
Journal of Sound and <ibration (2001) 239(2), 335}356
doi:10.1006/jsvi.2000.3205, available online at http://www.idealibrary.com on

002
NON-LINEAR CORRECTION OF VIBRATION
PROTECTION SYSTEM CONTAINING TUNED

DYNAMIC ABSORBER

A. M. VEPRIK AND V. I. BABITSKY

Department of Mechanical Engineering, ¸oughborough ;niversity, ¸oughborough,
¸eicestershire ¸E11 3¹;, England. E-mail: a.veprik@lboro.ac.uk

(Received 6 August 1999, and in ,nal form 15 June 2000)

In this paper, the system of vibration protection containing the tuned dynamic absorber is
analyzed. To control the system's extraneous resonant responses without a!ecting the
ability of essential linear vibration suppression at antiresonant frequency, the absolute
motion of the absorber is limited by the stops mounted upon the base. The analytical
solution relies on the theory of momentary impact and technique of periodic Green
functions and is obtained in explicit closed form. The frequency responses of the vibration
protection system under harmonic excitation with variable frequency are obtained in terms
of impact impulses, magnitudes of fundamental harmonics of motion for the primary and
secondary systems and also the forces transmitted to the base. The results of calculations are
in good agreement with a numerical simulation, which utilizes the realistic model of
visco-elastic collision. Some general concepts of practical design of such a vibration
protection system are discussed. In particular, the in#uences of restitution ratio and
clearance value are addressed.
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1. INTRODUCTION

The method of dynamic absorption, in general, relies on the attachment of a linear lightly
damped single-degree-of-freedom (SDOF) system to the harmonically excited primary
structure. It is the simplest case when both the primary and the secondary sub-structures
are lightly damped SDOF systems. The frequency response function (FRF) of such
a combined two-degree-of-freedom (TDOF) system typically displays two sharp resonant
peaks and one deep anti-resonant notch which is located exactly at the partial natural
frequency of the secondary sub-structure. The appearance of such a notch is used for the
essential suppression of vibration of the primary system caused by a harmonic force with
constant frequency.

However, the presence of a modi"ed primary resonance and the occurrence of an
additional resonance (typically very close to the position of the antiresonant frequency)
detract from the use of a tuned dynamic absorber in applications operating with variable
frequency of excitation. The use of the optimized amount of damping in the design of
a dynamic absorber results in close control of both resonant responses which are intrinsic to
a system; however, the penalty is that the positive feature of vibration suppression at the
anti-resonant frequency is breached [1, 2].

An interesting approach to the vibration control of a system equipped by a lightly
damped dynamic absorber was proposed in 1928 by Ormondroyd and Den Hartog [1]. In
order to avoid resonances in the system containing such a dynamic absorber, they proposed
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to limit the relative motion of the absorber to the primary structure by means of elastic
stops. They also suggested designing the sway space of the dynamic absorber in such
a manner as to provide impactless linear motions of both masses in the desired vicinity of
the anti-resonant frequency. Such a design allows for maintaining the desired feature of
linear dynamic suppression of harmonic vibration. As soon as the relative motion of the
absorber exceeds the pre-designed clearance (as a result of approaching the excitation
frequency of one of the resonant frequencies, in this instance) the stops come into play, thus
limiting the relative motion of the absorber. The authors of reference [1] believed that as the
stops change the elastic properties of the entire system &&no resonance can occur even if no
damping exists in the system''.s They also indicated that an analytical description of the
dynamics of such a system is extremely di$cult.

Since then, numerous researchers have been attracted by the simplicity of this elegant
engineering solution and have studied such an approach numerically (see, for example,
references [3, 4]). To our knowledge, the analytical solution has not yet been obtained.

It is evident that in the case mentioned, the control over the resonances relies entirely on
an intensive vibro-impact interaction between the absorber and the primary structure. That
may cause excessive dynamic responses and, therefore, damage to the sensitive internal
components of the primary structure. As distinct from the model of reference [1], in the
present paper the restriction of motion of a dynamic absorber takes place in its absolute
motion by means of the stop (bumper) mounted upon the stationary base. Within the
framework of such a design, it is possible to correct e!ectively the dynamic response of the
system in the vicinities of both resonances without a!ecting the positive feature of essential
linear vibration suppression at the antiresonant frequency. Since the control of resonant
responses relies now on the vibro-impact process between the dynamic absorber and the
stationary base, the primary system and its sensitive components may be signi"cantly
relieved from the impact dynamic loading.

