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Civil engineering structures usually consist of a large number of members connected by
joints. The joints are "xed with di!erent types of fasteners, and they provide a certain
amount of #exibility towards the static and dynamic behavior of the structure. Model
updating of such a structure in practice is to improve the substructures followed by the joint
property identi"cation. This paper presents a method to update a super-element model of
such a structure. The parameter selection strategy of generic element is adopted and the joint
sti!nesses are treated as generic parameters to be updated simultaneously together with
other structural parameters. An experiment with a three-dimensional steel truss is studied to
illustrate the e$ciency of the proposed method.
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1. INTRODUCTION

A remarkable number of methods for updating the analytical model of structures have been
developed in the last few decades, as discussed in a survey paper by Mottershead and
Friswell [1]. Among them, there are broadly two categories of updating methods: direct
method and parameter method.

The direct methods or the matrix methods will always produce an updated model which
replicates the measured data exactly, and the Lagrange multiplier and matrix mixing
approaches have the advantage of computational e$ciency compared to other methods.
However, these methods do not provide any mechanism to control the parameter changes
in the updating process, and they will often lead to an updated model of little physical
meaning. Therefore, one of the fundamental questions in direct methods relates to the
criteria of allowable changes in the initial sti!ness and mass matrices. Some researchers, for
example, Berman [2], Berman and Nagy [3], and Baruch [4] allowed any symmetrical
changes in the matrices. The updated results were unsatisfactory because the connectivity
between nodes is not correctly described and the updated matrices are fully populated. To
keep the resemblance between the structure of the updated model and the structure of the
real object, Kabe [5] and Caesar and Peter [6] con"ned the symmetrical changes to
maintain the distribution of zero and non-zero elements only. Such changes avoided the
above-mentioned problems, but still failed to keep the positive (semi-) de"niteness of the
matrices.

Among many parameter methods, sensitivity-based methods such as the inverse
eigensensitivity method by Collins et al. [7] have proved very promising due to its stable
performance in practical cases where measured co-ordinates are incomplete. This method
was then improved by Lin et al. [8] to overcome the drawbacks in the assumption of small
error magnitudes and slow speed of convergence. While these mathematical methodologies
0022-460X/01/010019#21 $35.00/0 ( 2001 Academic Press
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of model updating become well established, the selection of parameters remains a
di$cult problem of engineers. A popular approach exempli"ed by Chen and Graba [9]
and Ho! and Natke [10] selects physical parameters to be adjusted, and keeps the
assumed element shape functions unchanged. Thus, the updated model will have
the correct de"niteness and connectivity properties. In practice, however, this method
is too restrictive because it carries the assumption that the initial model must exhibit
all e+ects of the real structure, such as shear, bending, twisting, and their coupling. If
the initial model neglects some of these e!ects, the method will fail to update the analytical
model.

A new parameter selection strategy for "nite element model updating was recently
proposed by Gladwell and Ahmadian [11] and Ahmadian et al. [12], in which they
introduce the concept of generic element sti!ness and mass matrices. The model updating
consists of two parts: de"ning the generic families of elements among which the &&real''model
exists; and "nding the appropriate parameter values to specify the model in these families.
In this way, the updated model obtained can predict the modal data well, and
simultaneously satisfy the required positivity and connectivity conditions.

All civil engineering structures consist of connections or joints between the structural
components. The various types of joints have signi"cant e!ects on the static and dynamic
behavior of the structures. Some experimental results [13] on assembled structures have
shown that much of the #exibility and up to 90% of the damping are contributed by joints.
The joints are "xed with di!erent types of fasteners; bolts, welds, nails, screws and secondary
components like angles, plates, gussets, and reinforcements. However, in practical
analysis and design practice, only three types of framing joints are considered: (1) fully
rigid joints; (2) perfectly pinned joints; (3) semi-rigid joints. Types I and II joints are
well de"ned, and it is known to researchers that the former implies complete rotational
continuity while the latter indicates no moment transfer. Yet, experimental investigation
[14, 15] show that the true joint behavior is intermediate between these two simpli"ed
extremes and somewhat non-linear. A super-element model on the Tsing Ma Bridge deck
has been constructed in the prediction of modal properties, and the di!erences between the
analytical and experimental torsional modes [16] are always greater than those for the
vertical and lateral transverse modes. This indicates that the #exibility of connecting joints
of the bridge deck cannot be ignored. Therefore, a joint is often extremely di$cult to model
accurately using a purely analytical method, and a range of joint identi"cation techniques
have recently been proposed to correct the mathematical model of the joint from
experimental data. A brief review of the joint identi"cation method has been given by
Ren [17].

