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A theoretical analysis and experimental study to characterize horizontal crack in isotropic
beams is presented. In the theoretical analysis, the beam is divided into domains and
a harmonic load is applied on its surface. Displacement in the thickness direction along the
beam was measured. Strip element method (SEM) was also used to compute these
displacements for beams under study. Comparisons between theoretical and experimental
results are then conducted. Both results show that the crack length can be determined from
the response pattern. It is also found that higher-frequency excitation is needed to obtain
a clear indication of the location of deeper cracks. The results from this study show that the
present technique is an efficient alternative method to characterize horizontal crack in
isotropic beams.

© 2000 Academic Press

1. INTRODUCTION

The identification of cracked beam has become the subject of many research works. Many
non-destructive testing (NDT) methods have been developed. These methods have their
own advantages and disadvantages. The consumption of excess time is one very common
disadvantage among existing methods. Therefore, a fast and simple NDT method is a very
attractive proposition.

In order to accomplish the above requirement, several studies on non-destructive testing
using vibration technique in elastic material have been reported. Related to the
experimental study, Adams et al. [1] found that a state of crack could be detected by
a reduction in stiffness and an increase in damping. Changes in stiffness lead to changes in
the natural frequency of a vibrating system. Therefore, it was suggested that the
measurement of the natural frequency offers the possibility of locating crack in a structure
and determines the severity of the crack. This was followed by Rizos et al. [2] who used the
measured amplitudes at two points of the vibrating structure at one of its natural modes to
find the location and estimate the depth of the crack in a cantilever beam. Narkis [3]
conducted numerical finite element calculations and natural frequency measurement to
identify the crack location in a simply supported beam. Boltezar et al. [4] proposed an
experimental technique based on the measurement of the axial and flexural vibration
response to identify the existence of crack in a specimen.

In theoretical analysis, Liu and Achenbach [5] have used the strip element method
(SEM) to investigate the wave scattering by crack in anisotropic laminated plates. In solving
the wave-scattering problem, the SEM needs a much smaller number of equations
compared to the FEM. Initially, the SEM was proposed by Liu and Achenbach [6] for
stress analysis of anisotropic linearly elastic solid. In this method, the specimen is divided

0022-460X/00/490661 + 11 $35.00/0 © 2000 Academic Press



662 S. L. ISHAK ET AL.

into a set of strip elements. A dimension-reduced system of approximate differential
equations for the strip elements is constructed using the principle of virtual work.
This method requires less data storage compared to FEM, but maintains many
advantages of the FEM and BEM. Liu and Lam [7, 8] had also used the SEM for
characterization of horizontal and vertical cracks in anisotropic laminated plates.
These theoretical studies have found that techniques using flexural waves can be a
very promising alternative means for detecting and characterizing cracks in beams.
In contrast to the conventional ultrasonic method which employs high-frequency
signal, the flexural wave technique is conducted using low-frequency signal. Hence, the
testing is fast and does not require coupling fluids. The important thing in applying the
flexural wave technique is to determine the effect of crack on the characteristics of the wave
motion in the beam.

In this paper, an NDT technique using flexural waves is investigated theoretically and
experimentally. SEM is used to calculate the scattering of the wave fields by a horizontal
crack in an isotropic beam. An experimental study using an FFT analyzer, an
electromagnetic exciter and an accelerometer is then conducted on several specimens with
simulated cracks. Both theoretical and experimental results indicate the crack can be
detected through the beam’s response.

2. THE STRIP ELEMENT METHOD

2.1. DESCRIPTION OF THE PROBLEM

Consider an infinite isotropic beam with a thickness H and a horizontal crack as shown
in Figure 1. One assumes that the beam lies on the region — oo (x, y) <00, — H <z <0.

The length of the horizontal crack and the depth of the crack from the upper surface of
the specimen are represented as a, and d, respectively. In order to simplify the problem, one
assumes that the crack covers the whole width of the beam and the harmonic loading is
uniform over the width in the y direction. The analytical study now reduces to
a two-dimensional case. The excitation force acting on the upper surface of the beam is
a time harmonic load fixed at x = 0 and can be represented as

F(x, t) = foexp(iwt), (1)
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Figure 1. Division of beam with horizontal crack.
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where f; is the amplitude of the sinusoidal force. It is expected that the excited flexural waves
in the beam will be scattered by the crack, and carry the information regarding the presence
and the geometry of the crack.