The authors utilized the theory of momentary impact and technique of periodic Green
functions (PGF) [5] to study the dynamics of the non-linear vibration protection system
under harmonic excitation with variable frequency. The obtained exact analytical
expressions describe the time histories of the motions of the primary and secondary systems
and also the forces transmitted to the base, and contain a full set of harmonics. The
fundamental harmonics are then extracted from the exact solutions and used for
representation of correspondent frequency responses.

The results of calculations are in good agreement with a numerical simulation, which
relies on the realistic model of visco-elastic collision.

Some general concepts of practical design of such a vibration protection system are
discussed. In particular, the in#uences of restitution ratio and clearance value are
addressed.

2. DYNAMIC MODEL AND ANALYTICAL SOLUTION OF VIBRO-IMPACT PROBLEM

Figure 1 shows the dynamic model of the system. The primary system of mass M
1

is
suspended from the base by a visco-elastic #exural element which is represented by
a parallel combination of spring, K

1
, and dashpot, B

1
. The absorber of the mass M

2
is

attached to the primary system by means of the visco-elastic #exural element which is
sThe possibility of the vibro-impact resonance which arise on the right-hand side vicinities of the linear natural
frequencies was absolutely ignored by the authors of reference [1]. To prevent the appearance of non-linear
(vibro-impact) resonances, a su$cient amount of energy has to be dissipated at collisions with the stops [5].



Figure 1. Dynamic model of vibro-impact dynamic absorber.
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shown as a parallel combination of the spring, K
2
, and the dashpot, B

2
. The primary system

is subjected to the action of the external force Q (t)"q sin ut, where q and u are the
amplitude and angular frequency, respectively. As a result of the excitation, both masses are
involved in the absolute motions X

1
(t) and X

2
(t), as shown in Figure 1. The absolute

motion of the secondary mass is limited by a solid stationary stop positioned with
a clearance, D, with respect to the static equilibrium of the absorber mass. The equations of
motion which account for the collision of the secondary sub-system with the stop [5] take
the form
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where the force of impact interaction U(X
2
, XQ

2
) is a function of the absolute co-ordinate and

velocity of the absorber.
Due to the special choice of the clearance and small damping which is used in the

absorber design, the system vibrates linearly (without collisions) for almost the entire
frequency span. The only exceptions are in the vicinities of linear resonant frequencies; the
phenomenon of non-linear (vibro-impact) resonance takes place to the right of these
frequencies [5]. As a result of periodic excitation in the above frequency bands, a steady
state non-linear resonant regime with a single-collision per period arises.

The method of PGF is a convenient tool which is well suited for the analysis of such
resonant regimes [5, 6]. The force of impact interaction in this regime may be thought of as
a periodic function of time F (t) and, generally speaking, may be represented in the form of
the Fourier series
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exp( jmut), t3]!R,R[, (2)
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where

F
m
"

1

¹ P
T

0

F (t) exp(!jmut) dt, (3)

j"J!1 is complex unity, where ¹"2n/u is the period of the process.
By letting U(X

2
, XQ

2
)"0, the complex dynamic compliances (receptances) of the linear

system are obtained from (1) in the form
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For the periodic single-impact process (single-impact over the period ¹ ), one "nds by
means of superposition
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(6)

The &&"rst terms'' on the right-hand sides of both equations (6) represent the steady state
solution to a linear problem-impactless motion, where DH

11
( ju) D , DH

12
( ju) D are the moduli

of the dynamic compliances at the frequency u; t
11

(u), t
12

(u) are the arguments, and u is
the phase of impact relative to the external force.

The summation terms in both equations (6) represent the &&vibro-impact portion'' of the
solution-the steady state response of the system to the periodic sequence of impact impulses.