Mottershead and Friswell [1] have discussed on the relationship between joint and the
system identi"cation problems, and they pointed out that the former is a special case of
system identi"cation. Nobari et al. [18] also compared the joint identi"cation and model
updating, and they drew the following conclusion: although joint identi,cation can be
categorically considered as a special case of model updating since similar mathematical
techniques can be used to tackle both problems, this does not imply that joint identi,cation
should be undertaken as part of model updating procedure since this is not a well-conditioned
problem and adding the joints as further unknowns will worsen the situation. Hence, they
should be dealt with separately.

This paper presents the application of the generic element into a super-element model,
and extends its usage into the join identi"cation problem by selecting the sti!ness of the
semi-rigid joints as generic parameters, and they are updated simultaneously with other
structural parameters. An experimental case study with a three-dimensional truss is used to
illustrate the e$ciency of the proposed method.
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2. THEORY

2.1. STIFFNESS MATRIX OF A HYBRID FINITE ELEMENT WITH FLEXIBLE END JOINTS

The sti!ness matrix of a hybrid "nite element with #exible end joints can be obtained
either by the stability function approach [19] or by the geometric sti!ness approach [20].
The former has a more accurate relation between the axial force and the lateral de#ection
through iteration in solving the exact coupled di!erential equilibrium equations. This
approach permits the use of one element to model one member in most cases. The latter
includes the second order e!ects due to axial load, and it has the advantage of ease of
formulation of the uncoupled equation. It does not require iterations to obtain an exact
value for the axial force. But more than one element is needed to model a jointed member.
Both methods can obtain an accurate solution and predict accurately the non-linear
behavior of the #exible joint. However, both approaches are not appropriate for updating
the initial "nite element model, since the derived matrices are too complicated with too
many unknowns in the model updating process which is not a well-conditioned problem
itself. A simpli"ed linear beam element with the #exible joint e!ects is proposed in this paper
for model updating. The three-dimensional beam with semi-rigid joints at both ends is
modelled by a beam element with three rotational springs at each end, as shown in
Figure 1(a). The springs represent the bending or rotational sti!ness about the three local
axes. The initial modelling errors in the semi-rigid joints is limited to the fabrication and
manufacturing defects which a!ect the #exibility of the group of joints.

Damping has been reported [21] to contribute to the modelling errors in a structure. The
damping originating from a semi-rigid joint has been a research topic for many years, and
no satisfactory formulation on its property has been developed which is suitable for
parametric model updating. Therefore, this research is only on the model updating of
sti!ness characteristics of the joints.

Considering the set of springs belonging to a massless connection element between the
beam and the joint as shown in Figure 1(b), the following equilibrium relations can be
obtained for moments at the member ends:
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where i"1, 2 3 denote the terms about the local x-, y- and z-axis, respectively, r
m
, r

n
are the

joint sti!nesses at the two ends, written as ri"p/(1!p) (4EI/¸) for i"2, 3 and
r1"p (1!p)(GJ/¸) in which p is the "xity factor, which will be zero for perfectly pinned
joints and one for perfectly rigid joints, the second moment of inertia of the member
cross-section about the x- and y-axis are assumed to be the same,
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respectively, the external and internal rotation about the ith axis as shown in Figure 1(b),
ki
pq

are the corresponding components of the sti!ness matrix of a conventional beam



Figure 1. (a) Three-dimensional semi-rigid joint model; (b) Nomenclature at connection.
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element if the bowing e!ect is ignored, given by
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Since the external forces and moments are applied at the external nodes of the jointed
member only, the applied moments about each axis at the internal nodes connecting the
beam element and the spring can be obtained by considering equilibrium of the connection
shown in Figure 1(b):
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Substituting equation (5) into equation (1), the sti!ness terms related to the internal nodes
are eliminated, and the condensed sti!ness matrix relating the moments and rotations
about the external nodes can be written as
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Adding the terms for the axial force to equation (6), and transforming the resulting 8]8
matrix to the nodal d.o.f.s of the element, the sti!ness matrix of the semi-rigid jointed beam
element can be written as
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in which ¹ is the 12]8 transformation matrix mapping the six external moments and two
axial forces to the nodal forces and moments in the local co-ordinates, respectively, given by

