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Vortex-induced loads on slender one-dimensional structures vibrating at lock-in
conditions consist of a self-induced part in phase with the velocity of the structure in
addition to an additive, almost harmonially varying component representing the same type
of load as the vortex-induced force on a "xed cylinder. Simiu and Scanlan (1996=ind E+ects
on Structures. New York: John Wiley & Sons Inc.) have proposed a widely used model for
the self-induced part of the load based on a van der Pol oscillator. The aim of this paper is to
investigate the optimal design of tuned mass dampers for such a load model. The method of
analysis is based on the averaging method (Krylov}Bogoliubov}Mitropolsky "rst order
perturbation analysis) for weakly non-linear systems. Several interesting "ndings have come
out of the analysis. First, it is shown that, if the additive loading is omitted, the vibrations
will be completely removed in an interval of the frequency tuning in contrast to the case of
harmonic loading, where total damping of the primary system at optimal tuning is only
possible when no structural damping is present. The stability of the theoretically possible
motions is checked at di!erent levels of viscous damping in the tuned mass damper. From
this analysis it is concluded that introducing less damping than used for harmonic load, in
order to achieve optimal results, may prove more e$cient as far as van der Pol oscillator
load model is concerned. The theory has been applied to passive damping control of the
Rio}NiteroH i steel girder bridge, Rio de Janeiro, which is occasionally severely exposed to
vortex-induced vibrations.

( 2001 Academic Press
1. INTRODUCTION

Vortex-induced loads may in#uence the response of slender one-dimensional structures
with low structural damping such as steel bridge decks and steel chimneys under certain
conditions. When the Strouhal vortex-shedding frequency is close to one of the natural
frequencies of the structure, the vortex shedding may be controlled by the structure at the
natural frequency leading to large resonant vibrations. This synchronization of the
vortex-shedding frequency and one of the natural frequencies is known as frequency lock-in.

At lock-in, a self-induced load component in phase with the structural velocity is built up
in addition to the vortex-induced, almost harmonially varying load. The self-induced load
acts as an equivalent negative viscous damping at small vibration levels which will further
enhance the response level of the structure, especially if the structural damping is relatively
small. The self-induced load is known to diminish as the vibration load increases.
Physically, this self-limitation has been explained as the shedding of more than two vortices
per vibration period at su$ciently large vibration levels, resulting in a non-resonant
excitation [2]. A thorough analysis of this #uid}structure interaction problem requires the
0022-460X/01/020217#15 $35.00/0 ( 2001 Academic Press
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integration of the Navier}Stokes equations. Although this has become possible, at least for
two dimensional (2D) #ow conditions, it is still a large computational task. For this reason
a number of simpli"ed models have been suggested in the literature. Starting with Hartlen
and Currie [3], the so-called wake oscillator models were formulated, where a linear
single-degree-of-freedom (SDOF) oscillator representing the structure interacts with a
non-linear oscillator representing the oscillations of the surrounding #uid. Later
modi"cations to this concept were due to Skop and Gri$n [4], who tried to improve the
predictions of the model by introducing a non-linear spring sti!ness, and by Iwan and Blevins
[5], who attempted to derive the wake oscillator equations from momentum balancing
equations for the near-#ow "eld. An extensive review of these e!orts as well as their
shortcomings was given by Sarpkaya [6]. Recently, Krenk and Nielsen [7] have suggested
a simple modi"cation of the wake oscillation equations, where the idea is that the coupling
terms between the two oscillators should represent the balance of energy #owing between the
two systems. With this modi"cation, they were able to show that many of the shortcomings of
earlier formulations of wake oscillator models in predicting the length of the lock-in interval
the amplitude hysteresis at change of the wind velocity, etc., could be overcome.

Alternatively, a simple model has been suggested by Simiu and Scanlan [1] where the
self-induced and self-limiting load component is modelled by a van der Pol oscillator. With
suitable calibration, amplitude data can be represented quite accurately by this model. The
odel has been further elaborated and veri"ed by Goswami et al. [8, 9] and Larsen [10]. Due
to its simplicity and accuracy this model has been adopted for the vortex-induced load in
this study.

