future maintenance or modi"cation.

All frequencies in the foregoing discussions are normalized by the "rst cut-o! frequency,
f
c
, which corresponds to the (1, 0, 0) mode frequency. Joseph et al. [18] have found, using

a statistical approach, that ANC is e!ective for minimizing the total potential energy if the
average level of modal overlap is less than 0)3. A modal overlap of 0)3 corresponds to an
upper frequency limit of 2)8f

c
(&3f

c
) in the present study. The modal weights in equation (3)

were obtained by using the method of Nelson et al. [3] with a modal damping coe$cient of
0)01. All the simulations were computed by using MATLAB on a DEC workstation 600 a.u.

To calculate the sound "eld, equation (3) requires the summation of an in"nite number of
modes. However, as mentioned before, only a "nite number of modes are practically
important for this purpose. Therefore, a convergence test was done in the "rst place. In the
test, we chose a frequency of 3f

c
and S

p
was located at (0)5¸

x
, 0)5¸

y
, 0)5¸

z
). Though there is

an inherent convergence di$culty of equation (3) close to or at the sound source [19], it is
Figure 1. Rectangular enclosed space and co-ordinate system.



Figure 2. Convergence of modal summation at di!erent locations with a point source at (0)5¸
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not worthwhile to study the sound pressure at those points. Figure 2(a) shows the
convergence of the near"eld sound pressure level calculated by using equation (3) at 3f

c
at

a location 7)5% of the wavelength from S
p
. The maximum deviations from the result

obtained after summing up the e!ects of the "rst 1 035 974 modes are less than 0)5, 0)3 and
0)2 dB for summations over the "rst 2000, 9000 and 20 000 modes respectively.
Figures 2(b)}2(d) show the corresponding results at various locations within the enclosure.
Faster convergence can be found at increased distance away from the primary sound
source. The convergence of sound pressure level at one of the nodal points is shown in
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Figure 2(e). The truncation error is less than 0)4 dB if the contributions from the "rst 9000
modes were included.

Study has been extended to other points along the y and z directions as well as putting S
p

at the corner. Basically, similar or even better convergence than that shown in Figure 2 is
found except at the anti-nodes of the (1, 0, 0) mode and thus the associated results are not
presented. The number of modes in the calculation of the sound "eld was set to
be 9000.

4. TOTAL ACOUSTIC POTENTIAL ENERGY

As mentioned previously, the total acoustic potential energy is a common measure to
determine the global e!ectiveness of the control algorithms [3, 8]. For orthogonal modal
characteristic functions, the integral of potential energy (equation (1)) gives

PE"
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D2. (8)

Figure 3 illustrates the attenuation of PE up to 3f
c
when the error sensor was located near

the diagonal line between the two ceiling corners (0, 0, ¸
z
) and (¸

x
, ¸

y
, ¸

z
), while S

p
and S

s
were "xed at (0)5¸

x
, 0)5¸

y
, 0)5¸

z
) and (¸

x
, ¸

y
, ¸

z
) respectively. The calculations were done

at 0)02f
c
intervals. Also, the attenuation greater than $30 dB was truncated. Table 1 shows

the frequencies of the "rst eight eigenmodes.
In general, the potential energy control algorithm provides a relatively higher attenuation

of the total acoustic potential energy at very low frequencies ((0)8f
c
) and at around 2f

c
.

However, no attenuation is found between f
c
and 1)5f

c
. There are two reasons for this. The

"rst reason is that the centre primary source falls onto the nodal planes of the (1, 0, 0),
(0, 1, 0) and (1, 1, 0) modes having frequencies of f

c
, 1)16f

c
and 1)53f

c
, respectively, as

explained in Nelson and Elliott [16]. These frequencies are hereinafter referred to as the
uncontrollable eigenfrequencies. The second is due to the small Q

s
that resulted from the

vanishing A
n
s on the nodal planes at these frequencies (equations (4)}(6)). A sharp

attenuation of potential energy is also observed at frequencies higher than 3f
c
. However, the

magnitude of such attenuation becomes much lower. Thus, e!ective global reduction of
sound level through the potential energy control algorithm is limited to a frequency less
than the "rst cut-o! frequency if the total acoustic potential energy is concerned. It is
consistent with the conclusion of Nelson and Elliott [16] that the amplitudes of a speci"ed
number of modes can be independently and e!ectively controlled by the same number of
secondary sources.