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 1/¸ 0 0 1 0 0 !1/¸ 0 0 0 0
0 0 1/¸ 0 0 1 0 0 !1/¸ 0 0 0

¹"
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1/¸ 0 0 0 0 0 !1/¸ 0 0 1 0
0 0 1/¸ 0 0 0 0 0 !1/¸ 0 0 1

(9)

It can be easily veri"ed that the semi-rigid jointed beam element expressed in equation (8)
is equal to a pinned joint beam element if the spring sti!ness is zero and equal to a rigid joint
beam element if the spring sti!ness is in"nite.

2.2. SUPER-ELEMENT MODEL

The "nite element models of modern civil engineering structures usually consist of a huge
number of d.o.f.s. The number of analytical d.o.f.s will be much greater than the number of
measured d.o.f.s. Although modal reduction [22] or modal expansion [23] techniques can
be used to obtain the spatially incomplete modal data, both techniques will give rise to
remarkable errors resulting in an ill-posed inverse problem with a large number of d.o.f.s.
A super-element model has been developed in the damage assessment project of the Tsing
Ma Bridge [24] to avoid this problem. The formulation of the bridge deck model of this



Figure 2. The super-element model for deck segment of the Tsing Ma Bridge.
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long suspension bridge in Hong Kong is used in this paper for illustration of the
super-element modelling.

The Tsing Ma Bridge is a long suspension bridge which serves as the link between the
new airport of Hong Kong and the commercial centres. The bridge deck is a two-level
enclosed structure, which carries a dual three-lane highway at the upper level and two
railway tracks and two tra$c lanes at the lower level. The whole deck structure can be
divided into segments between adjacent sets of suspenders 18 m apart, the arrangement of
which is shown in Figure 2(a). Each segment consists of 66 structural components of
longitudinal beams, cross-beams, bracings and sti!ened plates.

All the nodes of the super-element are allocated on the two outermost sections along the
longitudinal axis. Each end section consists of a number of nodes and several sub-elements
as shown in Figure 2(b), depending on the speci"c deck con"guration. In the type of bridge
deck under consideration, there are 10 master nodes and one slave node in the section. The
primary longitudinal beams and auxiliary longitudinal beams are connected to nodes 2, 5,
7 and 10 and 3, 4, 8 and 9 respectively. Nodes 6 and 11 are at the intersection of cross-beams
at the edges, and there are 14 cross-beams in the section, which are represented by the
segments in the "gure (the thicker lines indicate that there is also a sti!ened plate between
two adjacent longitudinal beams). Bracing members and sti!ened plates are not shown in
this "gure since they are not in the same section. The 66 structural members are: eight
longitudinal beams, 38 cross-beams, 16 bracing members and four sti!ened plates modelled
as four groups of sub-elements in the super-element. Nodes 3, 4, 8 and 9 each has three
translational d.o.f.s parallel to the local co-ordinate axes. To take into account the rigidity
of the triangular part enclosed by nodes 5, 6 and 7, it is assumed that these three nodes have
the same translational d.o.f.s in the X}> plane, and each has one di!erent translational
d.o.f. in the longitudinal direction. A similar assumption is made for nodes 2, 10 and 11. In
addition to the master nodal d.o.f.s, the slave node 1 possesses three d.o.f.s around the three
global co-ordinate axes of the cross-section. Consequently, the model will have 25 d.o.f.s in
one cross-section, and a total of 50 d.o.f.s in the super-element, whereas there will be more
than 300 d.o.f.s if a standard three-dimensional "nite element model is adopted. It is evident
that the number of d.o.f.s will be signi"cantly reduced by the use of this super-element.

The following paragraphs give the formulation of the contribution of one type of
sub-element, i.e., the longitudinal beams, to the sti!ness matrix of the super-element from
the variational principle of minimum potential energy. Those from the cross-beams, bracing
members and the sti!ened plates are not presented.