The vibration problem due to lock-in has been solved for steel chimneys by
implementation of di!erent damping devices and helical strakes; see, for example, Dyrbye
and Hansen [11]. A number of modern high-rise buildings such as the John Hancock
Tower in Boston and the Crystal Tower in Kobe, have also been equipped with control
systems to prevent vibrations (see, for example, Connor and Klink [12]). Furthermore,
great interest has recently been given to damping of vortex-induced vibrations on bridge
decks. An example is the East Bridge approach spans of the Great Belt Bridge, Denmark
(see, for example, Livesey and Larose [13]).

Given the quasi-harmonic nature of the vibrations that occur at lock-in, an obvious
choice of vibration control is the use of tuned mass dampers (see, for example, Korenev and
Reznikov [14]). This relatively simple form of passive dynamic control is obtained by
attaching a control mass to the main structure using a spring and damping device and
assuming viscous damping. The three parameters, mass, spring sti!ness and damping
coe$cient, must be tuned for optimal performance of the control system.

Alternatively, an active or semi-active control system can be used although it should be
kept in mind that active control is dependent on external energy supply. Batista and Pfeil
[15] have shown that further reduction of the vortex-induced vibrations on a bridge deck
can be achieved in this way. In this paper, however, passive, dynamic control with tuned
mass dampers will be considered, where a novel approach to the optimization problem is
carried out. The Simiu}Scanlan load model is used. Here no extra degree of freedom is
associated with the vortices: thus the mechanical system of the structure and #uid #ow
reduces to a SDOF system. This simpli"es the optimization process with respect to
damping of the motion.

2. DETERMINISTIC MODEL OF VORTEX-INDUCED WIND LOAD ON BRIDGE DECK

The response of a structure subjected to aerodynamic load depends on the aerodynamic
interaction between the #ow and the structure itself. When the structure is at rest the
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circular frequency of vortex-induced excitation, X
s
, is governed by the Strouhal relation

X
s
"2nS;/D. (1)

Here S is the Strouhal number which depends on the Reynolds number and the shape of the
cross-section; i.e., the frequency of the vortex separation is proportional to the wind
velocity.; is the velocity of the #ow and D is the across-stream dimension of the structure.
However, when the Strouhal frequency, X

s
, approaches one of the circular eigenfrequencies,

u, of the structure the vortex-shedding frequency will no longer depend on the wind
velocity, but is controlled by the structure at the eigenfrequency (see Figure 1). In general,
the tendency to enter a state of the lock-in interval depends on the Scruton number, i.e.,
a non-dimensional expression of the structure damping (see, for example, Dyrbye and
Hansen [11]).

Assuming constant wind velocity, the resulting vibrations at lock-in with time approach
a stationary motion with a dominant harmonic composant. In the following, it is assumed
that the structural damping is low which is generally the case for steel and pre-stressed
steelwire concrete structures.

A slender one-dimensional structure such as a chimney or bridge deck is considered.
Since lock-in is a resonance phenomenon the motion is dominated by a single mode, i.e., the
motion of the deck in the direction of the vortex-induced load may be written as

z (x, t)K/ (x) q(t), (2)

where z (x, t) is the displacement, x is the along-span co-ordinate, /(x) is the mode shape
related to the dominant eigenmode with circular eigenfrequency and q(t) is the
corresponding modal co-ordinate.

Introducing a control system (a tuned mass damper) at the location x"x
c
and taking

into account the e!ect of vortex-induced load on the structure, the equation of motion for
the primary system (bridge) takes the form

qK#2fuqR #u2q"
1

M
(F

c
#F

a
), (3)

where qK and qR denote the modal acceleration and velocity of the deck, respectively, f is the
modal damping ratio corresponding to the dominant eigenmode, u is the corresponding
Figure 1. Lock-in. The circular vortex-shedding frequency, X, and Strouhal frequency, X
s
, are standardized with

respect to the circular eigenfrequency, u. The length of the lock-in interval depends on the Scruton number.



