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Finned projectiles that are meant to be unspun could acquire small roll rates in #ight due
to slight con"gurational asymmetries. If the roll rate matches the natural yawing frequency
of the projectile, a resonance phenomenon takes place resulting in yaw ampli"cation, and
possible loss of stability. To avoid this, "nned projectiles are deliberately spun to a roll rate
well beyond the resonance value. This gives rise to a passage-through-resonance
phenomenon in the #ight of "nned projectiles. Finned projectiles passing through resonance
are known to exhibit the phenomena of roll lock-in, transient resonance, and catastrophic
yaw. Projectiles locked in at the resonance condition experience large yaw and are likely to
lose the desired #ight path. On the other hand, transient resonance is a milder phenomenon
where the projectile locks in at resonance brie#y before continuing to build-up to the design
value. However, the yaw ampli"cation during the brief period of resonance may be su$cient
to destabilize the projectile. The problem of passage through resonance of "nned projectiles
with a center-of-mass o!set is considered in this paper. Roll lock-in and transient resonance
at normal and reverse resonance is shown. It is observed that the yaw ampli"cation at
transient resonance is much lower than that at lock-in. The lack of yaw ampli"cation can be
understood based on the bifurcation analysis and numerical simulations reported in this
paper.
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1. INTRODUCTION

Antitank kinetic energy projectiles are designed to engage their targets at high speeds. These
projectiles typically follow a horizontal, approximately straight line, trajectory with #ight
times of a few seconds. For maximum impact, they are launched with high muzzle velocities,
and are intended to #y without spinning and with no yaw. Static stability is achieved by the
use of "ns instead of the common practice of spin stabilization, while the desired zero-yaw
trajectory ensures minimum aerodynamic drag. These measures are meant to minimize the
bleed during the #ight of the kinetic energy at launch. The "ns also provide yaw damping to
damp out the precessional and nutational motion in case such a projectile experiences a yaw
disturbance in #ight. Properly designed "ns can therefore provide both static and dynamic
stability without the need for spinning the projectile.

In practice, "nned projectile trajectories can deviate from the ideal #ight described above
due to con"gurational asymmetries. These arise from damage to the "ns during launch or
#ight, or due to manufacturing tolerance [1]. Slight con"gurational asymmetries cause the
projectile to trim at a non-zero value of yaw, and may set the projectile into a rolling or
spinning motion. A small trim angle causes no harm by itself except for an increase in drag,
but the small roll rate can easily match with the frequency of nutational motion causing
a phenomenon called roll resonance or roll}yaw resonance. A projectile in #ight undergoing
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2 A. SHARMA AND N. ANANTHKRISHNAN
roll resonance, experiences an ampli"cation of the trim angle resulting in large-amplitude
yawing motion, which may cause instability.

The common solution to avoid roll resonance is to use canted "ns. On launch, the canted
"ns create a rolling moment that rolls the projectile through the resonance region to
a su$ciently large roll rate. Thus, as the projectile is spun up to the design roll rate in #ight,
the dynamics in roll experiences a passage-through-resonance phenomenon. While some
ampli"cation in yaw is to be expected during passage through resonance, in some instances,
the roll rate is seen to lock in at the resonance frequency resulting in large-amplitude yawing
motion, and loss of stability. This phenomenon has been called roll lock-in, roll}yaw lock-in
or spin}yaw lock-in. In other cases, the roll rate may linger for a while at the resonance
condition before eventually building up to the design value. This is a phenomenon called
transient resonance. If transient resonance persists over a signi"cant part of the #ight
trajectory, there is a possibility of trim angle ampli"cation and yaw instability, even though
roll lock-in per se does not actually occur. Another phenomenon is that of catastrophic yaw
where the roll rate is locked into an oscillation about the resonance frequency while the yaw
amplitude builds up to larger values than that during roll lock-in. Catastrophic yaw
invariably leads to loss of stability and destruction of the projectile.

Thus, the problem of passage through resonance of rolling "nned projectiles shows
a whole host of interesting phenomena. Prediction of these phenomena requires the
modelling and analysis of the dynamic equations for the #ight of these projectiles.