Figure 3. Longitudinal sub-element.
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Figure 3 shows that the origin C of the longitudinal sub-element is seated at the center of
gravity of the cross-section of the longitudinal beam. Let the three independent
translational displacements of C be MuN , vN , wN NT, and the global rotations of the super-element
section around the X-, >- and Z-axis be M/

X
, /

Y
, uNT, the de#ections of an arbitrary point

(x, y) in the beam section can be expressed as
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The strain in the z direction can be obtained as
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Considering the longitudinal beam as a Timoshenko beam with two-way bending, its
strain energy can be written as
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Substituting equation (11) into equation (12), and with some mathematical simpli"cation,
we have
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where A is the cross-sectional area, I
x
, I

y
are the sectional moments of inertia of the beam

cross-section with respect to the x- and y-axis, respectively, and I
xy
":xy dA. The

de#ections, i.e., uN , vN of an arbitrary section along the longitudinal beam can be assumed in
the form of a Hermite polynomial to include the contribution of bending modes:
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where h is the length of the beam, and the subscripts 1 and 2 denote the values in the end
sections of the super-element. The de#ection vN has a similar form as uN . However, the
longitudinal de#ection wN may be assumed in a linear form:
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The global rotations of an arbitrary section M/
X
, /

Y
, uNT also take up the same linear form

as for wN . Substituting these six shape functions in the forms of equations (14) and (15) into
equation (13), the strain energy of the beam can be expressed in terms of the nodal
displacements. After applying the second partial derivation of the strain energy with respect
to the nodal displacements, we have the equilibrium equations as
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in which M;N
lb

is the nodal displacement vector, MFN
lb

is the nodal force vector, and the
12]12 matrix [K]

lb
is the sti!ness matrix contribution of the longitudinal beam

sub-element to the super-element.

2.3. SUPER-ELEMENT WITH SEMI-RIGID JOINTS

To take into account the e!ects of the #exible joints at the two ends of the longitudinal
beam, the formulation in equations (1)}(8) can be repeated at the sub-element level.
However, the components ki

pq
in the conventional sti!ness matrix of a beam element should

be replaced by the terms of the longitudinal beam sub-element, i.e.,
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In addition, the mapping matrix ¹ in equation (8) should also be reconstructed as
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2.4. MODEL UPDATING WITH GENERIC PARAMETERS SELECTION

Amongst the many existing mathematical approaches for model updating, the improved
inverse eigensensitivity method (IIEM) [8] is used in the present study due to its stable
performance and also because it does not require complete measured modal data. The speci"c
eigenvalue and eigenvectors sensitivities for the rth mode are separately calculated by
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where p
k

is the kth selected updating parameter, [K] and [M] are the sti!ness and mass
matrices of the whole structure, respectively, and the subscripts a and x denote the
analytical and experimental values respectively.

After the improved eigenvalue and eigenvector sensitivities are computed, the model
updating using the IIEM can be formulated as
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where H is the total number of selected updating parameters, and m modes are measured.
Assuming that N is the number of measured co-ordinates, the total number of linear
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equations in equation (23) is m](N#1), because each mode provides N equations from the
measured mode shapes and one equation from the eigenvalue. An iterative procedure is
used to solve the coupled equation (23) and to update the selected parameters p

i
, because

the eigensensitivities given by equations (21) and (22) are based on the "rst order
approximation. Convergence is achieved when the Euclidean norm of the vector MDpN
reaches a prescribed small value.

Although many mathematical approaches for model updating have been developed, the
strategy for selecting updating parameters remains relatively new in this research area. For
structures with a group of #exible joints, the usual and practical approach to the updating
problem consists of the following two steps: update separate substructures without any
joints, and then assemble them together and identify the joints. In this paper, the concept of
generic element [12] is introduced into the proposed super-element model for the selection
of updating parameters. All the structural variables at sub-element level and the
characteristics of the semi-rigid joints are candidates for selection as the generic parameters,
and they will be updated simultaneously in the computation.