2.2. THE PROCEDURE OF STRIP ELEMENT METHOD

The procedures for using the SEM to solve the two-dimensional problem of wave
propagation in an isotropic beam can be presented as follow:

(1)
(2)

4)

Divide the beam into some strip elements in the thickness direction (z direction).
Derive an approximate differential equation for the field dependencies by using the
principle of virtual work for each element. This equation can be expressed as

pU —L%U =0, )

where U represents the displacement vector, p is the density of the material, and L is
a matrix of differential operator expressed by

0 9
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In Equation (2) the matrix e¢ = (c;;), i, j = 1, 2, 3 represents the elastic constants. In
equations (2) and (3), the superscript “T” denotes the transpose matrix.

In each element, the displacement vector U (x, z) = {u(x, z) w(x, z)}, where u(x, z) and
w(x, z) are the displacement components in the x and z directions respectively. The
displacement function is expressed as a product of the interpolation function N and the
displacement function V,.

U.(x, z, t) = N(z) V(x) exp(iwt) 4)

where the variables ¢ and w are time and angular frequency respectively.

Applying the principle of virtual work to a strip element, a set of approximate
differential equations can be derived for the displacement over the lines connecting the
node point. Assemble the approximate differential equation for all elements by using the
boundary conditions in the horizontal direction. Finally, a set of second order
governing differential equations for the specimen can be obtained as follows:

2

f= |: - AZta—IZ/ + Alta_V + Ao, — sztV:|a (3)
0x Ox

where f represents the external force vector acting on the node lines, and the matrices

A;, M, and vector V can be obtained by assembling the corresponding matrices A;,

M and vector V, of adjacent elements. The matrices A;, and M, for isotropic materials

can be found in the appendices of the paper by Liu and Achenbach [6].

Solve the set of approximate differential equations analytically to obtain a particular

solution and the complementary solution.

Replace the unknown constants in the complementary solution by unknown

displacement on the vertical boundaries. This calculation will produce a set of

equations, which gives the relationship between the displacements and external traction

at the node point on the vertical boundaries. This equation can be expressed as

R, =KV, +S;, (6)
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where K is the stiffness matrix, S, is the equivalent external force vector acting on the
vertical boundary, R, and V, are the external traction and displacement vectors on the
vertical boundaries.

(7) Solve the set of equations by imposing the vertical boundary conditions. The whole
wave field can be obtained.

More detailed formulations about this method have been explained in papers by Liu and
Achenbach [5, 6].

3. EXPERIMENTAL STUDY

A series of experimental investigations was carried out on two types of specimens. Type 1
specimen consists of two crack configurations (A and B), and type 2 specimen consists of
three different crack configurations (A, B and C). The dimensions and configurations of
these specimens are shown in Figure 2.

Specimen 1 is made from perspex of 800 mm length, 20 mm width and 5 mm thickness. It
is considered as a plane-strain beam because the thickness in the z direction is much smaller
when compared with the dimension of the other two directions. Unlike specimen 1A that
has no crack, specimen 1B has a simulated crack in its thickness direction. The parameters
for the crack are a, = 25 mm and d. = 2-25 mm.

Specimen 2 is made from perspex of 800 mm length, 5 mm width and 20 mm thickness. It
can be considered as a plane-stress beam because the thickness in the z direction is much
larger than the thickness in the y direction. The crack of specimen 2 is 25 mm long and at
a distance of 482-5 mm from the left end of the beam. The depth of the crack of specimens
2A, 2B and 2C is 475, 9-75 and 1475 mm, respectively, from the surface. The crack is
created using a very small milling cutter of 0-25 mm diameter. The manufacturing process
creates a 0-5 mm gap on the crack.

Two hundred millimeters of the beam at each end is immersed in sand, as shown in
Figure 2 by the shaded areas. It is done to minimize reflection at the boundaries and to
simulate an infinite beam. In a real situation, the beam will have arbitrary boundary
conditions. However, the experimental procedure can still be applied if the measuring point
is far away from the boundary where the effect of reflection is minimized. A schematic
drawing of the experimental set-up is shown in Figure 3.