1.1. REVIEW OF PREVIOUS WORK

A linear model for the yawing motion of projectiles, referred to as the linear aeroballistic
theory [2], is capable of predicting the occurrence of roll resonance and the ampli"cation of
the trim angle at resonance. However, as the phenomena of roll lock-in, transient resonance,
and catastrophic yaw in the passage-through-resonance problem of "nned projectiles are
non-linear in nature, linear aeroballistic theory is incapable of predicting such phenomena.
Instead, a non-linear model for the coupled roll}yaw dynamics of the projectile #ight is
necessary.

The "rst attempt at modelling roll lock-in of "nned projectiles was made by Nicolaides
[3] who attributed the phenomenon to non-linear roll moments induced by the trim angle
under resonance conditions. The primary cause of these induced roll moments was
suggested by Price [4] to be an o!set center of mass. The equations of motion for a "nned
projectile with an o!set center of mass were formulated by Murphy [5], who showed that
both normal and reverse roll lock-in was possible. Murphy [5] considered a non-linear
induced roll moment due to the center-of-mass o!set, but assumed the aerodynamic forces
and moments to be linear. Minor corrections to the equations reported by Murphy [5] were
carried out by Ananthkrishnan and Raisinghani [6], who also showed the possibility of
occurrence of quasisteady roll lock-in. A detailed review of the theory of resonant lock-in of
rolling "nned projectiles with illustrative calculations has been provided by
Ananthkrishnan and Raisinghani [7]. Dynamic instabilities of missiles and re-entry
vehicles, including roll lock-in, have been reviewed in the papers by Murphy [8] and Platus
[9]. A recent paper by Platus [10] discusses the problem in the context of coning
instabilities in missiles and spacecraft.

The problem of transient resonance in "nned projectiles was not investigated in either of
references [5, 6]. Transient resonance in missiles with an o!set center of mass had earlier
been studied numerically by Price [4], and Barbera [11], and in the case of a non-linear
induced roll moment of aerodynamic origin, by Chadwick [12]. The question of whether
large yaw can be created due to trim ampli"cation during transient resonance has yet to be
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answered. Neither reference [5] nor reference [6] could demonstrate the phenomenon of
catastrophic yaw, although reference [6] did point out that quasisteady solutions were
possible where the roll rate could oscillate about the resonance frequency while the yaw
showed an unlimited build-up. In fact, the model in reference [6] needs to be extended to
include non-linear side forces and yawing moments in order to predict catastrophic yaw. At
present, the model of reference [6] can be used to study roll lock-in and transient resonance.

All of the previous work cited above were based on numerical simulations to investigate
the dynamic behavior of rolling "nned projectiles in #ight. Bifurcation analysis is a useful
tool for studying the various phenomena in the passage-through-resonance problem of
"nned projectiles. In the present paper, the coupled roll}yaw dynamics of "nned projectiles
with an o!set center of mass as given in reference [6] is analyzed by bifurcation methods.
The AUTO continuation algorithm of Doedel et al. [13] is used for carrying out the
bifurcation analysis. Stable normal and reverse resonant lock-in solutions are found to
originate at saddle-node bifurcation points. Changes in the stability of the lock-in and
design solutions with varying #ight and projectile parameters are investigated. Numerical
simulations are used to supplement the results from the bifurcation analysis. Passage
through normal and reverse resonance is studied, and the e!ect of transient resonance on
the trim ampli"cation is evaluated, throwing new light on the passage through resonance
phenomenon. The conclusions of this study have potential application to other problems of
passage through resonance, see for example, reference [14].

2. EQUATIONS OF MOTION

The equations of motion for the #ight of a "nned projectile are written in an aeroballistic
axis system. The aeroballistic axis system is a non-rolling reference frame in that the
aeroballistic axes do not roll with the projectile but they pitch and yaw with the projectile,
just as any other body-"xed axis system [7]. The coupled roll}yaw dynamic equations, as
given in reference [6], appear as follows, where the overdots indicate derivatives with
respect to dimensionless time t
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The derivation of these equations is available in reference [15].
Equation (1) is a "rst order equation for the roll dynamics, where /Q is a scaled roll rate,

such that /Q "$1 at resonance. Equation (2) is a second-order equation for the yaw
dynamics, where k is the complex angle of attack in the missile-"xed frame scaled with
respect to the trim angle magnitude at resonance. Thus, equations (1) and (2) represent a set
of "ve "rst order di!erential equations for the coupled roll-yaw dynamics. In the above
equations, h represents the trim asymmetry with orientation /
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The equilibrium solutions depend on the parameters /Q
s
, h, /

M
and G. Among these, values

of /Q
s
and h are maintained constant at /Q

s
"3 and h"0)1, while equilibrium roll rates

with varying G for values of /
M
"0, 90, 180 and 2703 are plotted in Figure 1(a}d). The

other parameters, HK , KK
p
, p, in#uence the stability of these equilibrium points and are

kept constant at HK "0)1, KK
p
"0)1, and p"0)1 for the computations in Figure 1.