Minimizing squared pressure at the error sensor location gives basically similar SPL
attenuation at around 2f

c
as in the potential energy control. However, detrimental e!ects at

frequencies between the room modes or near the frequency 2f
c
occur when the error sensor

is located near to the secondary source as shown in Figures 3(a) and 3(b) (detrimental e!ects
occur at 2)06f

c
in these "gures). Spillovers exist at some eigenfrequencies greater than f

c
.

The "rst detrimental e!ect occurs at 0)3f
c

when the error sensor is located at
(0)9¸

x
, 0)9¸

y
, 0)9¸

z
), which is a position near to the corner secondary source (Figure 3(a)).

The frequency at which the "rst detrimental e!ect occurs gradually shifts toward f
c
as the

error sensor is being moved away from the corner secondary source to the location above
the primary source as shown in Figures 3(b) and 3(c). For all cases investigated in the
present study, it is found that the closer the error sensor to the corner secondary source, the
smaller this frequency will be. The detrimental e!ect at low frequency becomes much
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less important when the error sensor is located further away from the secondary sound
source.

The above-mentioned detrimental e!ect results from the small secondary sound "eld near
to the error sensor, so that an abnormally large secondary source strength is required to
control the primary sound "eld, especially at low frequency. The enclosed sound "eld is not
uniform even though the frequency is very low. The required secondary source strength for

the squared-pressure control can be determined by equation (5). Denoting j"J!1, it can
be shown that the denominator of equation (5) is the normalized sound pressure at the error



TABLE 1

Normalized eigenfrequency of the enclosure

Modes Normalized natural frequency

(1, 0, 0) 1)00
(0, 1, 0) 1)16
(1, 1, 0) 1)53
(2, 0, 0) 2)00
(2, 1, 0) 2)31
(0, 2, 0) 2)31
(1, 2, 0) 2)52
(3, 0, 0) 3)00
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sensor location by that due to the secondary source alone:
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where P
s
(X

e
), m

n
, u, u

n
and U

n
(X

s
) are the sound pressure at error sensor location due to the

secondary source only, damping coe$cient, angular frequency of sound, natural frequency
of the enclosure and eigenfunctions of the acoustic modal pressure distribution (real)
respectively. When the secondary source and error sensor are close to a corner, the product
of the eigenfunctions U

n
(X

s
)U

n
(X

e
) in equation (9) is always positive for all n. Each element

of the real part of equation (9) is small and positive, and so is the resultant real part.
However, the imaginary part of equation (9) contains negative and positive elements for
u

n
(u and u

n
'u respectively. At the frequency of the occurrence of the detrimental e!ect,

the sum of these negative and positive imaginary elements is nearly zero and thus Q
s,SP

of
equation (5) is large as P

s
(X

e
) is, in general, "nite.

Figure 4(a) and 4(b) illustrate the sound "eld at the level of error sensor (z"0)9¸
z
) due to

the secondary source only at the frequency 0)3f
c
and 0)6f

c
respectively. The source strengths

in Figure 4 are</oc2. Small sound pressures are observed at the points of error sensors due
to the vanishing imaginary part of equation (9). A remote error sensor can thus eliminate the
detrimental e!ect due to the eigenfunction products U

n
(X

s
)U

n
(X

e
) that tend to avoid

a vanishing imaginary part.
It will be shown later in section 5 that at the frequency of occurrence of the detrimental

e!ect, sound pressures throughout the enclosed space, except at the error sensor location,
are largely ampli"ed, especially at frequencies below f

c
. Placing the error sensor behind the

primary centre source near to the opposite corner of the secondary corner source can
eliminate the detrimental e!ect below f

c
(Figures 3(d) and 3(e)), but the detrimental e!ects



Figure 4. Map of sound pressure level (dB) due solely to secondary corner source: (a) 0)3f
c
; error sensor at