Substitution of equation (3) into the summation terms of both equations (6),
and changing the sequence of summation and integration yields the non-linear
integro-di!erential equations in the form
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where the PGFs s
12

(t), s
22

(t), are de"ned as follows [5]:
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The duration of impact is typically very small as compared with the period ¹. Therefore,
with the use of the mean-value theorem, one obtains the two-parametric representation of
the desired solution in terms of unknown impulse of impact force J and phase u:
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where t3]!R,R[ and
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For the momentary impact [5], the impulse of impact force may be expressed through the
restitution ratio, R, and the pre-impact velocity, XQ

2
(!0): that is

J"M
2
(1#R)XQ

2
(!0). (9)

The series (7) are de"ned in the in"nite time interval. To simplify the solution, they may be
summed and corresponding PGFs may be found in an explicit form for the "nite time
interval [0, ¹] of periodicity [5].

The complex dynamic compliance, H( ju), of a lightly damped system with di!erent and
well-distanced natural frequencies may be approximated by the eigenform decomposition
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where N is the number of relevant degrees of freedom (N"2, in this instance), and X
i
, m

i
, A

i
are undamped natural frequencies, loss factors and form factors, respectively. From
equation (5), by letting B
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"0, the natural undamped frequencies X
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are found as the

roots of the equation D( ju)"0; these are
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The loss factors and the form factors cannot be estimated explicitly for the damped system.
In this article, these parameters are obtained approximately from a curve-"tting procedure
with expressions (4) and (10) involved.

The complex dynamic compliance in the form (10) yields the closed-form representation
of the PGF in the interval of periodicity [5], that is,
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where the damped natural frequencies are H
i
"X

i
J1!m2

i
, i"1, 2.

The unknown phase and impulse may be obtained from the conditions of impact [5]:
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Substitution of equations (8) into equations (13) yields
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where the natural undamped frequencies X
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are derived from equation (11) and modal
parameters A

i
, m

i
are obtained from eigenform decomposition of the complex compliance
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( ju) (see equation (4)) in the form (10).
From the conditions of impact, one has two equations in the unknown phase
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Eliminating the phase /, one readily "nds for the impact impulse
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The analysis of stability which was conducted in reference [5] indicates that a stable regime
corresponds to the positive sign in equation (16). From reference [5], the obvious conditions
of vibroimpact regime existence are as follows:

D sin / D)1, J*0.

The substitution of the estimated values for the impulse J and phase / back into equations
(8) yields the closed-form explicit solution describing the periodic forced vibration of the
TDOF system with collisions under the harmonic excitation of arbitrary frequency.

3. ANALYSIS OF FUNDAMENTAL HARMONICS AND IMPACT IMPULSES

The main concerns in an analysis of a vibration protection system which relies on
a dynamic absorber are the dynamic components of (i) accelerations and de#ections of the
primary and secondary systems, and (ii) the force transmitted to the base.

Since a momentary impact model has been assumed, it is impossible to estimate the peak
values of impact forces and accelerations (these take in"nite values at the moment of
collision).
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As the systems under consideration are well-pronounced low-pass "lters, the "rst
harmonics give good representation of the entire process [5]. Therefore, one can perform an
analysis of the corresponding frequency responses in terms of the fundamental harmonics,
which are extracted from the above exact solutions. Numerical simulations validate this
approach.

Since the values of phase and impulse have already been obtained from equations (15)
and (16) one call readily calculate the fundamental harmonics of the processes (8)
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The magnitudes of the fundamental harmonics DF(1)[X
1,2

] D may be calculated readily
from equations (17) and (18).

The force which is transmitted to the base may be represented in the form
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is the force transmitted through the #exural suspension and

F
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is the force transmitted through impacts.
The fundamental harmonic of the force transmitted through #exural suspension is

calculated with the help of equations (17) and (19):
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The fundamental harmonic of the force transmitted through impact is obtained with the
help of equation (20):

F(1)[F
i
(t)]"

2J

¹

cos ut. (22)



342 A. M. VEPRIK AND V. I. BABITSKY
With the use of equations (21) and (22), the fundamental harmonic of the resultant force is
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From equation (23), the magnitude of the fundamental harmonic of the force transmitted to
the base DF(1)[F] D may be readily estimated.