Figure 2. Mechanical system with de"nition of loading, displacements and dynamic properties.

220 L. ANDERSEN E¹ A¸.
circular eigenfrequency and M represents the modal mass when no control system is
attached, F

c
is the modal control force originating from the tuned mass damper (Figure 2),

and

F
c
"m

c
[2f

c
u

c
(gR !/ (x

c
)qR )#u2

c
(g!/(x

c
)q)]/ (x

c
). (4)

Here f
c
"c

c
/2m

c
u

c
and u

c
signify the damping ratio and circular eigenfrequency of the

control system, respectively, when the primary system is "xed. g and g5 are the displacement
and the velocity of the control mass, m

c
(secondary system).

F
a
is the modal aerodynamic load on the deck. Simiu and Scanlan [1] have suggested the

following van der Pol model for the vortex-induced load per unit length of a structure at
lock-in,

f
a
(x, t)"1

2
o;2DA>1

(K)A1!e
z2

D2B
zR
;
!>

2
(K)

zK

X2D
#C

L
(K) cos(Xt#h)B, (5)

where o is the air density,; is the mean wind-#ow velocity, D is the across-#ow dimension
of the structure, >

1
, >

2
and e are positive, non-dimensional "tting parameters, C

L
is the lift

coe$cient, and X is the circular shedding frequency. K"u/X
s
is the reduced frequency, zR is

the vertical velocity of the structure, and h is a phase shift to be speci"ed below.
The "rst term of equation (5) is a measure of the negative aerodynamic damping which is

subtracted from the structural damping thus bringing the system into the form of a van der
Pol oscillator. The last term of equation (5) is the additive (external) load similar to the load
that acts on a "xed structure. The middle term of equation (5) is supposed to describe the
force of inertia from the added mass.

Assuming full spanwise correlation of the aerodynamic force and ignoring the
contribution from aerodynamic inertia which is insigni"cant in proportion to aerodynamic
damping, the modal load becomes

F
a
"1

2
o;2DA>1Aa2!a

4
e
q2

D2B
qR
;
#a

1
C

L
sin(X

s
t#h)B , (6)
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where

a
n
"P

l

0

/n(x) dx

with l being the length of the structure. In practice, however, full spanwise correlation is not
possible. At lock-in the motion of the bridge deck controls the vortex shedding. This means
that approximately full correlation will occur where the amplitudes are at their maximum,
while the vortex shedding at the supports will be more chaotic. Thus, it seems reasonable to
assume full spanwise correlation.

Simiu and Scanlan [1] have suggested that the additive lift coe$cient term may be
omitted in the case of lock-in. This omission leads to reasonable results when no control
system is present since the negative aerodynamic damping term of equation (6) is dominant
[1]. Nevertheless, an optimized passive control system may be able to dissipate more energy
than induced by the motion of the structure due to the negative aerodynamic damping.
Hence, it will be shown below that omission of the lift coe$cient term under these
conditions results in complete extinction of vibrations in both the primary and secondary
systems. Consequently, the additive load term should be included in the optimal design
procedure.

Inserting equations (4) and (6) into equation (3) gives

qK#2uAf!
o;D>

1
4uM Aa2!a

4
e
q2

D2BB qR #u2q

"
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[2f

c
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c
(g!/ (x

c
)q)]/ (x

c
)#

1

2M
a
1
o;2DC

L
cos(Xt#h). (7)

For the secondary system (i.e., the control system) the equation of motion takes the form

m
c
(gK#2f

c
u

c
(gR !/(x

c
)qR )#u2

c
(g!/(x

c
)q))"0. (8)

The equations of motion are reformulated as

sK#2u
0Af0!f

1A1!e
D

s2

D2BB sR #u2
0
s"l(u2

c
g#2f

c
u

c
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0
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(9)
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u

c
g5 #u2
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c
/s5 ,

where
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3. TRANSFORMATION TO VAN DER POL CO-ORDINATES

After some time the motion of the system becomes periodic with period ¹ and with
a dominant harmonic composant with the circular frequency X. Notice that the circular
frequency of the motion is identical to the excitation frequency of the additive load.