(0)9¸
x
, 0)9¸

y
, 0)9¸

z
); (b) 0)6f

c
; error sensor at (0)7¸
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y
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). z"0)9¸

z
; q, error sensor location.
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and spillovers still exist at higher frequencies. The ampli"cations at f
c
, 1)15f

c
, 1)53f

c
and

2)52f
c

shown in Figure 3(c) are due to the spillovers of the (1, 0, 0), (0, 1, 0), (1, 1, 0) and
(1, 2, 0) modes respectively. In Figure 3(d), the ampli"cation at 2)31f

c
is due to the spillover

of the (0, 2, 0) mode, while all the others in Figure 3 are due to the detrimental e!ects.
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The energy density control algorithm results in much less signi"cant detrimental e!ect
and spillover than the squared-pressure algorithm, especially at frequencies below f

c
for all

the error sensor locations investigated (Figure 3). However, large spillover at the (1, 1, 0)
mode is observed for both the energy density and squared-pressure algorithms at an error
sensor position of (0)5¸

x
, 0)5¸

y
, 0)9¸

z
), suggesting that locations directly above S

p
are not

suitable for ANC. It is observed that the performance of the energy density algorithm
becomes similar to that of the squared-pressure one as the error sensor is located towards
the corner opposite to the secondary source (Figures 3(d) and 3(e)). When the error sensor is
located closer to S

s
, the secondary sound "eld tends to have no e!ect on the total potential

energy for frequencies less that f
c
. This is due to the non-uniform energy density "eld as

explained in the next paragraph.
De"ning the energy density of secondary source, ED

s
, and the correlative energy density

between the primary and secondary sources, ED
c
, at the error sensor, position X

e
as
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respectively, it can be observed from equation (6) that the optimized secondary source
strength under the energy density control depends on the ratio ED

c
/ED

s
.

Figure 5(a) shows the map of ED
s
at the level of the error sensor (z"0)9¸

z
) at 0)3f

c
. The

energy density is high and non-uniform around the secondary source. The same
phenomenon occurs when only the primary source is operating (not shown here). The
corresponding ED

c
between the two sources is also non-uniform and small (Figures 5(b)).

The small optimal secondary source strength so produced is due to the small ED
c
and/or the

large ED
s
at the location of error sensor (equation (6)). The performance of ANC in this

circumstance depends very critically on the error sensor location. This phenomenon can be
avoided by remote-error sensing.

Figure 6 shows the attenuation of the total acoustic potential energy when S
p

is located
closer to one of the walls at (0)25¸

x
, 0)5¸

y
, 0)5¸

z
). The positions of S

s
and the error sensor

are the same as those in Figure 3. High attenuation of total potential energy is observed at
low frequencies and at around f

c
. ANC is not e!ective between 1)2f

c
and 2)3f

c
because the

primary source S
p

falls onto the nodal planes of the (0, 1, 0) (1, 1, 0) (2, 0, 0) and (2, 1, 0)
modes. For frequencies less than f

c
, similar detrimental e!ects as in the squared-pressure

control cases (Figures 3(a) and 3(b)) occur again at frequencies of 0)3f
c
and 0)6f

c
as illustrated

in Figures 6(a) and 6(b), respectively, when the error sensor is located near to the secondary
source. The energy density algorithm produces approximately the same e!ects on the
attenuation of the total potential energy as the potential energy algorithm except when the
error sensor is not located between the two sound sources.

It can be observed from Figures 3 and 6 that the margins of attenuation of the total
potential energy for the three control algorithms are narrow for frequency above the "rst
cut-o! frequency. However, it is possible that the &&quiet zones'' and &&ampli"cation zones''
may co-exist inside the enclosure under ANC so that a reduction in the total potential
energy does not necessarily imply the reduction of sound pressure level throughout the
enclosure. Also, the sound "eld under ANC inside an enclosure is expected to be
non-uniform so that the occurrence of the detrimental e!ects and spillovers in the total



Figure 5. (a) Energy density map due solely to secondary corner source; (b) Correlative energy density map.
z"0)9¸

z
. Frequency"0)3f

c
. Error sensor, q, at (0)9¸

x
, 0)9¸

y
, 0)9¸

z
). All data presented are in dB ref.