The beam’s response along its surface was measured using a Kistler accelerometer (type
8614A). The accelerometer was attached to the measurement points using a cementing stud.
Sweep sine signal with a frequency range from 0 to 20 kHz was generated by an LDS
oscillator type TPO 25 and applied to the specimen via an LDS electro-dynamic exciter
type V101 connected to a coupling rod. In this experimental study, the excitation point was
fixed but the response was measured along the beam surface with an interval of 10 mm. For
the points at the crack region, measurement was conducted with an interval of 5 mm. In
total, 40 measurements were recorded. The measured response signal from the
accelerometer was then amplified using a power coupler. Subsequently, the output signals
from the power coupler were recorded and analyzed using a Hewlett Packard-type 35670A
dynamic signal analyzer. A response curve can be obtained by plotting the response against
x, which is the distance between the excitation and the measurement point.

The sandbox is tapered for a smoother transition in the impedance. This is to ensure that
the outgoing flexural waves will be damped gradually without reflection. As a result,
a non-reflecting boundary or an infinite beam can be experimentally simulated.
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Figure 2. Specimens used in the experimental study (unit: mm): (a) Specimen 1A (without crack), (b) Specimen
1B (with crack of 2-25 depth), (c) Specimen 2A (with crack of 475 mm depth), (d) Specimen 2B (with crack of
9-75 mm depth), () Specimen 2C (with crack of 1475 mm depth).

4. COMPARISON STUDY

4.1. A TECHNIQUE TO DETERMINE HORIZONTAL CRACKS

Before comparing the theoretical and experimental results, one has to arrange both the
results to ensure that they are ready to be compared. The SEM results represent the beam’s
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Figure 3. Schematic drawing of the experimental set-up.

displacement along its surface. The raw experimental data represent the surface beam’s
response at different excitation frequencies.

On experimental data, firstly one has to compile all the measured beam’s response. By
presenting the beam’s response along the measuring point in a given frequency, one will find
the variation of the beam’s response over its surface. To get a dimensionless response, one
normalizes both sets of data to the highest value of each set.

The FEM was used to investigate the effect of a 0-5 mm crack gap to the result of the
theoretical analysis [9]. It has been confirmed that the effect of the gap is very small.
Therefore, in this paper the theoretical results are obtained using SEM without considering
the gap.

For beam without crack, its response is a smooth harmonic curve with no significant
change over the whole length. However, for beam with crack, its response may have
a significant change when the wave passed through the crack area. The length of the region
where the pattern changes can be used to approximately determine the crack length.
Moreover, the frequency in which the clear response was detected can be expected to
contain information related to the crack depth.

4.2. DETECTION OF CRACK IN ISOTROPIC BEAM

4.2.1. Crack length

The calculated and measured values for response (acceleration) of specimen 1A along its
surface at frequencies of 6515 and 6666 Hz are shown in Figures 4(a) and 4(b) respectively.
The calculated and measured results have been normalized.

Figure 4(a) shows that the SEM result agrees reasonably well with the experimental
result. Both curves show that there is no pattern change in the beam’s response along its
length. Similar findings can also be observed from Figure 4(b) that is obtained at a higher
frequency. On specimen 1A, there is no crack that may reflect or scatter the incident wave.
Hence, the wave will propagate smoothly. The different number of peaks observed in
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Figure 4. Calculated and measured response of beam 1A: (a) specimen 1A at frequency 6516 Hz, (b) specimen 1A
at frequency 6666 Hz. ——, theoretical; ——, experimental.

Figures 4(a) and 4(b) indicate that the beam’s responses to the harmonic load are dependent
on the excitation frequency.

The calculated and measured responses on the surface of specimen 1B are shown in
Figure 5. It is seen again that the SEM results agree reasonably with the experimental
results for a beam with crack. From Figure 5 it is noted that the crack length can be
approximately determined from the pattern change of the beam response when the wave
passes through the crack. In Figure 5, one observes clearly that the starting point of the
decaying response occurs at x = 265 cm which corresponds to the right tip of the crack.
However, for this case, one cannot observe clearly the left tip of the crack. This can be easily
overcome by changing the location of excitation to the right-hand side of the crack. By
doing so, one could detect the left and right tips of the crack.

The calculated and measured responses of specimen 2A along its surface are shown
in Figure 6. Compared with the response of beam 1B, the response of specimen 2A in
Figure 6 shows more clearly the crack region. An increase in the beam’s response at
x = 24 cm indicates the beginning of the crack region. The beam’s peak response value is at
x = 255 cm, very close to the center of the crack region. After this, the response starts to
decline and decay at x = 26-5 cm. From the curves in Figure 6, one can conclude that the
crack lies in between x = 24 and 26'5 cm.