4. NUMERICAL EXAMPLE AND DISCUSSION

The parameters for the numerical example were taken as follows:

M
1
"1 kg, M

2
"0)1 kg, K

1
"25 000 N/m, K

2
"4300 N/m, B

1
"0)8 kg/s,

B
2
"0)08 kg/s , q"10 N, D"3 mm. (24)

First, one can consider as a reference the linear case at DPR.
Figure 2 shows the superimposed magnitudes of the fundamental harmonics of

displacement of the primary and secondary mass against frequency. It is seen that linear
resonances take place at the frequencies 23 and 36 Hz, where the magnitudes attain large
values. The anti-resonant frequency of the primary mass is 33 Hz, where the dynamic
response becomes negligible.

Figure 3 depicts the magnitude of the fundamental harmonic of the force transmitted to
the base through the suspension of the primary system (impacts are absent in this case)
against frequency. It is seen that in the vicinities of linear responses of 23 and 36 Hz essential
force transmission takes place, and in the vicinity of linear anti-resonance (33 Hz) the force
transmission becomes negligible.
Figure 2. Frequency responses (displacements of the primary and secondary systems) in the linear case (DPR).



Figure 3. Frequency response (force transmitted to the base) in the linear case (DPR).
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It is important now to recall that it is desirable to control the resonant responses of the
system and to keep the linear anti-resonance response una!ected. From Figure 2, the
response of the secondary system at anti-resonance is 2)27 mm. The choice of the clearance
D"3 mm (see Figure 2) allows the impactless motion of the secondary system in a su$cient
frequency band, which is 27}34 Hz.

The modal parameters X
i
, m

i
, A

i
are required now for calculation of s

22
(0) in accordance

with expression (14). The undamped natural frequencies X
1,2

are obtained for the numerical
values of equations (24) from equation (11); these are
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The complex compliance H
22

( ju) from equation (4) was approximated by the eigenform
decomposition (10). The following modal parameters were estimated from curve-"tting (the
numerical values of equations (24) were used):
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"0)0022, m

2
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Figure 4 shows the modulus of the complex compliance DH
22

( ju) D which is calculated
"rstly in accordance with equation (4) with numerical parameters (24) (**) and secondly
in accordance with equation (10) ( L ) with numerical values (25) and (26).

Figures 5 and 6 show the magnitudes of the fundamental harmonics (formulae (17) and
(18)) of the secondary and primary masses against excitation frequency at di!erent
restitution ratios R (see the legends). The corresponding linear response of the system
(labelled as LIN, see the legend) is superimposed for reference. The dynamic responses of
both secondary and primary systems show the distortion and essential suppression (as
compared with the linear case) in the vicinities of the linear resonances. This is due to the
violation of the conditions of linear resonance and caused by the interaction of the
secondary system with the obstacle. At the same time, the presence of the obstacle causes the
development of non-linear (vibro-impact) resonances pulled well to the right of the
frequencies of linear resonance (see the footnote of the Introduction). At the frequencies of
vibro-impact resonance, the magnitudes of the fundamental harmonic may be even higher
than that in the linear case. An implementation of su$cient damping into the contact zone
is, therefore, a must for the close control of vibro-impact resonance. From Figures 5 and 6,
the decrease in the value of the restitution ratio, R, results in the narrowing of the frequency
band of the existence of vibro-impact resonance and also in a reduction of the peak value of



Figure 4. Accuracy of curve"tting.

Figure 5. Frequency response (fundamental harmonic of displacement of the secondary system) in the
vibro-impact case (D"3 mm) at di!erent restitution ratios: ))))), LIN; **!0; ==, !0)2;==, !0)4;
==, !0)6; - - -, !0)8.

Figure 6. Frequency response (fundamental harmonic of displacement of the primary system in the case
(D"3 mm) at di!erent restitution ratios: ))))), LIN; **!0; ==, !0)2;==, !0)4;==, !0)6; - - -,
!0)8.
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response. It is obvious from these "gures that for the better correction of the frequency
response, the lowest value of the restitution ratio is preferable.

The latter is of particular importance for the primary system, since vibration control of
the primary system is our main objective. For example, at the restitution ratio R"0)2 one
obtains the suppression of the dynamic responses in the vicinity of the "rst and second
resonances by factors of 28 and 23 respectively. At the same time, the portion of the
frequency response in the frequency band 27}34 Hz (see Figures 2, 5 and 6) which contains
the deep anti-resonant notch remains una!ected.