10~12 N/m2.
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potential energy data may not be totally unacceptable. The discussions on the applicability
of ANC and the e!ectiveness of the control algorithms require an understanding of the
actual sound "eld. This will be discussed in the next section.



Figure 6. Variation of total acoustic potential energy attenuation with frequency for primary source at
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5. VISUALIZATION OF SOUND ATTENUATION

The evaluation of the total acoustic potential energy is insu$cient to qualify the global
e!ectiveness of the ANC due to the co-existence of multiple quiet zones and ampli"cation
zones. It also gives no idea on the locations of the quiet zones and the ampli"cation zones as
well as the degree of their e!ects in the enclosure. Therefore, the visualization of sound "eld
inside the enclosed space is critical in analyzing the performance of ANC in
a three-dimensional enclosed space.

In the present study, each dimension of the rectangular enclosure was divide into 21 grid
points at which sound pressures under ANC will be calculated. The enclosure is thus de"ne



Figure 7. Attenuation of SPL under potential energy control for centre primary source: (a) 0)3f
c
; (b) 0)7f

c
; (c)

1)1f
c
; (d) 1)9f

c
; (e) 2f

c
; (f ) 2)9f

c
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by 21 layers of 21]21 horizontal grid points. Attenuation of sound pressure level (SPL) was
found from the di!erence between the calculated SPL before and after activating the
secondary source. The secondary source S

s
is "xed at the corner (¸

x
, ¸

y
, ¸

z
).

5.1. S
p

AT ENCLOSURE CENTRE (0)5¸
x
, 0)5¸

y
, 0)5¸

z
)

Figure 7(a) shows the SPL attenuation at 0)3f
c

inside the enclosed space under the
potential energy control. A high global SPL attenuation is observed throughout the
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enclosed space. The peak quiet zone occurs between the primary and secondary sources,
and there is only little sound ampli"cation at locations near to these sources. Even better
global control can be observed at lower frequency. As frequency increases, the size of the
quiet zone decreases. The high SPL attenuation region encloses the primary source and
extends to the walls at x/¸

x
"0 as shown in Figure 7(b) (at 0)7f

c
). The sizes of the

ampli"cation zones near to the two sound sources increase as frequency increases towards f
c

(Figures 7(a)}7(c)). It can also be observed from Figure 7(b) that the 10 dB zone of quiet can
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only be found between a distance of 0)1¸
x

and 0)3¸
x

from the primary source at 0)7f
c
.

Within the frequency range from f
c
to 1)5f

c
, where the potential energy control algorithm

cannot produce attenuation of the overall potential energy in the space as shown in
Figure 3, the SPL attenuation is weak and the quiet zone becomes small. A typical example
is given in Figure 7(c) (at 1)1f

c
). The quiet zone disappears at f

c
(not shown here). A strong

quiet zone between the sources as in Figure 7(a) reappears at 1)9f
c
as shown in Figure 7(d).

Figure 7(e) shows that the higher frequency, ANC can e!ectively control the sound "eld
globally at frequencies close to that of the controllable eigenmode at 2f

c
(Figure 3). Discrete

quiet zones and ampli"cation zones are found at higher frequencies (for instance,
Figure 7(f ) at 2)9f

c
). It can be concluded from Figure 7 that under the potential energy

control algorithm, the total potential energy is a good parameter to judge whether a global
reduction of low-frequency sound can be achieved. However, since it is practically
impossible to measure accurately this parameter, this control can hardly be implemented.

The squared-pressure control algorithm gives a good global noise control at very low
frequency regardless of the location of the error sensor (not shown here). However, the SPL
of the enclosed space is largely ampli"ed at 0)3f

c
due to the detrimental e!ect as shown in

Figure 8(a) except at the error sensor location (0)9¸
x
, 0)9¸

y
, 0)9¸

z
) where a &280 dB SPL

attenuation is found. The size of the quiet zone becomes far less than one-tenth of the
acoustic wavelength. Also, the quiet zone at the location of error sensor becomes larger and
sieges the secondary corner source as frequency increases towards f

c
as shown in

Figure 8(b). Though the squared-pressure control produces a quiet zone at a location near
to the error sensor for a frequency between f

c
and 2f

c
, the sound levels at other areas will be

largely ampli"ed. An example of this phenomenon is given in Figure 8(c), which shows the
sound "eld at a frequency of 1)5f

c
. The situation around 1)7f

c
is even worse (Figure 8(d)). It is

probably due to the detrimental e!ect. It is not a spillover because the frequency 1)7f
c
is not

at an eigenfrequency of the enclosure. A similar phenomenon also appears at frequencies
close to 2f

c
, though both the amplitude and the areas of the sound ampli"cation are reduced