The generic element is brie#y described below. For an individual sub-element with
z d.o.f.s, its free vibration is governed by

([Kse]!j
i
[Mse])M/N

i
"0, i"1, 2,2, z, (24)

where [Kse], [Mse] are the sti!ness and mass matrices of the sub-element obtained above. If
the sub-element has d rigid-body modes and z!d strain modes, the modal shape matrix
can be written in partitioned form as

[Use
0
]"[/

1
,2,/

d
D/

d`1
,2, /

z
]"[U

0R
, U

0S
], d)6, (25)

in which the supscript 0 denotes the initial value, and R and S denote rigid-body and strain
modes respectively. It is assumed that an alternate set of modal vectors can be derived from
the initial ones by [Use]"[Use

0
][S]~1, or

[U
0R

U
0S

]"[U
R

U
S
]C

S
R
0

S
RS
S
S
D (26)

in partitioned form, where [S] is some non-singular matrix. This shows that the new
rigid-body modes are linear combinations of the original ones, and their d number of
rigid-body modes remain unchanged, while the new strain modes are combinations of all
the original modes.

The modes of a sub-element are normalized with respect to [Mse] and [Kse], where

[Mse]"[Use]~T[Use]~1, [Kse]"[Use]~TC
0

0

0

K
S
D[Use]~1, (27)

in which [K
S
] contains the eigenvalues of the strain modes on the leading diagonal.

Substituting equation (26) into equation (27), and using the fact that [Use
0
]~T"[Mse

0
][Use

0
],

we have

[Mse]"[Mse
0
][Use

0
][;][Use

0
]T[Mse

0
], [Kse]"[Mse

0
][U

0S
][<][UT

0S
][Mse

0
], (28)

in which [;]"[S]T[S] and [<]"[ST
S
][K

S
][S

S
]. If the modal data of a sub-element

matrix is available, a continuous family of sub-elements among which the updated model is
sought, can be de"ned by pre-de"ning the style of the matrices [;] and [<] on physical
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grounds and selecting their component parameters as updating parameters. In this way, we
can take into account not only those e!ects we are aware of and not de"nite such as the
semi-rigid joints, but also all the other e!ects that are accommodated in the generic family.

The longitudinal beam-type sub-element is taken again as an example. A symmetric plane
is selected for the super-element as the perpendicular plane passing through the deck
segment at midspan. All the modes of an individual longitudinal beam in the structure are
governed by symmetry or asymmetry groups, and each partitioned matrix, i.e. [S

R
], [S

RS
],

and [S
S
] [15] in equation (26) can be assumed to be diagonal [11]. Moreover, if the new

model is supposed to represent a beam with the same mass and inertia moment as the initial
one, [S

R
] would become the unity matrix [I

d
], and [S] has the form

[S]"

1 S
1,7

} }

1 S
6,12

S
7

}

S
12 12]12

. (29)

Thus, we obtain [;] and [<] as

[;]"[S]T[S]"

1 u
1,7

} }

1 u
6,12

u
1,7

u
7

} }

u
6,12

u
12 12]12

,

[<]"[S]T[K
S
][S]"

v
1

v
2

}

v
6 6]6

. (30)

Consequently, there are 18 parameters (12 in matrix [;], and 6 in matrix [<]) to be
updated for all the longitudinal beam-type sub-elements with #exible joint e!ect in the
generic element family.

Applying this generic strategy of selecting updating parameters to the IIEM mathematical
model, the matrices of derivative in equations (21) and (22) can be calculated by

L[M]

Lp
k

"

L
+
i/1

0

}
L[Mse

i
]

Lp
k }

0

,
L[K]

Lp
k

"

L
+
i/1

0

}
L[Kse

i
]

Lp
k }

0

, (31)
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in which

L[Mse
i
]

Lp
k

"[Mse
0i
][Use

0i
]

L[;]

Lp
k

[Use
0i
]T[Mse

0i
],

L[Kse
i
]

Lp
k

"[Mse
0i
][Use

0Si
]

L[<]

Lp
k

[Use
0Si

]T[Mse
0i
], (32)

where p
k
are the selected generic parameters, and ¸ is the number of sub-elements speci"ed

in the super-element model.