Stable solutions in Figure 1 are indicated by a full line and unstable solutions by a
dashed line. Cases (a) and (b) show stable normal lock-in solutions for /Q +#1, while
Figure 1. Equilibrium roll rates with varying G for (a) /
M
"03, (b) /

M
"903, (c) /

M
"1803, and (d) /

M
"2703:

**, stable equilibria; ----, unstable equilibria; sss, saddle-node bifurcation points).



Figure 1. Continued.
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cases (c) and (d) show stable reverse lock-in solutions for /Q +!1. The design solution
/Q +3 is stable in all four cases.

Two interesting observations can be made from the plots in Figure 1. Firstly, it is seen
that for a given value of /

M
, there is a minimum value of G above which stable lock-in

solutions occur. Secondly, stable lock-in solutions are seen to be created at the saddle-node
bifurcation points [16], and are paired with an unstable solution with roll rate very near the
lock-in roll rate. These unstable solutions will be seen to play an important role in the
problem of passage through resonance.
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2.2. NUMERICAL SIMULATIONS

Figure 1 shows that multiple stable equilibrium solutions are possible for several
combinations of G and /

M
. For example, Table 1 lists all the equilibrium solutions for two

cases out of all the possibilities indicated in Figure 1. Case A for G"5, /
M
"903 shows

a stable normal lock-in solution and a stable design solution, while Case B for G"5,
/
M
"2703 shows a stable reverse lock-in solution and a stable design solution. Thus, cases

A and B in Table 1 show two stable equilibrium solutions each. Which of the two stable
equilibrium solutions is attained depends on the initial conditions at launch. The e!ect of
disturbances at launch is given naturally in terms of initial conditions on the yaw rate, with
the complex angle of attack and roll rate assumed to be zero initially. These two cases in
Table 1 will be used to illustrate the results in the rest of this paper.

In order to evaluate the probability of occurrence of the normal and reverse lock-in
solutions, numerical simulations are carried out with a matrix of 16 initial conditions of yaw
rate spanning a range of amplitudes and orientations of the initial disturbance. The steady
state attained for each of this set of 16 initial conditions for cases A and B is tabulated in
Table 2, where SD, SN, and SR refer to the stable equilibrium states listed in Table 1. It is
seen that 10 of the 16 initial conditions in case A end up at the normal lock-in steady state,
while only 1 of the 16 results in reverse lock-in in case B. Similar results can be observed for
other combinations of /

M
and G. Thus, it may be concluded that in case both normal

lock-in and design solutions are stable, the occurrence of normal lock-in is highly likely. On
the other hand, between stable reverse lock-in and stable design solution, the probability of
occurrence of stable reverse lock-in is very low.

Results of some of the simulations in Table 2 illustrating the passage through resonance
to the design solution, and lock-in at normal and reverse resonance are shown in Figures
2}4. Figure 2 shows simulation no. 13 for case A where the roll rate passes through
resonance and builds up to the design value while the magnitude of the complex angle of
attack dies to zero. According to the linear aeroballistic theory, the complex angle of attack
consists of three modes: nutation, precession, and trim. Stable dynamics implies that, at
steady state, the nutation and precession modes will have damped out, and the complex
angle of attack is precisely due to the trim component. However, in the transient phase
before attainment of steady state, all the three modes contribute to the yaw dynamics. The
TABLE 1

Equilibrium solutions and their stability

/Q
e

b
e

a
e

Stability

Case A: G"5, /
M
"903

!1)0857 0)2481 0.4086 Unstable (U)
!1)0268 0)7607 0)4027 Unstable (U)

1)0106 !0)9478 0)1989 Stable-normal Lock-in (SN)
1)2410 !0)0404 0)1759 Unstable (U)
2)8611 !0)0006 0)0139 Stable-design (SD)

Case B: G"5, /
M
"2703

!0)9765 !0)8347 0)3976 Stable-reverse Lock-in (SR)
!0)8816 !0)1536 0)3882 Unstable (U)

