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Characteristics of linear waves propagating in a gas #ow in a long tube with permeable
walls are investigated. Linear approximation of governing equations is used, and it is
considered that time-averaged #ow properties depend on the space co-ordinate along the
tube. They are obtained from the steady #ow solution. Two examples showing the
comparison of theoretical and experimental results are presented.
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1. INTRODUCTION

In power and cement plants, bag "lters with porous walls are often used to separate solid
particles from the gas. The particles which get stuck in the wall are removed by back #ow (from
the inside to the outside of the bag) which is switched periodically. Particle shedding becomes
more e!ective when the steady back #ow which persists for about 0)5 s during one switching is
superimposed with forced oscillations of moderate amplitude. This technical problem
motivated the present study of linear waves transmission in a tube with a permeable wall.

To some extent an analogous problem appears in the case of vehicle mu%ers having
perforated sections. The analysis of perforated elements of the mu%ers was begun by
Sullivan and Crocker [1]. They suggested an analytical approach based on
one-dimensional linear equations of tube #ow to predict the transmission loss of
a concentric-tube resonator. According to the linear theory, the perturbation velocity
through the perforated section was assumed proportional to the perturbation pressure
di!erence between the inner and outer tubes (cavity). The factor of proportionality was
de"ned by the acoustic impedance of the perforated section.

Various formulas for the acoustic impedance based on experimental data have been
proposed for both the grazing and the cross pipe #ows [2]. The formulas show the acoustic
impedance to be dependent on the frequency of the transmitted wave, and on the pipe #ow
Mach number as well as the geometrical properties of the perforation. The imaginary part
of the impedance can be attributed to inertia of the gas #ow in the holes in the pipe wall.
This e!ect, however, can be neglected for holes of small length for which the resonance
frequency is of some orders of magnitude larger than the frequency of the wave transmitted
along the pipe. In this case, only the resistance of the permeable wall to the cross #ow seems
to be of practical signi"cance.

In previous papers, the perforated section was considered as a discrete element of the
acoustic waveguide [1}6]. In the case of multi-chamber mu%ers having a few perforated
sections a segmentation procedure was developed [3] which allows one to consider the
mu%er as a lumped system. A kind of segmentation method was also used by Cummings
0022-460X/00/500781#09 $35.00/0 ( 2000 Academic Press
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and Kirby [7] to analyze the acoustic "eld in a long permeable tube; they divided the tube
into several cells of assumed constant impedance. Their model accounts for the coupling of
internal and external sound "elds via acoustic motion through the wall but ignores the
e!ect of mean tube #ow.

Contrary to the papers mentioned above, in the present paper, the wave strength
variation is regarded as a continuous function of the space co-ordinate along the tube with
a permeable wall. A rigid-walled tube of constant cross-section open at one end and closed
at the other end is considered. The non-uniform distribution of the mean #ow Mach
number along the tube is taken into account.

2. GOVERNING EQUATIONS

The main assumptions used in the formulation of governing equations are as follows:
(1) variations of #ow properties over any cross-section of the tube are small in comparison
with longitudinal variations; (2) amplitudes of acoustic pressure and acoustic #ow velocity
normalized with mean time values are small; (3) only losses induced due to the cross #ow are
considered.

2.1. CONTINUITY EQUATION

Under the above assumptions the conservation of mass for the tube #ow is given by
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where c denotes the #ow rate of the gas evacuated from the tube per unit length (a list of
notation is given in Appendix B). For a tube of circular cross-section the following
relationship for c/F can be used:
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Here w is the cross #ow velocity and o
a
the density of the gas expanded isentropically to the

ambient pressure p
a
, and a is the permeability (porosity or perforation) coe$cient of the

wall, it represents the total cross-sections of pores or ori"ces in a wall surface unit: g denotes
the discharge coe$cient of the #ow in pores or ori"ces; it can be obtained from experiment
for an assumed model of the cross #ow. For the perforated wall the discharge coe$cient can
be easily determined since both the diameters and the number of ori"ces in the wall surface
unit are known. For the porous wall the product ag can only be measured. This product is
de"ned as the e!ective permeability coe$cient. In the present paper an isentropic model of
the cross #ow is assumed. On this basis, the reference #ow rate o

a
w of the #ow through the

wall surface unit is calculated as a function of local tube #ow properties.
The cross-#ow velocity can be obtained from the energy equation
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where a, a
0
, and a

a
are the speed of sound in the gas inside the tube, in the stagnated gas at

the pressure p
0
, and in the gas expanded to the ambient pressure p

a
respectively.
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Equations (3) yield
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Introducing into the above equation the isentropic relationships
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During the pipe #ow both the pressure and the stagnation density oscillate. However, for
isentropic #ow the following ratios are constant:
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Combination of equations (5) and (7) gives
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2.2. MOMENTUM EQUATION

In the case considered the Euler equation represents conservation of momentum:

Lu

Lt
#u

Lu

Lx
#

1

o
Lp

Lx
"0. (9)

3. RESULTS

3.1. ANALYSIS

Linear approximation of equation (1) in conjunction with equations (2) and (8) yields
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where the primes denote #uctuations and the bar the time-averaged value,
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On the right-hand side of equation (10) one has only the linear term of the power expansion
of c/F; the higher order terms of the expansion are neglected under the assumption that
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It must be noted that in the #ow under consideration pN 'p
a
. This is because the air supplied

to the tube is wholly evacuated through its permeable wall.
The parameters u@ and o@ in equation (10) can be eliminated by making use of the

linearized momentum equation
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and the de"nition of the speed of sound a2"dp/do.
The result is
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In the derivation of equation (13) account was taken of the fact that the parameters marked
with the bar are dependent on the space co-ordinate. Replacing the co-ordinates x and t and
the pressure p@ by dimensionless values x/R, taN