3. EXPERIMENT

3.1. THE EXPERIMENT

The di!erent components of structural modelling and model updating are illustrated in
an experiment. A modal test is performed in the laboratory on a three-dimensional 10-bay
cantilevered truss structure which consists of prefabricated steel members and joints as
shown in Figure 4. The truss members are steel tubes with a longitudinal dimension of
0)4 m, and the joints are interchangeable hollow balls connected to the members with steel
bolts (Figure 5). The distance between the centres of two adjacent balls is exactly 0)5 m after
fabrication of the truss. All the connection bolts are tightened with the same torsional
moment to avoid asymmetry and non-linearities e!ects under the loading or vibration
conditions. Table 1 summarizes the main material and geometrical properties of the
components of the test structure.

The modal test was performed using a Link Dynamic System model 450 shaker and seven
B & K 4371 piezoelectric accelerometers. A continuous random signal in the 0}100 Hz
bandwidth was input by the shaker to the concrete pier at the "xed end of the truss. The
horizontal and vertical transverse displacements were measured at each of the 40 joints
through 16 sets of measurements. A total of 80 d.o.f.s were measured. The "rst set of
measurements is from seven d.o.f.s selected evenly along the length of the truss. Their
Figure 4. The 10-bay three-dimensional truss.



Figure 5. A joint of the truss.

TABLE 1

Material and geometrical properties of the test structure

Properties Beam Bolts Balls

Young's modulus (N/m2) 2)10E11 2)10E11 2)10E11
Area (m2) 6)597E-5 * *

Density (Kg/m3) 1)2126E4 1)2126E4 1)2126E4
Mass (Kg) 0)32 0)09 0)23#0)072s

The Poisson ratio 0)3 0)3 0)3
Moment of inertia I

xx
(m4) 3)645E-9 * *

Moment of inertia I
yy

m4) 3)645E-9 * *

Torsional rigidity J (m4) 7)290E-9 * *

sAdditional mass was added to each joint to balance the mass of the accelerometer.
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responses will act as reference to the subsequent sets of measurements. Five other d.o.f.s
were measured in each of the remaining sets of measurements with two of the reference
d.o.f.s measured again. The measured mode shapes for the "rst 16 modes are shown in
Figure 6. An additional mass was added to each joint to balance the e!ect of the moving
accelerometers.

Modal analysis was performed on the initial analytical model to compare the results with
those from the modal test of the real structure. The measured mode shapes exhibit a pattern
of having two transverse modes followed by one torsional model. This pattern is repeated
4 times in the "rst 12 measured modes. However, the torsional modes are coupled with
a severe warping e!ect, which can be easily noticed from the deformed 4-nodes
cross-sections of the structure, as shown in Figure 7(a). The corresponding analytical mode
shapes have cross-sections which remain in squares, as shown in Figure 7(b). It is evident



Figure 6. Measured mode shapes of the test structure.
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that the #exible joint e!ect is signi"cant in the test structure and it cannot be ignored. The
same e!ect would also exist in the steel truss structure of the Tsing Ma Bridge deck.

3.2. THE SUPER-ELEMENT AND THE MODEL UPDATING

The super-element modelling technique with semi-rigid joints described in sections 2.2
and 2.3 is used to construct an analytical model for the test structure. The cantilevered
10-bay truss is divided into "ve super-elements in the longitudinal direction, each consists of



Figure 6. Continued.
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four longitudinal beam-type sub-elements and 12 cross-beam-type sub-elements connected
by semi-rigid joints. The super-element model of the beam segment is shown in Figure 8.
There are four master nodes at the corners and one slave node at the centre of the end
section. Each master node has three translational d.o.f.s parallel to the local co-ordinate
axes. Each slave node has three rotational d.o.f.s about the three global axes of the end
section. There are a total of 15 d.o.f.s in each end section, and there are 10 nodes (eight
master and two slave) and 30 d.o.f.s for each super-element. Altogether there are 30 nodes
and 75 d.o.f.s for the whole structure. This model is much smaller than the conventional



Figure 7. (a) Torsion and warping coupled mode of the test structure (ninth mode). (b) Pure torsional mode of
the analytical model (ninth mode).

Figure 8. Super-element model of truss segment.
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"nite element model which has 240 d.o.f.s. For the initial structural model, the connection
sti!ness of the joints is assumed to be large by putting the "xity factor p equal to 0)9999,
which implies very rigid joints connecting the members. The variation of the joint sti!ness is
plotted against the number of iterations in Figure 9. The "xity parameters r1, r2 and r3
converge to 0)63, 0)85 and 0)80 respectively.