0)7536 0)0392 0)2246 Unstable (U)
0)9897 0)9687 0)2010 Unstable (U)
3)1148 0)0004 !0)0115 Stable-design (SD)



TABLE 2

Steady state solutions for test initial conditions

Simulation no. Initial yaw rate, kR
0

Case A Case B

1 0)1#0i SD SD
2 0)2#0i SD SD
3 0)5#0i SD SD
4 1)0#0i SD SD

5 0#0)1i SN SD
6 0#0)2i SN SD
7 0#0)5i SN SD
8 0#1)0i SD SR

9 !0)1#0i SN SD
10 !0)2#0i SN SD
11 !0)5#0i SN SD
12 !1)0#0i SN SD

13 0!0)1i SD SD
14 0!0)2i SN SD
15 0!0)5i SN SD
16 0!1)0i SN SD

Figure 2. Variation of roll rate /Q (----), and magnitude of complex angle of attack DkD (**) for simulation No.
13, case A in Table 2.
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initial build-up of the complex angle of attack magnitude in Figure 2 is mainly due to the
e!ect of the initial condition on the precession and nutation modes, and not because of trim
ampli"cation. Figure 3 shows the roll rate locking in at normal resonance in simulation no.
5 for case A. The initial yaw build-up is due to nutation and precession modes and is similar



Figure 3. Variation of roll rate /Q (----), and magnitude of complex angle of attack DkD (**) for simulation no. 5,
case A in Table 2.

Figure 4. Variation of roll rate /Q (----), and magnitude of complex angle of attack DkD (**) for simulation no. 8,
case B in Table 2.
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to that in Figure 2. However, even as these modes begin to die down, the complex angle of
attack starts increasing around time"20, corresponding to the roll rate locking in at
normal resonance. This increase is due to the trim mode. At steady state, the complex angle
of attack reaches the value given in Table 1. Figure 4 shows reverse lock-in in simulation
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no. 8 for case B. The build-up in the complex angle of attack occurs in a similar fashion to
that in Figure 3.

3. TRANSIENT RESONANCE

The test initial conditions in Table 2 have been listed in four groups based on the
orientation of the initial yaw rate. Consider the second group of test initial conditions
consisting of simulation nos. 5}8 for case A. It is seen that simulation nos. 5}7 result in
normal lock-in, but with increasing initial yaw rate, simulation no. 8 attains the stable
design solution. Thus, for some set of initial conditions between those of simulation nos.
7 and 8 in Table 2 for case A, transient normal resonance is likely. Likewise, simulation nos.
13 and 14 for case A suggest transient normal resonance, while simulation nos. 7 and 8 for
case B suggest transient reverse resonance.

Numerical simulation for the con"guration of case A is shown in Figure 5 for an initial
yaw rate of k5

0
"0#0)726i. There is a prolonged passage through normal resonance, but

no ampli"cation of the complex angle of attack is seen during this period. Figure 6 shows
the numerical simulation for an initial yaw rate of k5

0
"0#0)975i for the con"guration of

case B. The roll rate is seen to dither about the reverse resonance value for a considerable
period of time before passing through normal resonance and going on to the design value.
Once again, no yaw ampli"cation is seen during transient reverse resonance, although an
increase in complex angle of attack is evident around time"110, when the roll rate is near
the unstable normal resonance solution. Figures 5 and 6 seem to indicate that ampli"cation
of the trim angle of attack, as seen at lock-in in Figures 3 and 4, does not occur during
transient resonance.

It must be noted that these initial yaw rates are only representative, and the possibility of
transient resonance is not limited to these initial conditions. However it was noticed that
Figure 5. Variation of roll rate /Q (----), and magnitude of complex angle of attack DkD (**) for k5
0
"0#0)726i,

case A.



Figure 6. Variation of roll rate /Q (----), and magnitude of complex angle of attack DkD (**) for k5
0
"0#0)975i,

case B.
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while transient normal resonance was quite common, transient reverse resonance was found
to occur for a restricted set of initial yaw rates.

