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A higher order displacement based formulation has been developed to investigate the
plane strain edge vibrations or end modes in composite laminated sandwich plates. The
formulation has been applied as an illustration, to the laminated sandwich plates made up of
transversely isotropic laminae with the axes of symmetry lying in the plane of the lamina and
core in-between. The results for isotropic and orthotropic plates are shown to be in excellent
agreement with the published numerical solutions. Also, numerical results are obtained for
two more examples consisting of two typical sandwich plates to obtain an insight into the
physical behaviour of laminated sandwich plates. The higher order method proposed here is
found to give equally accurate results by using only about half the number of degrees of
freedom in comparison with the numerical techniques available in the literature.
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1. INTRODUCTION

Composite materials are finding applications in a large spectrum of modern structures like
spacecraft, bodies of high-speed automobiles and even in common civil engineering
structures. Therefore, the prediction of exact dynamic behaviour of composite laminated
structures has become essential. The complexities attendant with the dynamic analysis of
laminated plates, are so much that except a few special cases, exact solutions do not exist.
The anisotropic properties of the composite lamina along with the through thickness
warping of cross-section make the analysis of such structures a difficult task.

Various techniques for the free vibration analysis of composite laminated plates have
been reported in the literature. Cho et al. [ 1], for example, used a higher order plate theory
in each individual layer of a simply supported rectangular laminated plate to determine the
natural frequencies and the relative stress and deflection distribution through the thickness
of the plate. The theory approximated the in-plane and normal displacements by employing
third and second order functions of the thickness co-ordinate respectively. Dawe and Wang
[2], on the other hand, utilized B-spline functions to define the displacement field in the
analysis of composite laminated rectangular plates by Rayleigh-Ritz method. Taylor and
Nayfeh [3] obtained solutions for the individual layers which relate the field variables at the
upper and lower layer surfaces and used linear transformations to refer to the anisotropy of
each layer to a global co-ordinate system. Wang and Lin [4] presented a finite-strip method
based on higher order plate theory for determining the natural frequencies of laminated
plate. This method has the advantage of dealing with only few degrees of freedom. Gorman
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and Ding [ 5] used a modified superposition-Galerkin method to obtain the solution to the
problem of free vibration of clamped and simply supported laminated cross-ply rectangular
plates. Filipich et al. [6] developed variational method named WEM for three-dimensional
solids. The method was developed for solving a wide range of boundary value problems by
means of extremizing a proper functional an using suitable sequence.

Liew et al. [7] have presented an extensive review of existing literature on the vibration
analysis of thick plates. Mainly the studies based on Mindlin theory and modified Mindlin
plate theories for laminated plates have been discussed and some papers employing higher
order shear deformation plate theories have also been included. Liew [8] employed a global
p-Ritz method for vibration analysis of thick rectangular laminates with various boundary
conditions. Xiang et al. [9] investigated buckling, free vibration and vibration with initial
in-plane loads for moderately thick, simply supported symmetric cross-ply rectangular
laminates on Pasternak foundations. Closed-form buckling and vibration solutions have
been obtained using Navier solution procedure and first order shear deformation plate
theory has been incorporated in formulating the problem. Chen et al. [10] investigated free
vibration analysis of symmetrically laminated thick rectangular plates with various
combinations of free, simply supported and clamped boundary conditions. The p-Ritz
method has been employed which uses uniquely defined polynomials for displacement and
rotation functions. Also Reddy’s higher order plate theory incorporating shear deformation
has been followed for deriving energy integral expressions of the laminates. Liew et al. [11]
used first order shear deformable plate theory for analyzing unsymmetric composite
laminates of different boundary conditions, an arbitrary quadrilateral geometry and
anisotropic material properties. Liew et al. [12] studied the sensitivity of the vibration
responses to variations in the lamination, boundary constraints and thickness effects and
also their interactions using Ritz procedure and first order shear deformable plate theory.