Figure 7 shows the magnitude of the fundamental harmonic of the force transmitted to
the base through the primary suspension and impact (formula (21) was used), against
excitation frequency at di!erent restitution ratios R (see the legend). The corresponding
graph representing the force transmission in the linear case (labelled as LIN, see the legend)
is superimposed for reference.

From Figure 7, the essential control of the force transmitted to the base takes place in
spite of the impacts. The force transmission at the "rst and second resonances was decreased
in the case of R"0)2 by factors of 25 and 30 respectively.

It is of particular interest to analyze in Figure 8 the dependencies of the impact impulse
against the frequency at di!erent restitution ratios (see the legend). This graph shows the
Figure 7. Frequency response (fundamental harmonic of force transmitted to the base) of the primary system in
the vibro-impact case (D"3 mm) at di!erent restitution ratios: ))))), LIN; **!0; ==, !0)2; ==, !0)4;
==, !0)6; - - -, !0)8.

Figure 8. Frequency response (impact impulse) in the vibro-impact case (D"3 mm) at di!erent restitution
ratios: **!0; ==, !0)6;==, !0)4;==, !0)2; - - -, !0)0.
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frequency bands of existence of vibro-impact regimes, the character of frequency pulling and
change in intensity of vibro-impact processes at di!erent restitution ratios. The calculations
were performed in accordance with formula (16). The values of full impact impulses are used
for the estimation of the peak accelerations.

5. NUMERICAL SIMULATION

5.1. DYNAMIC MODEL

The present simulation is based on the realistic model of non-momentary visco-elastic
collision suggested by the authors in references [5}7]. Such a model is required here to
produce a reference solution containing the peak values of impact forces and impulses.

In Figure 9, the dynamic model of the system is represented. This model is identical to
that shown in Figure 1 with the exception that the motion of the secondary mass is limited
by the compliant visco-elastic bumper, which is modelled as a parallel combination of the
linear spring, K, and the dashpot, B.

The equations of motion accounting for the collisions of the secondary system against the
bumper take the form of equations (1), where, as above, the threshold force of impact
interaction U(X

2
, XQ

2
) is a function of co-ordinate and velocity and takes the form [5}7]
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2
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(25)

5.2. SIMULINK DIAGRAM

The system in Figure 9 is &&subjected'' to the direct swept sine test. Figure 10 portrays the
corresponding Simulink diagram.
Figure 9. Dynamic model of vibro-impact dynamic absorber with visco-elastic bumper.



Figure 10. Simulink diagram.

Figure 11. Sub-system &&Swept sine''.
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In Figure 11, the subsystem &&Swept sine'' produces two signals, these are sin ut
and cos ut with linearly varying frequency u"u(t)"2nat, where a is a sweep
rate, Hz/s. These signals are required for the current calculation of the fundamentals
harmonics of the processes. Simultaneously, one of these signals is used to evaluate the
excitation signal q sin ut, which is fed to the input of the subsystem &&TDOF System with
Impact'' performing a calculation of the displacements of the primary and secondary
system and of the force transmitted to the base (X1, X2, F, as shown in Figure 10). Figure 12
shows the internal structure of the above subsystem. It contains the diagram for simulation
of the linear part of the TDOF system and non-linear block &&Impact Force'' (see Figure 12)
which performs the transformation of the displacement and velocity of the secondary
system into the impact force in accordance with formula (25). In this diagram, the
lower limit in the &&Dead Zone'' block is set as !R. The block &&Relational Operator''



Figure 12. Sub-system &&TDOF System with Impact''.
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produces unity if displacement and impact force are of the same polarity and null other-
wise.

The signals obtained (displacements and force transmitted to the base) (see Figure 10),
are then fed to the &&Statistics'' blocks which calculate the current value of the fundamental
harmonic (FH) and root mean square (RMS) of the corresponding signals. The internal
structure of these blocks is shown in Figures 13 and 14.

By using the diagram of Figure 13, one can simulate the dynamic response of the
mechanical system in terms of fundamental harmonics and RMS levels. This gives the
opportunity to make a general assessment of the accuracy of theoretical analysis which
relies on the method of PGFs.

5.3. RESULTS OF SIMULATION AND DISCUSSION

One can compare the results with those of the analytical solution obtained by means of
the PGF method in the case of the restitution ratio R"0)2. For this purpose one considers,
as above, the mechanical system with parameters (24).