In order to analyse this harmonic component it is useful to perform a transformation
from physical-state variables (s, s5 , g, g5 ) to the so-called van der Pol co-ordinates
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(X, U, H, W) (see Roberts and Spanos [16]). Then

s(t)"X (t) sinU(t),

s5 (t)"XX(t) cos U(t),
(11)

g(t)"H (t) sinW(t),

g5 (t)"XH(t) cos W(t),

U(t)"Xt#u(t), W (t)"Xt#t (t). (12)

Here X (t), H(t), u (t) and t(t) are assumed to vary with a time scale that is large compared to
the vibration period ¹"2n/X which is the characteristic time scale for the change of U (t)
and W(t). Of course, a harmonic solution represented by equations (11) implies that the
amplitude and phase variables are constant with time.

From equations (11) the following so-called consistency conditions are derived:

Q0 sinU#Q cos UuR "0,
(13)

H0 sinW#H cosWtQ "0.

Consider a linear viscous system driven by the harmonic excitation F
0
cos(Xt#h) such as

system (9) with f
1
"l"0. At resonance where X"u

0
the velocity is given as

s5 (t)"(1/2f
0
u

0
)F

0
cos(u

0
t#h). Hence, the velocity and the excitation are in phase. In the

following this is assumed to be the case also for the actual system (9) with the non-linear
self-induced damping term and control force included, i.e., h+u. Inserting equations (11)
into system (9) then provides

XXQ cosU!XX sinU(X#uR )#2u
0Af0!f

1A1!e
D

X2 sin2U

D2 BBXX cosU

#u2
0
X sinU"lu

c
H(u

c
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X cosW)#F

0
cosU, (14)

XHQ cosW!XH sinW (X#t0 )

#(2f
c
u

c
X cosW#u2

c
sinW)H"(u2

c
sinU#2f

c
u

c
X cosU)X. (15)

Equations (13)}(15) represent four coupled di!erential equations in X, u, H, t. It is
possible to solve these equations for the time derivative of amplitude and phase variables in
the following form:

XQ "
X2!u2

0
X

cosU sinUX!2u
0Af0!f

1A1!e
D

X2 sin2U
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#
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c
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1

X
F
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H
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F
0
cosU sinU, (17)
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HQ "
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X
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c
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c
!X2
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sin2W#2f
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u
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u
c

X
sin W (u

c
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c
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H
, (19)

where X(t), H (t), u (t) and t(t) are functions that vary slowly with time. Hence, the
long-term variation of XQ , u5 , HQ , t0 is not controlled by the instantaneous value of the
right-hand sides in equations (16)}(19), but merely depends on the average value over
a vibration period ¹"2n/X.

This observation is used in the so-called averaging method or Krylo!}Bogoliubo!}
Mitropolsky "rst order perturbation method [17], where the right-hand sides in equations
(16)}(19) are replaced by their average values over ¹ as the slowly varying parameters X, u,
H, t are assumed to be constant over the period. Thus, equations (16)}(19) reduce to
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HQ "!f
c
u

c
H#

1

2

u
c

X
(u

c
sin u

0
#2f

c
X cosu

0
)X, (22)
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0
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H
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Here u
0

denotes the relative phase shift between the motion of the primary and the
secondary system, i.e., u

0
"u!t. u

0
is expected to approach n/2 as the frequency tuning

u
c
/u approaches the optimal value. This is true, since optimal damping of the vibration

occurs if the force of inertia of the secondary system, !m
c
gK , is acting in a direction opposite

to the velocity of the primary system, s5 , in the harmonic motion. Referring to equations (11)
this requires

X2H sin(Xt#t)"!aXX cos(Xt#u), (24)

where a is a positive constant. By equation (24) it is concluded that the phase shift must be
u
0
"u!t:n/2 for optimal damping.
Possible harmonic motions are obtained when XQ "uR "HQ "tQ "0 which leads to the

non-linear algebraic equations
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0 Af0!f
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X sinu
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!f
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X cosu

0
)X"0, (27)

(u2
c
!X2)H!u

c
(u

c
cosu

0
#2f

c
X sin u

0
)X"0. (28)

Equations (25)}(28) represent four coupled algebraic equations for the determination of the
unknown circular vibration frequency, X, the amplitudes of the primary and the secondary
system, X and H, and the phase shift, u

0
.