Plane strain edge vibrations in laminated plates have been investigated extensively by
many investigators in the past. Mindlin [13], for example, provided an exact solution for
edge vibrations in elastic plates. Dong and Nelson [14], on the other hand, presented
a method for natural vibration analysis of laminated orthotropic plates in which
a displacement field was assumed for each lamina. The displacements were characterized by
a discrete number of generalized co-ordinates at the lamina-bounding planes and their
mid-surfaces. Subsequently, Dong and Pauley [15] presented a finite element method for
the determination of frequencies and modal patterns of vibrations and waves in an infinite
anisotropic plate. Dong and Goetschel [16] used a semianalytical method using finite
element interpolations over the thickness and exponential decay into plate’s interior for
examining the edge stress states of a laminated plate with arbitrary number of elastic,
anisotropic laminae. Dong and Huang [17] investigated plane strain edge vibrations in
laminated composite plates by using finite element method in which anisotropic laminate
properties were considered. All these investigations were based on a parabolic variation of
displacement field through thickness.

The motivation for the present work comes from the desire to achieve better results for
edge vibration through the composite laminated sandwich plate using lesser number of
degrees of freedom by employing a higher order displacement based formulation. The
method can be applied easily to arbitrarily anisotropic laminae. However, for illustration, it
is applied to the case where each lamina is transversely isotropic with the axes of symmetry
lying parallel to the lamina. A higher order, cubic variation of displacement field through
thickness is assumed in each lamina of the laminate. By applying the variational principle to
each lamina, the stiffness and the mass matrices are calculated explicitly for a single lamina.
These matrices are then assembled by enforcing compatibility of displacements and
rotations at the lamina interfaces. Numerical results for both isotropic and orthotropic
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plates are compared with the published numerical results. The dynamic behaviour of
composite laminated sandwich plates is then investigated making use of the proposed
solution technique.

2. FORMULATION

Edge vibrations in laminated composite plate have been analyzed using higher order
displacement formulation. Each lamina is assumed for simplicity to be in a state of plane
strain and transversely isotropic with the symmetry axis aligned with either x- or y-axis as
shown in Figure 1. The laminated composite plate consists of a number of stiff layers with
layers of soft core in-between.

The local co-ordinate system (x;, y;, z;) for ith layer is selected parallel to the global
system (x, y, z). The origin of the local system is located at the mid-plan of a lamina of
thickness 2h. By assuming the cubic variation of displacements through a lamina of
a laminate, the time-dependent axial and transverse displacements of any point lying in the
x—-z plane can be expressed as

u(x, z,t) = ao(x, t) + za; (x, t) + z%a,(x, t) + 22as(x, t), 1)
w(x, z, t) = bo(x, t) + zby(x, t) + z2b,(x, t) + z3b5(x, ). )

Here, a;, b;, i = 0,1,2, 3, are the generalized parameters. By expressing @; and b; in terms of
the generalized displacements and rotations at z = +h, the following equations are
obtained:

{”} —~ [N1{g}, 3)
w

Y3 « y
3 yl

Laminate mid-plane

.. Stiff layer
Core

Figure 1. Laminate geometry with positive set of laminate reference axes for laminated sandwich plate.
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where
Ny N, N; N 0 0 0 0
[N] = 1 2 3 4 @)
0 0 0 0 Ny N, N;y N,
and
{Q}t =[uy up 0y 0O wy wy 04 0] (5)

Here, u; and w;, i = 1,2, are the generalized displacements along the x and z directions,
respectively, at z = (—1)'h. The quantities 0;, 0,;, i = 1,2, are rotations and are defined as
0, = 0u/0z and 0, = 0w/0z.

The N;, i = 1,2, 3,4, appearing in equation (4) are the shape functions given by

Ni=22-3¢+&), N, =302+38+8),

Ny=l1 -4 E) and Ne=0- £+ 40 ©)
where & = z/h.
The strain-displacement relations for a lamina can be shown to be
{e} =[B:1{q} + [B.1{q'}, (7
where
(e} = [ox & 7az] (8)
and

0O 0 0 0O 0 0 0 O
[Bl]: O O 0 0 Nl Nz Ng, ]\74 5
Ny N, Ny N, 0 0 0 0]
N, Ny Ny N 0 0 0 O]

[BJ=|0 0 0 0 0 0 0 O]/ )
0 0 0 0 N, Ny Ny N,J

The primes denote the partial derivative with respect to x whereas the overbars denote the
partial derivative with respect to z.
The stress—strain relationships of a lamina are

{o} =[C{e}, (10)
where
{o}' =[ox 0. 7] (11)
and
Cii Ci, O
[Cl=|Ciy Cyy O |, (12)