0
/R, p@/pN

0
, respectively, one obtains
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(see Appendix A).
The solution of equation (14) can be expressed as the harmonic function

p@"Re[(A#iB) exp(iut)] (15)

or

p@"A cosut!B sinut, (16)

where A and B depend on the x co-ordinate. Introducing equation (16) into equation (14)
one has
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where u is the Helmholtz number, u"2n f R/a
0
. Equation (17) is valid for every instant of

time. This requires that the coe$cients in front of cosut and sinut are equal to zero. In this
way, two ordinary second order di!erential equations for amplitudes of transmitted and
re#ected waves A and B are obtained:
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The boundary conditions for equations (18) and (19) are formulated at the closed end of the
tube (x"l/R). There, re#ective boundary conditions can be assumed, i.e.,
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Equations (18) and (19) were solved numerically together with equation (A9) for time mean
#ow (see Appendix A) by using the Runge}Kutta}Gill scheme. Calculations were conducted
upstream starting at x"l/R where M"0. They were "nished when x"0 was reached. The
amplitudes A"B"1 were assumed at the starting point.

3.2. EXPERIMENT

Experiments were conducted to verify the theoretical results presented in the previous
section. A rigid tube with a narrow slit of constant width along its length (see Figure 1) was
Figure 1. Experimental set-up (a) and cross-section of the tube (b), 1, pressure gage; 2, steel frame; 3, polyester
resin; 4, PVC tube. Dimensions in mm.



Figure 2. Distributions of normalized pressure amplitude along the tube: lines, theory; points, experiment for
silted wall u"0)0233 (a) and 0)0279 (b).
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used. Due to this the permeability of the tube was kept constant. Oscillations were
generated by means of a rotating valve. It was located on the side pipe through which
compressed air delivered to the system was partly evacuated to the surroundings.

Pressure signals were measured by means of the Kistler 601A pressure transducers.
Twenty pressure gages were uniformly distributed along the tube. An additional gage was
placed in the plug closing the tube. The pressure signals were "ltered to separate the
fundamental harmonic corresponding to the rotation number of the valve. In Figures 2(a)
and 2(b) the distributions of oscillation amplitude for two frequencies 60)5 and 50)5 Hz are



TABLE 1

Plug pressure amplitudes

f (s~1) u Pressure amplitudes, peak to peak (bar)

60)5 0)0279 0)0166 0)0166 0)0167
50)5 0)0233 0)0254 0)0249 0)0245
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displayed respectively. The permeability coe$cient corresponding to 1)5 mm slit was
0)00955. The discharge coe$cient g was measured in the separate experiment for steady
#ow through the slit 1)5]100 mm. It was 0)586. For these a and g the theoretical lines

J0)5(A2#B2)/A
x/1

were obtained by solving equations (18), (19) and (A9). The lines for
a tight tube (a"0) are also presented. The experimental data marked by squares, triangles
and diamonds were obtained for three separate experiments. In each case, the measured
amplitudes along the tube were normalized with corresponding amplitudes at the plug. The
plug pressure amplitudes for each experiment are given in Table 1.

The theoretical and experimental data presented above were obtained for the stagnation
to an ambient pressure ratio of 1)1 which corresponds to maximal #ow Mach number
M

max
"0)37.

4. CONCLUDING REMARKS

For the frequencies considered in Figure 2 the oscillation amplitudes in the case of
impermeable walls changes drastically along the tube. These changes smoothen
considerably when a wall of small permeability is used. This is, "rst of all, due to the time
average tube #ow exists in the case of permeable walls.

The di!erences of the amplitudes for impermeable and permeable walls are large in the
inlet section of the tube, where the time average #ow velocity, in the case of permeable walls,
is relatively high. Contrary to this, the amplitudes for the impermeable and permeable walls
are very close to each other in the remaining section of the tube containing gas at nearly
stagnation conditions.

To make use of the present analysis the e!ective permeability coe$cient of tube wall for
steady #ow should be measured. This depends on the fabric wall used in bag "lters.
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APPENDIX A: STEADY FLOW IN A TUBE WITH A POROUS WALL

For steady one-dimensional #ow the continuity and momentum equations are
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where x is the dimensionless co-ordinate (see section 3.1).
From the de"nition of #ow Mach number one obtains
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For isentropic #ow one has
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Equations (A1}A4) yield
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The right-hand side of equation (A5) can be expressed as a function of M by considering the
energy equation for the cross #ow (equation (3) in the main text) and the relationship for the
density ratio,
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For isentropic #ow
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one obtains from equations (A5), (A7) and (A8) that
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(see equation (A8)).

By using this derivative, the remaining derivatives in equations (14a) and (14b) can be
obtained from equation (11) and appropriate isentropic relationships:
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APPENDIX B: NOMENCLATURE

a speed of sound
f frequency
F cross-sectional area of the tube
i ratio of speci"c heats
l pipe length
M #ow Mach number
p pressure
R radius of the tube
t time
u tube #ow velocity
w cross-#ow velocity
x co-ordinate along the tube
a permeability coe$cient
g discharge coe$cient
o density
u dimensionless angular velocity
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