It is convenient [7] to express the elastic and damping properties of the bumper in terms

of the apparent natural frequency X
b
"JK/M

2
and the apparent loss factor

m
b
"B/2M

2
X

b
. It is important to note that the dynamic system with such parameters exists

during the short time of impact only.
In these notations the expressions for the bumper sti!ness and damping take the forms

K"M
2
X2

b
, B"2M

2
m
b
X

b
.



Figure 13. Sub-system &&Impact Force''.

Figure 14. Sub-system &&Statistics''.
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From reference [5], at visco-elastic impact the restitution ratio is a function of the loss
factor only,

R(m
b
)"!expC!

m
b

J1!m2
b

atan A!
2m

b
J1!m2

b
1!2m2

b
BD sin CatanA!

2m
b
J1!m2

b
1!2m2

b
BD , (26)

as Figure 15 shows. From Figure 15, the loss factor m
b
"0)65 corresponds to the restitution

ratio R"0)2 (this point is labelled as r). For the purpose of numerical simulation
X

b
/2n"250 Hz. The sweep rate is taken as a"0)1 Hz/s.
Figures 16 and 17 show the superimposed frequency responses of the primary and of

secondary systems in terms of overall RMS levels and the RMS level of the fundamental
harmonics. The entire process is well represented by the fundamental harmonic. This
particularly holds true for the primary system: the in#uence of impacts resulting in
a singularity which is represented in the motion of the secondary system is not seen in the
motion of the primary system due to the "ltering feature [5].

Figures 18}20 show the magnitudes of fundamental harmonics of the primary and
secondary systems and the force transmitted to the base, and also compare these with the
corresponding responses of the linear system (3). These plots indicate the desired
Figure 15. Restitution ratio vs bumper loss factor.

Figure 16. Comparison of the frequency responses of the primary system: ==, overall level; **,
fundamental harmonic.



Figure 17. Comparison of the frequency response of the secondary system: ==, overall level; **,
fundamental harmonic.

Figure 18. Comparison of the fundamental harmonics of displacement of the primary system in the linear case
( ) and vibroimpact case (==).

Figure 19. Comparison of the fundamental harmonics of displacement of the secondary system in the linear
case ( ) and vibroimpact case (==).
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Figure 20. Comparison of the fundamental harmonics of the force transmitted to the base in the linear case
( ) and vibro-impact case (==).

Figure 21. Comparison of the fundamental harmonics of displacement of the primary system: simulation ( )
versus PGF analytical solution ( ).
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correction of the frequency responses in the vicinities of linear resonances. At the same time,
the deep linear anti-resonant notch remains una!ected.

Figures 21}23 compare the magnitudes of fundamental harmonics of the frequency
responses of the primary and secondary systems and the force transmitted to the base which
are obtained by means of the analytical method of PGF, with that obtained by numerical
simulation. It is seen that the results obtained are in a good agreement. Figure 24 shows the
comparison of the dependencies of impact impulses against frequency obtained by the PGF
method with those obtained by numerical simulation. Once again, the results are in fair
agreement.

6. DESIGN CONCEPTS

6.1. INFLUENCE OF RESTITUTION RATIO

With the use of the analytical solution obtained, one can estimate the in#uence of the
restitution ratio, R, on the performance of the vibration protection system. Figure 25 shows



Figure 22. Comparison of the fundamental harmonics of displacement of the secondary system: simulation
( ) versus PGF analytical solution ( ).

Figure 23. Comparison of the fundamental harmonics of the force transmitted to the base: simulation ( )
versus PGF analytical solution ( ).

Figure 24. Comparison of the impact impulses: simulation ( - - - ) versus PGF analytical solution ( ).
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the dependence of the peak magnitudes of the fundamental harmonic of de#ection of the
primary system on the restitution ratio at the constant clearance D"3 mm. The analytical
results (dashed curve) are compared with the numerical simulation (solid curve). In the
numerical simulation, the dependence R(m

b
) in Figure 14 was used for the calculation of the
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bumper loss factor m
b
. The apparent natural frequency of the bumper was taken as

X
b
/2n"250 Hz. The results of numerical simulation and analytical calculation are in good

agreement and indicate the usefulness of the low restitution ratio at impact for the quality of
vibration protection systems. As seen from Figure 25, the further decrease of the restitution
ratio below the value of R"0)2 (m

b
"0)65) becomes ine!ective.