0 0 Cg
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with
2
Ex(l - vyz)

C =
" (1 - szvzx)(l - vjzzz) - (vxzvzx)(l + vyz)Z’

_ Ev.. (1 +v,.)
a (1 - vxzvzx)(l - v)%z) - (vxzvzx)(l + Vyz)2 ’
Ez(l - szvzx)

C =
22 (1 - szvzx)(l - V)ziz) - (vxzvzx)(l + vyZ)z

and C66 = ze. (13)

Here, E, and E. are the Young’s moduli along the x and z directions, v, and v, are the
in-plane and transverse-plane Poissions ratios, whereas G, is the in-plane shear modulus of
elasticity.

The equation of motion for the lamina can be obtained by using the variational principle

ra(T — U)dt =0, (14)

where T and U are, respectively, the kinetic and the strain energies of a lamina. T can be
computed for a unit width of a lamina from

1
sz p{u}t{u} dv. (15)
2)y
Here, p is the mass density of lamina and
. ou ow
lu}' = [5 E]' (16)
By substituting equation (3) into equation (15), it can be shown that
1 . .
T3 [ty onian ax )

where

[(M] = Jh([N]‘p[N]) dz (18)

and the dot indicates derivative with respect to time “t”.
The explicit form of [ M] has been presented in Appendix A. The internal strain energy of
a lamina can be computed from

U= % L (el (o} dv. (19)

The strain energy per unit width of lamina can be derived by substituting equations (10) and
(7) into equation (19) as

1
U=3 J({q}‘[Kl]{q} +{a}' [K g} + {q}' [K2]' g} + {4/} [Ks]{q'} dx,  (20)
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where

rh

[Ki]= qul]l[C] [B:])dz,

J

rh

[K2] = _h([Bl]‘[C] [B.])dz,

J

rh

[K3] = 7h([Bz]t[C] [B.])dz. (21)

J

By substituting equations (17) and (20) into equation (14) the equations of motion for
a lamina are obtained as

[Kil{q} + [[K>] — [K21'T{q'} — [Ks1{g"} + [M1{g} =0 (22)
which take the form
[[Ki]+ A([K.] — [K,]) + 2*[K3] — 0’ [M]]{qo} =0 (23)
by assuming a general solution
{do} = {qo.1} sin(ix) sin(wi) + {qo.»} cos(Aix) sin(wi). (24)

The overbar in equation (23) indicates the modified nature of stiffness matrix K, after
substitution of equation (24) into equation (22).
Here, {q0.1} and {qo,,} are the amplitude vectors defined as follows:

{do.1} = {40 By Co Do 0 0 0 0}
and
{g0..} ={0 000 E, Fy Gy Ho}' (25)

whereas w is the circular frequency and 4 = {n/H, with { being the series constant and H the
total thickness of the laminated plate.

Equation (23), the dispersion equation for edge vibrations in a lamina, is written in
a compact form as

[K]— »’[M] =0, (26)
where
[K]=I[K]+ A[K:]—[K,])+ A*[K3] (27)

from which 4 can be computed for a given w or conversely, the frequency can be obtained
for the specified 4.

Matrix [ K] in equation (27) has been evaluated explicitly and is presented in Appendix A.
The stiffness and mass matrices thus calculated for all laminae are assembled to form k x k
(k=(NL + 1)«4 where NL is the number of laminae in the plate) global matrices by
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enforcing the compatibility of generalized displacements and rotations at the interfaces of
the laminae.

3. NUMERICAL EXAMPLES

A general purpose, FORTRAN-77 computer program was developed on the basis of the
theoretical formulation discussed above, for determining the natural frequencies of edge
vibrations of a composite laminated sandwich plate. The natural frequencies are normalized
in the program with respect to the reference frequency (w,. ) which has been specified as the
third lowest frequency near the cut-off for a series constant of ¢ = 0-001. On the other hand,

the value of o, for an isotropic plate is commonly considered as (zr/H) ./ G/p and thus the
same value has been employed in the present work.

Plates having various properties and configurations have been solved to demonstrate the
validity and applicability of the proposed method. The first two examples have been
selected to validate the proposed formulation for isotropic and orthotropic plates by
comparing the results with those of Dong and Nelson [14]. Further, the results obtained by
the proposed method are presented for two typical composite laminated sandwich plates
wherein the edge vibration phenomenon for laminated composite plates is examined with
respect to that of the isotropic or orthotropic plates.