In the absence of the F
0

term, equations (25)}(28) are ful"lled for

X"H"0. (29)

The solution (29) indicates that the vortex-induced motion is completely damped. This
solution, which will be further analysed below, is possible only because the additive,
external load has been disregarded. Notice that X and u

0
are not determined in this case.

Next, assume that XO0?HO0. Solving equations (27) and (28) with respect to sinu
0

and cosu
0

provides

C
sinu

0
cosu

0
D"

H/X

u
c
(u2

c
#4f2

c
X2) C

2f
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c
u
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X2#u

c
(u2

c
!X2)D . (30)

From equation (30) the following solution is obtained for u
0
:

tanu
0
"

2f
c
X3

4f2
c
u

c
X2#u3

c
!u

c
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. (31)

The ratio H/X follows from equation (27):

H

X
"

1

2f
c
X

(u
c
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0
#2f

c
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0
). (32)

Insertion of equation (32) into equation (26) provides the following relation between X and
u
0
:
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Inserting equation (31) into equation (33), a polynomial equation of the fourth degree in X2

is obtained in the form

p
4
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1
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0
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Equation (34) has four potential solutions with respect to X2. However, two of the solutions
are mutually complex conjugated and one is negatively real. Only one positive, real root
exists, which is the root of physical signi"cance. In the following, X signi"es the positive
square root of this solution.
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For the amplitude of the primary system a polynomial of the third degree is determined
from equation (25),

p*
3
X3#p*

2
X2#p*

1
X#p*

0
"0, (36)

where

p*
3
"!f

1
u
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e
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2
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c
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(4f2
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X2 cos2u

0
!u2

c
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0
)#u

0
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1
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0
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0
"

1

2X
F
0
. (37)

Equation (36) predicts up to three real solutions each of which corresponds to a possible
harmonic solution with the circular frequency X.

For C
L
"0, the roots to equation (36) are found to be

X"S
!p*

1
p*
3

. (38)

With X known, H is determined from

H"

1

2f
c
X

(u
c
sinu

0
#2f

c
X cosu

0
)X. (39)

4. NUMERICAL EXAMPLE

The above method will be applied to the Rio}NiteroH i Bridge in Rio de Janeiro, Brazil.
The greater part of the 14 km long bridge consists of a prestressed concrete structure,
whereas the three central spans (700 m) are designed as continuous steel twin-box girders
(see Figure 3) with a total weight of 13 100 tonnes [18].

One of the recurring aeroelastic aspects of this #exible and lightly damped long-span steel
bridge is its vortex-induced vertical bending motion under relatively low wind velocities.
The vortex shedding results in amplitudes about $250 mm (at the centre of the main span)
related to the "rst vertical bending mode. These amplitudes occur when wind velocity
approaches 55 km/h. The amplitudes related to the second vertical bending mode are found
to be even larger ($300 mm) for wind velocities in the range of 90}120 km/h (see Batista
and Pfeil [15]).
Figure 3. Centre spans of Rio}NiteroH i bridge. (a) position of tuned mass damper system, (b) tuned mass damper
units in the twin steel box girders.
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Only the "rst eigenmode will be considered. The frontal dimension of the bridge, D (i.e.
the height of the bridge deck), varies along the longitudinal direction and is estimated for
a "xed height of D"7)5 m. The natural frequency related to the "rst eigenmode is 0)32 Hz
according to Batista and Pfeil [15]. Furthermore, some modal parameters related to the
"rst eigenmode are determined from a "nite element model of the bridge. With reference to
the model (9), (10) the following parameters are used:

M"3)753]103 kg, f"7)81]10~3, a
1
"3)288]102, a

2
"2)004]102,

(40)
a
4
"1)198]102, >

1
"13, o"1)3 kg/m3, ;"18 m/s, C

L
3[0, 0)15].