6.2. INFLUENCE OF CLEARANCE

Following the previous analysis, it is useful to estimate the in#uence of the clearance D on
the entire performance of the vibration protection system. Figure 26 shows the dependence
of the peak magnitude of the fundamental harmonic against the clearance at the constant
restitution ratio R"0)2. The analytical results (dashed line) are compared with the
numerical simulation (solid line). The apparent natural frequency of the bumper was
X

b
/2n"250 Hz. The results of numerical simulation and analytical results are in good

agreement and indicate the usefulness of the low clearance for the quality of a vibration
protection system. It is evident that the value of the clearance is limited from below by the
Figure 25. Peak displacement magnitude of the primary system at di!erent restitution ratios: simulation ( )
versus PGF analytical solution: ( - - - - ).

Figure 26. Peak displacement magnitude of the primary system at di!erent clearances: simulation ( ) versus
PGF analytical solution: ( - - - - ).
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value of the impactless amplitude of the secondary system at antiresonant frequency and the
desirable width of the frequency span of impactless operation of the vibration protection
system (see also Figures 2 and 4).

6.3. CALCULATION OF PEAK ACCELERATIONS

It was indicated above that consideration of momentary impact does not allow for the
estimation of the peak values of impact accelerations. Nevertheless, for the practical design
of the bumper these values are of signi"cant importance.

The combination of the method of PGF with the theory of viscoelastic impact developed
in reference [5}7] allows an approximate estimation of the values of impact peak
accelerations.

With reference to formula (9), the value of pre-impact velocity may be calculated as

XQ
2
(!0)"J/M

2
(1#R) .

From references [5, 7], the peak value of acceleration at visco-elastic impact may be
expressed in terms of the pre-impact velocity XQ

2
(!0), apparent natural frequency of the

bumper X
b
and the function C (m

b
), as

Apeak"XQ
2
(!0)X

b
C (m

b
),

where

C (m
b
)"G

c(m
b
)

2m
b

if c(m
b
)*2m

b
if c(m

b
)(2m

b
and

c (m
b
)"

1

m
b
(3!4m2

b
)
expC!

m
b

J1!m2
b

atan
(4m2

b
!1)J1!m2

m
b
(3!4m2

b
) D cos Catan

(4m2
b
!1)J1!m2

b
m
b
(3!4m2

b
) D .

By using the dependencies R"R(m
b
) from equation (26) and C"C (m

b
) one can construct

the dependencies m
b
(R) and W(R)"C[m

b
(R)] (see Figure 27). Finally one obtains

Apeak"
JX

b
W(R)

M (1#R)
.

Figure 27. Functions W(R), m
b
(R).

2



Figure 28. Peak impact accelerations at di!erent frequencies: simulation ( ) versus PGF analytical solution:
( - - - - ).

356 A. M. VEPRIK AND V. I. BABITSKY
Figure 28 shows the results of direct numerical simulation of the peak values of acceleration
against the excitation frequency for the system with the clearance D"3 mm and the
bumper with X

b
/2n"250 Hz and m

b
"0)65 (solid line). The peak values of accelerations

against the excitation frequency were also calculated by using the latter formula for the
system with the same clearance and restitution ratio R"0)2 (dashed line). The values of the
impact impulses J were calculated by means of the PGF method. It was considered again
that X

b
/2n"250 Hz. The agreement is evident.

7. CONCLUSIONS

The vibration protection system which relies on the undamped tuned dynamic absorber
was investigated. The correction of the extraneous frequency response of such a system at
resonant frequencies without a!ecting the ability of su$cient linear vibration suppression
at anti-resonant frequency was achieved due to the limiting of the motion of the secondary
system by means of a bumper mounted upon the foundation.

The exact solution to the problem was obtained with the use of the theory of momentary
impact and the technique of periodic Green functions and contains a full set of harmonics.
This solution was compared with numerical simulation which relies on the realistic model
of visco-elastic impact. The results were in fair agreement.

Recommendations for a practical design of such a vibration protection system were made.
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