A comparison and a brief discussion of the results obtained by the proposed method and
the previously published numerical results are presented next.

3.1. EXAMPLE 1

A single lamina of isotropic material with the material properties given in Table 1 was
divided into 25 sub-layers. A comparison of the results obtained with the numerical solution
given by Dong and Nelson [14] has been presented in Table 2. It indicates a close
agreement of the results obtained by using the proposed method with those presented by
Dong and Nelson [14].Various lower order theories have also been formulated by the
authors by assuming various combinations of displacement fields, viz., linear, parabolic and
cubic polynomials for u and w displacements. By comparing the results obtained by various
models, it was observed that the proposed higher order displacement model where cubic
variation of displacement field has been assumed, seems to be the most economical one,
yielding accurate results with just 104 d.o.f:s for isotropic plate. On the other hand, the first
order shear deformation theory failed to produce accurate results even after using as large
as 804 d.o.f:s for modelling the isotropic plate. The results of various displacement models
are not presented here for brevity.

3.2. EXAMPLE 2

An orthotropic plate with the lamina material properties given in Table 1 has been
analyzed and the results obtained using the proposed method have been compared with
those presented by Dong and Nelson [14] in Figure 2. The solid lines in Figure 2 represent
the numerical solution by Dong and Nelson [14], whereas the dots represent the results
obtained using the proposed method. A comparison of normalized frequencies for some
typical values of series constant obtained by Dong and Nelson [14] and the proposed
method has been presented in Table 3. It can be observed that the results obtained by the
proposed method are in very good agreement with the published results and in this case too



TaBLE 1

Material properties of various plates considered for the investigation

Thickness of

Data for Type of plate/(no. of sub- sublayer h Mass density p E, E. G,
example no. layers for each lamina) (1073 m) (kg/m?) (N/m?) (N/m?) Vi Vi (N/m?)
1 Isotropic/(25) 1016 27688 x 10* 2:0691 x 10'° 2:0691 x 101° 03 03 79581 x 10°
2 Orthotropic/(10) 2:54 27688 x 10* 2:0691 x 10*° 2:0691 x 101° 03 03 79581 x 107
3 Sandwich — — — — — — —
Face sheet/(top/bot) 0-4572 26831 x 103 6897 x 101° 68970 x 10*° 03 03 26527 x 101°
Core/(8) 1-5875 32-8381 2:1519 x 108 2:1519 x 108 03 03 82764 x 107
4 Sandwich — — — — — — —
Face sheet/(top/bot) 0-508 1-0691 x 107 68970 x 101° 6:8970 x 101° 0.3 03 2:6527 x 101°
Core/(top/bot) 10-16 2:6726 x 10° 89661 x 107 89661 x 107 03 03 3.4485x 107

86L
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Comparison of normalized frequencies of modes 1-5 for selected values of series constants for isotropic plate in Example 1 using Dong and Nelson

TABLE 2(A)