These parameters correspond to the worst possible combination related to lock-in at the
"rst bending mode. Lift coe$cients larger than 0)15 will make the self-induction disappear.

The mode shape is normalized to a maximum value of 1 at the middle of the central span.
Hence, the amplitude of the generalized co-ordinate, q, is 250 mm. To ful"l this, e must be

e"
a
2

a
4

4D2

f*
1
A
f*
1
!f
Q2

#

F*
0

2u2Q3B , (41)

where

f*
1
"

a
2
o;D>

1
4Mu

, F*
0
"

1

2M
a
1
o;2DC

L
. (42)

The frequency tuning is optimized in the frequency domain using the averaging method.
Afterwards, the solution is veri"ed in the time domain (Runge}Kutta integration). In the
Figure 4. Harmonic response solutions, as a function of the lift coe$cient for the "rst bending eigenmode of
Rio}NiteroH i Bridge with c

c
"c*

c
given by equation (43).
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example l"0)01, i.e., m"0)01M, and the optimal damping coe$cient for a harmonic load
will be used, which according to Korenev and Reznikov [14] is given as

c*
c
"m

c
uS

3l
2(1#l)3

. (43)

Initially, three solutions with di!erent lift coe$cients will be compared, i.e., for C
L
"0,

0)05 and 0)15. In Figure 4 the solutions for the circular vibration frequency, the phase shift
and the amplitude of both the primary and secondary systems are shown.

For C
L
"0)05 and 0)15 a single, well-de"ned solution exists for all values of u

c
/u, which

follows from equations (25)}(28). For C
L
"0 a branching to the solution (29) of zero

amplitudes for the primary and secondary systems takes place in an interval of u
c
/u close to

1. The circular frequency and the phase shift are independent of C
L
, though it should be

noticed that no solutions for these quantities exist when C
L
"0. As expected the phase shift

u
0
approaches n/2 for the optimal frequency tuning. Furthermore, the in#uence of C

L
in the

optimal tuning interval is signi"cant. A tripling of C
L

results in a doubling of the
amplitudes.

The solution X"H"0 in the optimal tuning interval u
c
/u3[0)9685, 1)0165] is

asymptotically orbitally stable. This has been demonstrated by numerical integration of
equations (9) as shown in Figure 5 for the left-hand branch of the frequency domain
solution. It is seen that a monotonous drift towards the solutions of equations (25)}(28)
takes place beyond this interval. It should be noticed that the stability analysis concerns the
exact equations of motion and not the averaged di!erential equations (25)}(28).

It is seen that the zero-amplitude solution is only stable where the other solution does not
exist. A similar conclusion can be made for the right-hand branch. Thus, the solution
X"H"0 is physically valid only in the interval between the two intersection points.
Figure 5. Long-term time development of amplitudes for C
L
"0.
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Next, the behaviour of the two systems is examined when the damping coe$cient is
altered from the value given by equation (43). For higher damping coe$cients, i.e., c

c
'c*

c
,

there is an unambiguous loss in e$ciency. On the other hand, when the damping is lowered
three solutions labelled a, b,c may co-exist as illustrated in Figure 6.

As seen in Figure 6, two of the solutions result in higher amplitudes than for the previous
solution shown in Figure 4, where the damping coe$cient is determined by equation (43),
whereas the third solution gives lower amplitudes for frequency tunings around 1. The
multiple solutions imply a kind of amplitude hysteresis if the tuning is slowly changed,
resulting in jumps from one branch to another. The hysteresis behaviour becomes more
noticeable when the damping coe$cient is further lowered. In Figure 7 the stability of the
indicated solutions has again been studied by numerical integration.

All solutions are stable when the parameters are chosen as stated although the solution
corresponding to the lowest amplitudes approaches a steady state motion more slowly than
the two other solutions. In contrast, when the damping coe$cient is chosen as c

c
"0)14c*

c
instead of c

c
"0)16c*

c
only the solution predicting the highest amplitude is stable.