The experimental and analytical modal frequencies are compared. Figure 10(a) shows
that the initial super-element model predicts the frequencies of the lower modes accurately
and the di!erences increase and become noticeable as the mode order increases, especially
for those torsional and warping coupled modes. Moreover, the analytical mode order is not
consistent with the measured result for the higher modes starting from the ninth mode.
There are only torsional modes in the analytical results, and the warping e!ects are not
observed since the #exible joints in the analytical model are assumed to be perfectly rigid.

The di!erences in the natural frequencies and mode shapes can be attributed to two
sources, (1) the super-element model ignores some physical e!ects by introducing the
sectional d.o.f.s and condensing the sti!ness (mass) relations of the sub-elements; and (2)
more signi"cantly, the behavior of the #exible joints cannot be described in the analytical
model because of the perfectly rigid joint assumption.

The generic sub-element families for the longitudinal beam and cross-beam are de"ned,
respectively, by equation (28), among which the true model exists and it can be sought by
properly evaluating the selected generic parameters. Eighteen parameters are selected as



Figure 9. Convergence of "xity parameters r1, r2, r3 of joints.

Figure 10. (a) Natural frequencies of the truss;*r*, Test; original SEM model; , updated SEM model. (b)
Di!erence in the natural frequencies between the analytical and experimental models (T*torsional mode;
W*warping mode): , original SEM model; , updated SEM model.
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illustrated in equation (30) to build a longitudinal beam generic family. However, 108
parameters are needed to de"ne the cross-beam generic family since the sub-elements of this
type lack the symmetry or asymmetry information on the super-element d.o.f.s. Although
there are large number of sub-elements in the structural model, we can limit the number of
unknown variables to an acceptable level by using the macroparameters shared by all the
sub-elements of the same type. It is noted that the "nite element model errors are not
located in local parts in practice, but distributed spatially and widely in the whole structure.
To further reduce the number of parameters, we can also consider the recommendations by
Ross [25], to update only the dominant modes, i.e., higher modes of [Mse] and lower modes
of [Kse] in equation (28), while keeping the others unchanged.
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The IIEM approach is then used in the model updating process. The "rst 10 measured
modes, excluding the third mode, are selected as the active modes. The third measured
mode has some inconsistent phase information and is not used. Eigenvalue and eigenvector
sensitivities of these modes are calculated by equations (21) and (22) to form the
eigensensitivity matrix in equation (23). Those unmeasured elements of the modeshape
vector M/

x
N
r
, which are the rotational d.o.f.s and the longitudinal translation d.o.f.s, are

replaced by their analytical counterparts in the computation of the eigensensitivities.
Consequently, there are altogether 9](40#1) linear algebraic equations involved in the
updating solution (40 equations from the measured d.o.f.s corresponding to the d.o.f.s of the
super-element and one equation from the measured eigenvalue for each mode).

The updating results exhibit good correlation with the measured modal data as shown in
Figures 10. The di!erences in the natural frequencies are signi"cantly reduced not only at
the nine active modes, but also at the higher passive modes with a maximum di!erence less
than 6%. The incorrect mode order in the initial model is also corrected and consistent with
the modal test result. This observation, as discussed by Keye (26), suggests that the
modelling errors are fully corrected by the updating process and a re"ned model close to the
real structure is obtained. Otherwise, the results will have a similar characteristic to that
from the direct updating methods, which exactly repeat the test data at active modes but fail
to predict the modal properties at higher passive modes.