[14] and the present study

Normalized frequency Q

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Series

constant { Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present
0-001 1-77E-06 0-00000 0-00169 0-00169 1-00000 1-00000 1-87082 1-87082 2-00000 2-00000
0-1 0-01507 0-01507 0.16890 116890 1:01694 1:01694 1-84976 1-84977 2-02880 2-02880
05 0-28601 0-28601 0-82521 0-82521 1-33046 1-32946 173912 1773911 2:33302 2-33301
10 0-77450 0-77450 141421 141421 2-:00713 190725 2:00122 2-:00122 2-82554 2-82553
1-5 127690 1-27690 1-70532 170532 2-43446 2-43446 2-72221 2-72220 3-36031 3-36030
2:0 1-77234 177234 2-03357 2-03557 2-82942 2-82842 3-40363 3-40362 3-86798 3-86798
2-5 2-26021 2-26021 2-42276 2-42275 317617 317617 3-87468 3-87468 4-43179 4-43178
30 274192 2-74192 2-84330 2-84329 3-54097 3-54096 424264 4-24262 490994 490992
35 321876 321875 328220 328219 393423 393432 4-59687 4-59686 529977 529974
40 3-69177 369176 373134 373136 4-35291 4-35290 496357 4-96355 565683 5-65683
45 4-14187 4-16185 4-18642 4-18641 479110 479110 5-34826 5-34827 6:01294 6:01294
5-0 4-62981 4-62981 4-64494 4-64492 5-24396 5-24395 5-75050 5:75050 6-37946 6-37945
55 509630 509627 510552 5-10549 570762 570761 616802 616802 675950 675947
6:0 5-54174 5:56171 5:56734 5:56730 6:17926 6:17925 6-59841 6-59840 7-15305 7-15305
65 602654 6:02650 6-02993 6-02987 665679 665679 7-03944 703942 7-55915 7-55912
70 649096 649087 649287 649288 7-13875 7-13874 7-48924 7-48922 797632 797628
7-5 695510 695498 695630 695618 7-62405 7-62404 7-94623 7-94623 840314 840314
80 7-41890 7-41893 7-41960 7-41964 811191 811190 8-40923 840921 8-83843 8-83841
9-0 8:34604 834657 834711 8:34682 9-09317 9-07317 9-34916 9-34915 9:72975 9:72975
100 9-27405 9-27406 9-27462 9-27415 10-07952 10-07952 10-30300 1030301 10-64300 1064294

SHLV1d HLISOdINOD NI SNOILVYdIA 4504
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TaBLE 2(B)

Comparison of normalized frequencies of modes 610 for selected values of series constants for isotropic plate in Example 1 using Dong and Nelson
[14] and the present study

Normalized frequency Q

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Series
constant { Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present

0-001 3-00000 2:99999 3-74165 3-74164 4-00000 3-99999 5-00003 4-99999 561246 561246
0-1 2:99956 2:99957 3.74709 3:74708 4-00107 4-00106 5-00133 5:00130 561442 561442
05 2:99930 2:99928 3-86804 3-86803 4-02793 4-02793 5:03346 5-03345 5-65894 5-65891
1-0 3-07718 3-07718 412762 4-12762 4-17184 4-17183 5:14347 5-14343 577434 5:77430
1-5 3-36523 3-36523 4-34232 4:34232 4-:54624 4-54625 5-35953 5:35949 592526 5:92520
2:0 396524 396523 471897 471895 4-93137 4-93137 571403 5-71399 6-11445 6:11477
2:5 4-68826 4-68826 524636 524636 5:35272 5:35272 6-19023 6-19019 6-36861 6-36853
30 5:39273 5:39270 5-87202 5-87198 5-89074 5-89073 6-72063 6-72060 673051 6:73045
35 5:93473 5:93473 6-44472 6-44468 6:64583 6:64581 7-19654 7-19649 7-29425 7-29416
40 6:35149 6:35149 6:96655 6:96647 7-39390 7-39383 7-80677 7-80669 7-87921 7-29416
45 671761 671755 7-40043 7-40037 7-98701 7-98691 847404 847390 8:56957 8:56950
50 707111 7-07104 777781 777778 844633 844632 9-02313 9-02312 9-37531 9:37537
55 7-42773 T-42772 813329 813325 8:83726 8-83701 9-49242 9-49205 10-03930 10-03889
6:0 7-79352 7-79355 848540 848525 9-19743 9-19735 9-89509 9-89525 10-53630 10-53560
65 8:17044 817039 8-84321 8:84206 9-54808 9-54809 10:26270 10-26219 10-95430 10:95242
7-0 8:55842 8:55839 9-20724 920718 9-89977 9-89946 10-61410 10-61407 11-32810 11-32715
75 8:95702 8:95694 9-58171 9-58155 10-25630 10-25622 1096310 1096257 11-68260 11-68187
80 9:36525 9:36518 9:96570 9-96554 1062050 1062050 11-31420 11-31367 12-:03040 12:02943
9-:0 10-20700 1002695 10-76043 10-76043 11-37430 11-37398 1203450 12:03389 12-72840 12-72788

10-0 1107670 11-07665 11-58710 11-58691 1216010 1215977 12-78400 1278337 13-44840 13-44732
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Figure 2. Comparison of dispersion curves for the orthotropic plate of Example 2.

in comparison with Dong and Nelson [14] almost half the number of d.o.f.s have yielded
equally accurate results.