(Figure 8(e)). A relatively more uniform global attenuation of sound is achieved at 2f
c
while

the sound "eld pattern, except the magnitude, is very similar to that in Figure 8(e) and thus
is not presented. As frequency increases, the quiet zones gradually shrink in size while the
ampli"cation zones gradually occupy regions opposite to the secondary sound source
(Figure 8(f )). At even higher frequency, quiet zones reappear on the opposite side of the
secondary source. The squared-pressure control then results in sound "eld patterns similar
to those obtained under the potential energy control (cf. Figure 7(f )), except at or close to
the frequencies at which the detrimental e!ect or spillover occurs (Figure 3). Therefore, they
are not presented.

Both Figures 3 and 6, though they are related to di!erent primary source locations,
suggest that the detrimental e!ect below f

c
can be removed when the error sensor is located

at (0)1¸
x
, 0)1¸

y
, 0)9¸

z
), which is a position opposite to the secondary source. With this error

sensor location, global SPL attenuation with a large &40 dB quiet zone enclosing the error
sensor can be achieved using the squared-pressure control algorithm at low frequency as
shown in Figure 9(a). Again the quiet zone shrinks in size and the ampli"cation zone appear
as the frequency approaches f

c
. A quiet zone is created around the secondary source as

frequency increases beyond f
c
. The sound "eld pattern at the frequency 1)5f

c
looks similar to

that resulting when the error sensor is located close to the secondary source (Figure 9(b)).
Global attenuation of sound is re-achieved at the frequency 2f

c
. Multiple quiet and

ampli"cation zones are found at higher frequencies as expected. Figure 9(c) shows an
example for this at the frequency 2)9f

c
.

Both Figures 8 and 9 suggest that a quiet zone can always be created near to the location
of the error sensor. Also, a large attenuation of the total acoustic potential energy usually
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c
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z
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z
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implies global sound attenuation. However, a complete global attenuation of sound cannot,
in general, be achieved by using the squared-pressure control algorithm except at frequency
much lower than f

c
or at some eigenmode frequencies. Figure 8 and 9 manifest clearly

a possibility of focussing attenuation at some walls or some parts inside the enclosure even
at frequencies close to those of the detrimental e!ects and spillovers. This has a signi"cant
implication for building noise control.



Figure 8. Continued.
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Energy density control can eliminate many of the detrimental e!ects and spillovers as
shown previously in Figures 3 and 6. For an error sensor near to the corner
(0)9¸

x
, 0)9¸

y
, 0)9¸

z
), the attenuation of sound is not e!ective (maximum 3 dB variation

within the enclosure). However, the energy density control does reduce the localized peak
attenuation at the error sensor as well as the detrimental e!ects and spillovers, such as those
at 0)3f

c
and 1)7f

c
respectively. Figure 10(a) shows a typical example at 1)7f

c
. There is nearly

no attenuation or ampli"cation of SPL at 0)3f
c
and thus it is not presented here. This control

algorithm avoids the creation of an undesirably large sound pressure gradient inside the



Figure 9. Attenuation of SPL under squared-pressure control for centre primary source: (a) 0)3f
c
; (b) 1)5f

c
; (c)