3.1. TRIM AMPLIFICATION

In order to evaluate the variation of the magnitude of complex angle of attack during
transient resonance, numerical simulation of the con"guration of case A is carried out for
a di!erent initial yaw rate, k5

0
"0!0)192i. The projectile is seen to experience transient

normal resonance for this initial condition. The yaw ampli"cation in this case is compared
with the yaw for an ideal case of G"0 with the same initial yaw rate. This comparison is
shown in Figure 7 where the roll rate for the ideal projectile builds up smoothly to the
design value of 3)0, whereas the projectile with center-of-mass o!set shows prolonged
transient resonance. A comparison of the magnitudes of the complex angle of attack in
Figure 7 shows that while the yaw during transient resonance is larger than in the ideal case,
there is no signi"cant build-up. Further, the numerical simulation of transient resonance in
Figure 7 is compared with that of a projectile with identical con"guration but with a slightly
di!erent initial condition that leads to normal lock-in. This comparison is plotted in
Figure 8 where the yaw response indicates a signi"cant drop in yaw magnitude for the
projectile in transient normal resonance (time"25}100) as compared to the yaw for the
projectile in normal lock-in. Thus, the evidence in Figures 7 and 8 indicates that transient
resonance does not result in trim ampli"cation unlike that noticed during lock-in.

The key to understanding this lack of trim ampli"cation lies in noticing that the roll rate
during transient resonance in Figure 8 does not match the lock-in roll rate. Referring to
Table 1, case A, it is seen that the roll rate during transient resonance corresponds to the
unstable solution paired with the stable normal resonance solution. The complex angle of



Figure 7. Variation of roll rate /Q (----) and magnitude of complex angle of attack DkD (**) for k5
0
"0!0)192i,

case A with (a) G"5, and (b) G"0.

Figure 8. Variation of roll rate /Q (----) and magnitude of complex angle of attack DkD (**) for case A with (a)
k5
0
"0!0)192i, and (b) k5

0
"0!0)2i.
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attack magnitude can be calculated to be 0)180 at the unstable solution as compared to
0)967 at the resonance solution. Thus, during transient resonance, the projectile temporarily
locks in at the unstable equilibrium close to the resonance condition. As the yaw
magnitudes associated with this unstable equilibrium are signi"cantly smaller than those at



Figure 9. Trajectory in b}a plane for k5
0
"0#0)726i, case A.
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resonance, trim ampli"cation at transient resonance is limited. Nevertheless, the yaw
magnitude at transient resonance is larger than that at the design solution (0)015 for case
A in Table 1).

Observation of the roll rate during transient resonance for the simulations in Figures 5
and 6 con"rms the above diagnosis. In each case, the roll rate during transient resonance
matches the roll rate of the unstable equilibrium pair of the stable normal resonance
solution. Further con"rmation can be sought by plotting the trajectory for the simulations
in Figures 5 and 6 in the b}a plane. The trajectory for passage through normal resonance in
Figure 5, plotted in Figure 9, can be seen to encircle the unstable equilibrium point at
/Q "1)241 for case A in Table 1 for a while before converging towards the design yaw near
the origin. Similarly, the trajectory for passage through reverse resonance, shown in
Figure 10, oscillates about the unstable equilibrium point at /Q "!0)882 for case B in
Table 1 before settling down at the design yaw near the origin. Thus, it can be concluded
that a projectile in transient resonance temporarily locks in at an unstable equilibrium
solution in the vicinity of the stable resonance solution. The resulting ampli"cation of the
trim angle during transient resonance is therefore much lower than that at lock-in. It can
also be argued in support of this conclusion that if the projectile were to exhibit a roll rate
and a complex angle of attack near that of the stable resonance solution, then it would most
likely be within the basin of attraction of that stable equilibrium, and would therefore
lock-in, rather than escape to the design solution.

4. BIFURCATION ANALYSIS

The above description of transient resonance also raises the possibility that a projectile
with stable design solution and an unstable equilibrium at normal resonance may
temporarily lock-in at resonance with large trim ampli"cation before attaining the design



Figure 10. Trajectory in b}a plane for k5
0
"0#0)975i, case B.
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steady state. A hint of this phenomenon is seen in Figure 6 where, after transient reverse
resonance, the roll rate builds up to the design value through a pair of unstable equilibria at
/Q "0)754 and 0)990. As the roll rate passes through the unstable resonance solution at
/Q "0)990, the yaw magnitude in Figure 6 shows a notable increase. It is therefore of interest
to explore the possibility of transient resonance with trim ampli"cation in cases where the
design solution is stable, whereas the resonance solution is unstable. Such cases are also of
practical interest since long-time transient resonance of this nature could result in the failure
of the projectile, while the stability analysis would indicate no stable lock-in.