The pure torsional mode numbers 3, 6, 9, 12 and 16 in the initial model are updated to
become torsional modes coupled with warping e!ects, which are similar to those obtained
from the experiment. Modal assurance criteria (MAC) are also calculated to check on the
accuracy of the updated mode shapes. Table 2 lists the diagonal elements of the mass
normalized MAC [21] between the measured modes and the analytical modes (initial and
updated). It is seen that the MAC for the updated model have improvements over those
from the initial model in all 16 modes. The values for the higher complex modes are
relatively small which suggests that there are still some discrepancies between the updated
model and the real structure.
TABLE 2

Diagonal elements of the mass normalized MAC

Mode Measured frequency Initial Updated
(Hz) MAC MAC

1 3)658 0)926 0)937
2 3)841 0)934 0)958
3 5)061 0)853 0)884
4 11)402 0)889 0)912
5 11)646 0)874 0)923
6 15)305 0)822 0)864
7 19)939 0)856 0)882
8 20)426 0)835 0)905
9 25)853 0)779 0)846

10 29)329 0)812 0)838
11 29)999 0)806 0)831
12 36)95 0)727 0)792
13 39)267 0)755 0)813
14 40)243 0)774 0)843
15 41)706 0)713 0)752
16 48)292 0)686 0)771
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3.3. DISCUSSIONS

The super-element model can be used to achieve good updated results for the lower
frequency modes but not for the higher frequency modes. A perfectly re"ned model that
represents the real structure is not achieved, and the updated results have error which
increases as the modal order increases. The "rst type of error is due to the incorrect
assumptions made while condensing the "nite element d.o.f.s to those of the super-element.
The second type of error is from the di!erence in the macro updating parameter in di!erent
members resulting from di!erent ways of assembling the test structure. But the more
signi"cant error comes from the incomplete measurement, particularly from the rotational
d.o.f.s which cannot be measured in this study. Half of the d.o.f.s in a conventional "nite
element model of the truss are rotational d.o.f.s. The super-element model has the advantage
that the rotational d.o.f.s are condensed and it has a smaller proportion of rotational d.o.f.s
than the conventional "nite element model. There are only 15 rotational d.o.f.s within
a total of 75 d.o.f.s for the whole test structure. It is therefore considered that the use of all
the lower mode shapes in the identi"cation would reduce the "rst type of error while the
other types of errors cannot be avoided.

4. CONCLUSIONS

This research addresses the problem on how to improve the structural model of a large
engineering structure with semi-rigid joints using vibration measurement. The structure is
modelled by di!erent types of super-elements connected together with semi-rigid joints.
Generic families of the elements are grouped together, and generic parameters of the
structural system and the joint sti!nesses are selected as updating parameters. The system
identi"cation of the structure and joint identi"cation can be performed simultaneously in an
updating process The e$ciency and accuracy of the model updating can therefore be
improved signi"cantly since the joint identi"cation is carried out as part of the model
updating process.
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APPENDIX A: NOMENCLATURE

ri
m

the connection sti!ness of joint m about the ith local axis
[¹] the mapping matrix to nodal displacement vector for conventional beam element
[¹*] the mapping matrix to nodal displacement vector for longitudinal-beam-type

sub-element
[Kse] sti!ness matrix of sub-elements
[Mse] mass matrix of sub-elements
[K] sti!ness matrix for the structure
[M] mass matrix for the structure
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[Use] mode shape matrix of sub-elements
[Kse] eigenvalue matrix (diagonal) of sub-elements
[U

R
] rigid-body mode shape matrix of sub-elements

[U
S
] strain mode shape matrix of sub-elements

p
k

the kth selected generic parameter
Lj

r
/Lp

k
eigenvalue sensitivity for the rth mode

LM/N
r
/Lp

k
eigenvector sensitivities for the rth mode

L[K]/Lp
k

the derived sti!ness matrix with respect to p
kL[M]/Lp

k
the derived mass matrix with respect to p

kL[Kse
i
]/Lp

k
the derived sti!ness matrix of the ith sub-element with respect to p

kL[Mse
i
]/Lp

k
the derived mass matrix of the ith sub-element with respect to p

kj
i

the ith eigenvalue of sub-elements
M/N

i
the ith eigenvector of sub-elements

(j
a
)
i

the ith eigenvalue of analytical model
M/

a
N
i

the ith eigenvector of analytical model
(j

x
)
r

the rth eigenvalue of experimental model
M/

x
N
r

the rth eigenvector of experimental model
MDpN vector of generic parameter changes
S transfer matrix for generic sub-elements family
¸ number of sub-elements speci"ed in super-element model for the structure
N number of d.o.f.s speci"ed in super-element model for the structure
m number of measured (active) modes
H number of selected generic parameters
z number of d.o.f.s speci"ed in individual sub-element
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