2)9f
c
: s, secondary source at (¸

x
, ¸

y
, ¸

z
); q, error sensor at (0)1¸

x
, 0)1¸

y
, 0)9¸

z
); d, primary sound source at

(0)5¸
x
, 0)5¸

y
, 0)5¸

z
).
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enclosure. The corresponding sound "elds for frequencies higher than f
c
are similar to those

under the squared-pressure control in patterns but not in magnitudes and in the standard
deviations of the SPL attenuation among the 9253 points that de"ne the space in this study
(the source locations and six other points too near to the sources are excluded). The sound
"elds under the energy density control are more uniform. A typical example for this is given
in Figure 10. The quiet zones become withered at increasing frequency as in the
squared-pressure control cases (Figure 9(c)). Similar observations as in Figure 9 can be



Figure 10. Attenuation of SPL under energy density control for centre primary source: (a) 1)7f
c
; (b) 2)5f

c
: s,

secondary source at (¸
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, ¸

y
, ¸

z
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, 0)9¸

y
, 0)9¸

z
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z
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made when the error sensor is located at the corner (0)1¸
x
, 0)1¸

y
, 0)9¸

z
). The advantage of

using the energy density control is again in the more uniform resultant sound "elds. Thus,
they are not discussed.

It can be concluded here that the energy density control performs similarly to the
squared-pressure one at frequencies other than those of the spillovers and detrimental
e!ects. However, the energy density control can remove the detrimental e!ect observed in
the squared-pressure case at low frequency. Also, since the energy density control can
overcome these two disadvantages of the squared-pressure control with a reasonably higher
possibility of achieving relatively more global reduction of sound level, it can be concluded
that the former is a better algorithm for the present application.

5.2. OFFSET S
p

AT (0)25¸
x
, 0)5¸

y
, 0)5¸

z
)

It has been shown in the previous section that the energy density control is better than the
squared-pressure control for implementing ANC in this slightly damped rectangular
enclosed space. Therefore, this section is focused on the use of the former for controlling the
sound "eld in the presence of an o!set primary source.

Figure 11 shows the attenuation of sound "eld when the error sensor is located at the
near corner (0)1¸

x
, 0)1¸

y
, 0)9¸

z
). At low frequency, the quiet zone is located behind the
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c
; (b) 0)7f

c
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; (d)
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); q, error sensor at (0)1¸

x
, 0)1¸

y
, 0)9¸

z
); d, primary sound

source at (0)25¸
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primary source and it extends to the side and near walls (Figure 11(a)). Though some weak
ampli"cation of sound can be found around the strong quiet zone as frequency increases
towards f

c
, an approximately global SPL reduction can be achieved (Figure 11(b)). High

sound attenuation can be achieved and a quiet zone appears around the secondary source
at the frequency f

c
(Figure 11(c)).

Sizes of the ampli"cation zones increase with frequency but the quiet zone still exists on
the walls near to the primary source (Figure 11(d)). The extension of quiet zone between the
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primary source and the wall is probably due to the di!raction e!ect as suggested by
Garcia-Bonito et al. [20]. At frequencies higher than 1)5f

c
and even within the ampli"cation

region of the total potential energy (Figure 6), SPL attenuation is still possible on the side
walls and even on the near wall behind the primary source as shown in Figure 11(e). Unlike
the case for the centre primary source, Figure 11(f) shows that the about 10 dB attenuation
of the total acoustic potential energy at 2)5f

c
(Figure 6) does not imply global attenuation of

sound.
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ANC is again not e!ective when the error sensor is located near to the secondary source
except at frequencies around f

c
. However, the risk of large sound ampli"cation resulting

from the squared-pressure control can be reduced.

6. REMARKS

The present "ndings, though obtained from a simple ANC model consisting of a single
secondary source, a single error sensor and a rectangular enclosure, show that ANC using
the energy density sensing is very useful in building acoustics where the noise transmission
out of a machine room is concerned. It is because the noise levels, especially those at low
frequencies, on the major transmitting wall can be reduced e!ectively by this ANC. Though
ampli"cation of sound may be produced inside the enclosure, it is of secondary importance
as there will seldom be people working for long hours inside the enclosure.