From an inspection of equation (2), the two main parameters in#uencing the stability of
the yaw dynamics are the yaw damping HK , and the trim asymmetry h. Consider the
dynamics in case A, Table 1 where both the design and normal resonance solutions are
stable. With varying h or HK , if the normal resonance solution goes unstable while the design
solution still retains stability, then transient resonance with large yaw, as described above is
likely. Also, the question of whether stable normal resonance persists when the parameters
h and HK are varied from their baseline values needs to be answered. To this end, bifurcation
analysis of the equilibrium solutions in case A, Table 1 is carried out with one parameter,
h or HK , varied while the other parameters are held "xed.

4.1. VARIATION OF h

The bifurcation diagram with trim asymmetry parameter h varied 50 per cent about
its baseline value is plotted in Figure 11. The design solution is seen to lose stability
with both increasing and decreasing h at Hopf bifurcations. The limit cycles expected to
emerge at these Hopf bifurcations are not plotted in Figure 11 as their nature is strongly



Figure 11. Equilibrium roll rates with varying h for case A, Table 1: **, stable equilibria; ----, unstable
equilibria: j j, Hopf bifurcation.
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dependent on non-linear terms in the yaw equation that have been neglected in the present
formulation. The resonance solution is seen to remain stable along with its unstable
equilibrium pair. The instability of the design solution with varying h is well-known
and can be traced to the in#uence of the Magnus moment coe$cient Cm

pa in ¹K which is
included in the de"nition of h. Traditionally, onset of this instability is given in terms of
a gyroscopic stability factor s

g
and a dynamic stability factor s

d
, and is called Murphy's

stability criterion [8, 17]. As the normal resonance solution continues to be stable while the
design solution loses stability, transient normal resonance with large yaw is not likely to
occur in this case.

4.2. VARIATION OF HK

The bifurcation diagram with yaw damping parameter HK varied 50 per cent about its
baseline value is plotted in Figure 12. The design solution is again seen to lose stability with
both increasing and decreasing HK at Hopf bifurcations. This instability is the same as that
predicted by Murphy's criterion. Interestingly, the normal resonance solution also loses
stability at a Hopf bifurcation with decreasing HK , but for a value of HK less than that at the
Hopf point of the design solution. Thus, there is no range of HK with stable design and
unstable normal resonance solution. Transient resonance with large trim angles is,
therefore, not expected to be seen in this case either.

The instability of the normal resonance solution with decreasing HK has not been
previously predicted, although the possibility had been suggested in reference [6]. The Hopf
bifurcation of the normal resonance solution is expected to result in catastrophic yaw limit
cycles, provided the non-linear yawing moments, which have been neglected in the present
formulation, are taken into account.



Figure 12. Equilibrium roll rates with varying HK for case A, Table 1 **, stable equilibria, ----, unstable
equilibria; j j, Hopf bifurcation.
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5. CONCLUSIONS

The phenomenon of transient resonance in the passage-through-resonance problem of
rolling "nned projectiles with an o!set center of mass has been studied. Bifurcation analysis
of the equilibrium solutions reveals that stable normal and reverse resonance solutions are
paired with an unstable equilibrium point. When the projectile locks in at stable normal or
reverse resonance, a build-up in the complex angle of attack magnitude is seen. Similar yaw
ampli"cation is not observed during transient normal and reverse resonance. This is
explained by noticing that the projectile in transient resonance temporarily locks in at the
unstable equilibrium point paired with the stable resonance solution. Thus, the trim angle of
attack during transient resonance is much smaller than that at lock-in. Bifurcation analysis
is used to rule out transient resonance at unstable normal or reverse resonance, which could
have resulted in signi"cant yaw ampli"cation.

REFERENCES

1. A. G. MIKHAIL 1998 Journal of Spacecraft and Rockets 35, 287}295. Fin damage and mass o!set
for kinetic energy projectile spin/pitch lock-in.

2. E. J. MCSHANE, J. L. KELLEY and F. V. RENO 1953 Exterior Ballistics. Denver: University of
Denver Press.

3. J. D. NICOLAIDES 1959 Report 59}17, Institute of the Aeronautical Sciences. Two nonlinear
problems in the #ight dynamics of modern ballistic missiles.