Comparing Figure 7 and Figure 8 it is observed that the shift between three physically valid
solutions and only one physically valid solution depends on the relative position of the
solutions for the amplitude response of the secondary system. Thus, the peak of the solution
1 must lie below solution 3 in order to achieve stability for three solutions.

From the above, it might be concluded that the optimal damping coe$cient is c
c
"0)16c*

c
since this solution gives at best a lower amplitude than the one found using equation (43).
However, there is no certainty that the lower of the three amplitude solutions will be
obtained in practice. The system might as well oscillate at one of the higher amplitudes.
Figure 6. Harmonic response solutions for C
L
"0)15 and c

c
"0)16c*

c
.



Figure 7. Long-term time development of amplitudes for u
c
/u"1.
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Therefore, use of the damping coe$cient determined by equation (43) is recommended in
order to obtain an unambiguous solution which can be used in the optimization of the mass
of the tuned mass dampers.

5. CONCLUSIONS

The present optimization method for tuned mass dampers to one-dimensional slender
structures is based on a van der Pol oscillator model for the vortex-induced wind load.
When no external additive load is introduced it is possible to reduce the amplitudes of both
the primary and secondary system to zero for an interval of the frequency tuning close to 1.

To achieve a more realistic solution it is necessary to include an inhomogeneity in the van
der Pol load model. The inhomogeneity is chosen as a harmonic excitation in phase with the
velocity of the structure. Then only the amplitudes of the two systems depend on the level of
inhomogeneity, whilst the circular vibration frequency and the phase shift are una!ected.

When using the optimal damping coe$cient for a strictly harmonic excitation an
unambiguous solution is obtained and, thus a single optimal frequency tuning exists for
which the reduction in the amplitude of the primary system is greatest. Higher damping
coe$cients are not bene"cial for reducing the amplitude since they result in lower e$ciency
of the tuned mass damper. The use of low damping coe$cients can at best give a lower
amplitude than the one tuned mass damper. The use of low damping coe$cients can at best
give a lower amplitude than the one used for harmonic excitation, but might also result in
higher amplitudes. Therefore, it is necessary to use the damping coe$cient optimized for
harmonic excitation to obtain an unambiguous solution.



Figure 8. Solutions to the system of equations (25)}(28) for C
L
"0)15 and c

c
"0)14c*

c
in the frequency domain.
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In contrast to Batista and Pfeil [15], the total damping of the vibrations of a bridge deck
can be achieved merely by using tuned mass dampers when the same Simiu}Scanlan load
model is used, that is, a model which does not include any additive load but only
a self-induced load from negative aerodynamic damping.
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APPENDIX A: NOMENCLATURE

X
s

circular Strouhal frequency
S Strouhal number
; wind velocity
D across-stream dimension
x along-span co-ordinate
t time
z displacement of structure
/ eigenmode of structure
q, qR modal displacement and velocity in main system
f modal damping ratio of main system
u circular eigenfrequency of main system
M modal mass of main system
F
c

modal control force on main system
F
a

modal aerodynamic load on main system
g, g5 displacement and velocity of control system
m

c
control mass

f
c

damping ratio of control system
u

c
circular eigenfrequency of control system

x
c

along-span position of control system
f
a

aerodynamic load
>
1
, >

2
, e "tting parameters

K reduced frequency
C

L
lift coe$cient

X circular shedding frequency
h phase shift
a
n

mode shape integral parameters (n"1, 2, 4)
s, s5 displacement and velocity of main system at x

cf
0
, f

1
, u

0
help parameters

l, e
D
, F

0
help parameters

X, U van der Pol co-ordinates for main system
H, W van der Pol co-ordinates for control system
s, t time-dependent phase angles
p
n

coe$cients in frequency polynomial (n"0, 1, 2, 3, 4)
p*
n

coe$cients in amplitude polynomial (n"0, 1, 2, 3)
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