It should also be noted that complicated enclosure geometry is not favoured by practical
building services and mechanical engineers for maintenance purpose and for the #exibility
of space utilization. In noise control, the rectangular geometry enables an easy estimation of
the room mode patterns and thus it will be easier for engineers to avoid the occurrence of
the detrimental e!ect and the spillover. Also, complicated geometry will result in larger
number of modal frequencies, nodal planes, etc., increasing the chance for the occurrence of
the two above-mentioned adverse e!ects. This tends to make the control di$cult to
implement. The present "ndings on the performance of ANC under di!erent cost functions
should apply to any complicated enclosure geometry since the present analysis depends on
knowledge of the room modes in principle. For complicated enclosure geometry, the room
modes can be obtained using numerical methods. However, one should note that the
squared-pressure control algorithm depends on the quality of the pressure signal, which is
highly susceptible to the nodal planes or nodal points inside an enclosure. This is an
inherited weakness of this type of algorithm, which is independent of the enclosure
boundary.

Though global control of higher modal frequency and less ampli"cation of sound
pressure can be achieved with multiple secondary sources [16, 21], controlling high modal
density with increasing number of secondary sources is not e!ective in practice [16].
Multiple error sensors can extend the size of the quiet zone only when the separations of
sensors are much smaller than the required wavelength. Otherwise, small discrete quiet
zones will be produced [22].

One should note that it is, in principle, only necessary to reduce the low-frequency sound
level on the major sound-transmitting walls in a machine room in building noise control.
The results of the present study illustrate that the possibility of producing large quiet zones
on walls using one single energy density signal has its practical signi"cance. Multiple
sensing and sources may be useful in many situations, but they only increase the complexity
of the ANC system, which can be satisfactorily implemented by a relatively simple
con"guration for the present purpose.

7. CONCLUSIONS

The e!ectiveness of a corner ANC system on the global control of sound inside a slightly
damped rectangular enclosed space has been studied in the present study. The performance
of three di!erent control algorithms, namely the potential energy control, the
squared-pressure control and the energy density control, is also investigated in terms of the
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overall potential energy attenuation and resultant sound "eld patterns. The frequency range
in the present study extends to three times the "rst cut-o! frequency of the enclosure.

Basically, ANC is e!ective in creating a global reduction of sound level at low frequency.
It is also e!ective at the eigenfrequencies unless the sources are located at the nodal planes
of the corresponding eigenmodes. Besides, both quiet zones and ampli"cation zones, which
are the regions where attenuation and ampli"cation of sound are found, respectively, are
created as frequency increases beyond the "rst cut-o! frequency of the enclosure. Potential
energy control produces a quiet zone between the primary and secondary sources and has
no e!ect at the above-mentioned uncontrollable eigenmode frequencies.

Detrimental e!ects have been observed under the squared-pressure control when error
sensor is located near to a secondary corner source due to the small sound pressure created
by this source at the error sensor position. These e!ects can be improved by increasing the
separation between the error sensor and the secondary sound source so that the
encountering of the former with the vanishing sound pressure points can be avoided. Also,
spillovers occur at some uncontrollable modes. Under this control algorithm, regions of
large ampli"cation or attenuation of sound are created at di!erent points inside the
enclosure simultaneously. Sometimes, localized large sound attenuation with a relatively
global sound ampli"cation may result.

It is found that the energy density control is more e!ective if the error sensor and the
corner secondary source are located on the two opposing sides of the primary source, so
that the error sensor can obtain the energy density in a relatively uniform and
representative region. This algorithm produces a more uniform sound "eld inside the
enclosure than the squared-pressure control. The energy density control approach can also
reduce the adverse impacts of both the detrimental e!ects and spillovers that appear under
the squared-pressure control. Though the resultant sound "elds under ANC with the
squared-pressure and energy density control except at the frequencies of the detrimental
e!ects and spillover are similar, the present results suggest that the energy density approach
is better than the squared-pressure one in controlling sound in a slightly damped
rectangular enclosure.

Though global reduction of sound level may not be achieved under ANC at all
frequencies, the results obtained in the present study do show that there is a high possibility
of producing signi"cant sound attenuation at some areas on the boundaries of the enclosure
using a simple con"guration. This cannot be observed from total acoustic potential energy
analysis. The detrimental e!ects for squared-pressure control and the ine!ective energy
density control due to small secondary source strength depend very much on the position of
the error sensor. The present results are useful in the sound transmission control in
buildings once the dominant frequency of the noise is known.
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