3.3. EXAMPLE 3

A sandwich plate composed of top and bottom face sheets having a core (eight sub-layers)
in-between has been analyzed using the present formulation. The material properties have
been tabulated under Table 1. The results obtained have been presented in Figure 3. It is
observed by comparing Figures 2 and 3 that the frequency spectra follow more or less
asymptotic path as the series constant ¢ reduces for a wide range of @ for the orthotropic
plate whereas the frequency spectra seems to be well dispersed for the sandwich plate due to
the inherent anisotropy. Moreover, the cut-off frequencies are higher for the sandwich plate
indicating higher stiffness.

3.4. EXAMPLE 4

A sandwich plate fabricated using top, bottom and middle face sheets and two cores
in-between has been considered in this example. The material properties are presented in
Table 1. The frequency spectra presented in Figure 4 can be observed to have higher cut-off



TABLE 3(A)

Comparison of normalized frequencies of modes 1-5 for selected values of series constants for orthotropic plate in Example 2 using Dong and
Nelson [14] and the present study

Normalized frequency Q

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Series
constant { Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present

0-001 0-00001  2-00E-05 0-01667 0-01667 0-98612 0-98612 1-97205 1-97204 2:95807 2:95802
05 0-47409  0-47408 8-12201 8-12201 8:34895 8:34895 8:51548 8:51547 8-:81109 8-:81102
1-0 096767 096770 13-94297 1394296 1626651 1626648 1660406 1660402 1679374 1679362
1-5 1-46163  1-46190 1577040 1577040 23-13048 23-13041 24-41266 24-41250 24-82032 24-82006
2:0 195587 195645 1629086 1629093 27-88608 27-88594 31-53800 31-53770 32-55984 32:55928
2:5 2:45018 245103 1653830 16:53848 30-35363 30-35344 37-49561 37-49508 39-79694 39-79607
30 2:94443  2:94545 1670788 1670818 31-54318 31-54300 41-82994 41-82910 46-26626 46-26495
35 3-43858  3-43969 16:85273 16-85312 32-18625 32-18612 44-59117 44-59007 51-:65667 51-:65469
40 393260  3:93375 1699207 1699256 32:58602 32:58595 46-26761 46-26638 5577596 5577324
45 442650 442765 17-13420 17-13475 32-86605 32-86601 4731711 47-31582 58-70208 58-:69875
50 492028 492141 17-28309 17-28370 33-08218 33-08218 48-:01538 48-01406 60-71343 60-70966
55 541397 541507 17-44075 17-44140 33-26247 33-26250 48-51039 48-50908 62-10466 6210060
6:0 590757 590864 17-60822 17-60890 33:42224 33-42229 48-88216 48-88085 63-09438 63-:09014
65 640111 640213 17-78599 17-78670 33-57043 33-57050 49-17592 49-17461 63-82400 63-81964

70 6:89458 689556 1797427 1797500 3371256 3371265 49-41854 49-41724 64-38161 64-37717
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TaBLE 3(B)

Comparison of normalized frequencies of modes 6-10 for selected values of series constants for orthotropic plate in Example 2 using Dong and
Nelson [14] and the present study

Normalized frequency Q

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Series
constant { Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present Reference [14] Present

0-001 3-94438 394411 493124 4-93052 591901 591769 6-90849 6-90630 7-90051 7-89744
0-5 9-19427 9-19403 9-66359 9-66299 10-20456 10-20334 10-81081 10-80873 11-47127 11-46823
1-0 1701859 1701825 1729672 1729595 17-61892 17-61744 17-98715 17-98468 18-:39881 18:39520
1-5 2505463 2505413 2527355 2527251 2552133 2551940 25:79919 2579605 2610622 2610171
2:0 33-01374 33-01287 33-29401 33-29261 33-52797 33-52556 33-76940 33-76550 3403142 34-02582
2-5 40-70838 40-70700 41-19499 4119296 41-51628 41-51327 4177435 4176966 4202216 42:01523
30 48-00686 48-00497 48-85904 48-85639 49-37047 49-36686 49-72726 49-72208 50-01261 50-00439
35 54-74312 54-74055 56-19647 56-19322 57-01286 57-00884 57-54445 57-53943 57-93219 57-92430
40 60-71406 60-71053 63-:09377 63-08974 64-37756 64-37318 65-17112 65-16668 65-72012 65-71463
45 6573531 65-73060 69-41228 69-40718 71-38219 71-37730 72:55643 72:55262 73-33534 73-:33302
50 69-72657 69-72062 75-00947 75-00299 77-92733 77-92169 79-63799 79-63470 80-73731 80-73816
55 7275822 7275114 7977773 79-76960 83-90579 83-89902 86-34156 86-33857 87-87727 87-88109
6:0 75-:00722 74-99923 83:68564 83:67574 89-22031 89-21200 92:58556 92-58247 94-69803 94-70451
65 76:67269 7666401 86-79148 86-77987 93-80773 93-79745 98:28955 98-28583 101-13616 101-14491
70 77-92226 77-91306 89-21654 89-20339 97-65883 97-64632 103-38745 103-38246 107-12655 10713691
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Figure 3. Dispersion curves for the laminated sandwich plate of Example 3.