4. D. A. PRICE 1967 Journal of Spacecraft and Rockets 4, 1516}1525. Sources, mechanisms, and
control of roll resonance phenomena for sounding rockets.

5. C. H. MURPHY 1989 Journal of Guidance, Control, and Dynamics 12, 771}776. Some special cases
of spin-yaw lock-in.

6. N. ANANTHKRISHNAN and S. C. RAISINGHANI 1992 Journal of Spacecraft and Rockets 29, 692}696.
Steady and quasisteady resonant lock-in of "nned projectiles.



16 A. SHARMA AND N. ANANTHKRISHNAN
7. N. ANANTHKRISHNAN and S. C. RAISINGHANI 1994 Journal of the Institution of Engineers (India)
74, 37}43. Theory of resonant lock-in of rolling "nned projectiles.

8. C. H. MURPHY 1981 Journal of Guidance, Control, and Dynamics 4, 464}471. Symmetric missile
dynamic instabilities.

9. D. H. PLATUS 1982 Journal of Guidance, Control, and Dynamics 5, 4}16. Ballistic re-entry vehicle
#ight dynamics.

10. D. H. PLATUS 1994 Journal of Guidance, Control, and Dynamics 17, 1012}1018. Missile and
spacecraft coning instabilities.

11. F. J. BARBERA 1969 Journal of Spacecraft and Rockets 6, 1279}1284. An analytical technique for
studying the anomalous roll behavior of re-entry vehicles.

12. W. R. CHADWICK 1967 Journal of Spacecraft and Rockets 4, 768}773. Flight dynamics of a bomb
with cruciform tail.

13. E. J. DOEDEL, X. J. WANG and T. F. FAIRGRIEVE 1995 Report A;¹O94: California Institute of
¹echnology. Software for continuation and bifurcation problems in ordinary di!erential
equations.

14. R. H. RAND, R. J. KINSEY and D. L. MINGORI 1993 International Journal of Nonlinear Mechanics
27, 489}502. Dynamics of spinup through resonance.

15. A. SHARMA 1999 B. ¹ech. Project Report, Department of Aerospace Engineering, Indian Institute of
¹echnology, Bombay. Passage through resonance of rolling "nned missiles with center-of-mass
o!set.

16. S. H. STROGATZ 1994 Nonlinear Dynamics and Chaos. Reading, Massachusetts: Addison-Wesley.
17. Y. L. LING and K. W. HAN 1980 Israel Journal of ¹echnology 18, 65}69. Stability analysis of

angular motion of rolling missiles.

APPENDIX A: NOMENCLATURE

C
D

drag force coe$cient
Cl

p
spin-damping moment coe$cient

CM
pa

Magnus moment coe$cient
CM

q
#CMa5

damping moment coe$cient sum
CM

0
asymmetry moment coe$cient

CMa
static moment coe$cient

CN
0

asymmetry force coe$cient
CNa

normal force coe$cient
G ("!(1/2h) (r(

c
d
¹

0
CNa

)[C
lp
#(I

x
/ml2)C

D
]~1[!(1!p)/M]0>5

H ("(oSl/2m)[CNa
!C

D
!(ml2/I)(CM

q
#CMaR

)])
h ("(HK !p¹K )/(1!p))
I transverse moment of inertia
I
x

axial moment of inertia
K

p
("!(oSl3/2I

x
) [C

lp
#(I

x
/ml2)C

D
]

l reference length, diam
M ("(oSl3/2I)C

Ma
m mass
r
c
( radial center of mass o!set, calibers

S reference area
s (":t

0
(u/l) dt)

¹ (oSl/2m)[CNa
!C

D
#(ml2/I

x
)CM

pa
])

t time
t
1

("[!M/(1!p)]0>5s)
u magnitude of the velocity
a, b angle of attack and sideslip in missile-"xed axes
d absolute value of m
d
TR

("!d
T0

/h)
d
T0

("!CM
0
)/CMa

), magnitude of non-rolling trim
h orientation angle of m in missile-"xed axes
m ("b#ia"de*h), complex angle of attack in the missile-"xed axes
o air density
p I

x
/I
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k ("m/d
TR

)
/
M

orientation angle of non-rolling trim
/ roll angle
/Q
s

design roll rate

Superscripts

( N ) complex conjugate
( L ) [!(1!p)/M]0>5( )
( R ) d( )/dt

1

Subscripts

e equilibrium value
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