4.2.2. Effects of crack depth

In the further investigation, one correlates the crack depth with the frequency that gives
a clear response. For that, the SEM and experimental study are employed on specimens 2A,
2B and 2C that have, respectively, 4-75,9-75 and 14:75 mm crack depth from the surface and
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Figure 5. Calculated and measured response of beam 1B: (a) specimen 1B at frequency 6516 Hz, (b) specimen 1B
at frequency 6666 Hz. ——, theoretical; ——, experimental.
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Figure 6. Calculated and measured response of beam 2A: (a) specimen 2A at frequency 6515 Hz, (b) specimen 2A
at frequency 6666 Hz. , theoretical; , experimental.
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Figure 7. Calculated and measured response of beam 2B: (a) specimen 2B at frequency 10000 Hz, (b) specimen
2B at frequency 10250 Hz. ——, theoretical; ——, experimental.
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Figure 8. Calculated and measured response of beam 2C: (a) specimen 2C at frequency 12 250 Hz, (b) specimen
2C at frequency 12 500 Hz. , theoretical; ——, experimental.

a constant crack length of 25 mm. The calculated and measured responses of specimens 2B
and 2C are shown in Figures 7 and 8.

As in the response of specimen 2A, the response of specimen 2B in Figure 7 shows a clear
indication of the starting and ending points of the crack region. The response starts to
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Figure 9. Spectrum relation for perspex beam: ——, theoretical no crack; —A—, experimental 5 mm crack;
—¢—, experimental 10 mm crack; —+—, experimental 15 mm crack.

increase at x = 24 cm, has a peak near x = 25-5 cm, and then decreases to the minimum
value at x = 265 cm before decaying.

The response of specimen 2C shows the same pattern as specimen 1B in which only the
ending point of the crack region is clearly shown. In this case, the crack is deeper from the
measuring surface but closer to the other surface. Thus, if the pattern change is distinct, it
can be improved by measuring the response of the beam from the other side.

The responses of specimens 2A, 2B and 2C indicate that in order to detect a deeper crack,
one needs to excite the beam with a higher frequency. For detecting a 5 mm deep crack, one
needs an excitation frequency of 6515 Hz, for a 10 mm deep crack, one needs a frequency of
10000 Hz, and for a 15 mm deep crack, 12250 Hz excitation is needed. It is possible to
construct a regression equation that relates the crack depth and the excitation frequency to
detect it with sufficient experimental data. The constructed regression equation should
eliminate the effect of beam dimension and material properties, and hence can be applied to
general beam. From the experimental study, one obtains the excitation frequency to detect
crack and using the developed regression equation one can predict the depth of the crack.
Further investigation is still being conducted to develop the regression equation.

4.2.3. Wave analysis

By analyzing the angular frequency and relating it with the wave speed and wave
number, one could define the type of the wave that propagates in the beam. From
the experimental study, one obtains the frequency and wavelength data. Employing
basic wave equations, one can compute the corresponding wave number and wave speed.
The relationship between excitation frequency and wave speed, which is obtained
from the experimental study, can be represented very well by the flexural wave equation as
follows [10-137:

2 : —-1/4
w(w pA —1wnA> / ’ ™)
EI

where c is the wave speed, and k is the wave number. # is the materials damping constant,
A is the cross-sectional area of the beam, E, I, and p are the Young’s modulus, the moment
inertia and the mass density of the material respectively. This finding indicates that the
flexural wave plays an essential part in detecting the crack in beams. Considering only the
propagating wave mode and assuming small damping from the material, the wave speed
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expression can be simplified as follows:
EI 1/4
= — | . 8
‘ ﬂ[ﬂA] ®

In this analysis, the wave speed is presented in dimensionless form by dividing its value by
the transversal wave speed, c¢,. The calculated and measured data of the first anti-symmetric
spectrum relation for perspex beam with 5, 10 and 15 mm depth of crack are shown in
Figure 9. Figure 9 shows that the crack depth does not vary the wave number. This
spectrum also indicates that the waves propagating in the beam are dispersive.

5. CONCLUSIONS

Analytical study using SEM and experimental study using flexural wave technique have
been employed to characterize horizontal crack in isotropic beams. It has been shown that
the results from these two methods agree reasonably well. Both the techniques show that
the presence of the crack may reflect or scatter the incident wave and generate a very
significant change in the pattern of the beam’s response. It also shows that the techniques
presented can be used to approximately detect the crack depth and accurately determine the
crack length in isotropic beams. These two techniques are expected to be both accurate and
efficient methods to be used in the characterization of the crack in isotropic beams.
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