frequencies of edge vibrations and still higher frequencies for larger values of series
constants. More light on the edge vibration effect in composite sandwich plates can be
thrown by investigating the mode shapes. However, such extensive modal analysis has not
been performed in the present work.

4. CONCLUSIONS

A higher order displacement-based model has been presented to analyze edge vibrations
in a laminated composite plate. The interlayer continuity of displacements and rotations
has been imposed while assembling the stiffness and mass matrices of each layer. The results
for isotropic as well as orthotropic plates have been shown to be in close agreement with the
published numerical results. The higher order displacement-based method proposed here is
observed to yield equally accurate results by using only about half the number of d.o.f:s in
comparison with the numerical techniques available in the literature. Significant differences
between the frequency spectra for homogeneous fibre-reinforced plate and laminated
sandwich plate have been observed.
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Figure 4. Dispersion curves for the laminated sandwich plate of Example 4.
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APPENDIX A

The mass matrix [ M] for a lamina of thickness 2k, has been explicitly evaluated as

78 27 22h —13h

[Mq] ph 27 78 13h —22h
M] = d [M{]=-"—= Al
[M] [ o 1] ™ BMI=s on e s —e |t AV
—13h  —22h —6h* 8h?
The stiffness matrix [ K] for a lamina is obtained to be
K K
[K]:[[ Al 51} a2
[Kel [K+]
Here
184 + 78B —184 + 27B 34h + 22Bh 34Ah — 13Bh
—184 +27B 64 + 78B —3Ah + 13Bh  —3Ah — 22Bh
[Ki] = 2 3 2 3 | (A3)
34h + 22Bh  —3Ah + 13Bh  8Ah” + 8Bh —2Ah* — 6Bh
34h + 13Bh ~ —3Ah —22Bh  —2Ah*> — 6Bh®  8A4h*> + 8Bh®
—15F —15E  15F + 15E 6Fh + 6Eh —6Fh — 6Eh
—15F —15E  15F — 15E —6Fh — 6Eh 6Fh + 6Eh
[Ks] = 2 2 | (A4)
—6Fh —6Eh  6Fh + 6Eh 0 —2Fh* — 2Eh

6Fh + 6Eh —6Fh — 6Eh 2Fh* + 2Eh* 0
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15E — 15F —15E — 15F  —6Eh — 6Fh 6Eh + 6Fh
15E + 15F —15E + 15F 6Eh + 6Fh —6Eh — 6Fh
[Ke] = 2 2 |» (A3)
6Eh + 6Fh  —6Eh — 6Fh 0 2Eh* + 2Fh
—6Eh —6Fh  6Eh + 6Fh  —2Eh* — 2Fh* 0
I8P +78Q  —18P +27Q  3Ph+22Qh 3Ph — 130h
—18P +27Q0 6P + 780 —3Ph + 130h  —3Ph —220Qh (A6)

[K7] = 2 3 2 3
3Ph +22Qh  —3Ph + 13Q0h  8Ph* + 8Qh —2Ph* — 6Qh
3Ph — 13Q0h  —3Ph —22Qh —2Ph*> — 6Qh®>  8Ph*> + 8Qh®

with

C55 Cll)vzh /’LCSS )LC13 C33 Csslzh
300’ 105 ° 30 ° 30 ° 30n° ¢ 105
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