Journal of Sound and Vibration (2001) 239(2), 363-368 )
doi:10.1006/jsvi.2000.3061, available online at http://www.idealibrary.com on IIIE§|.ib

®

FUNDAMENTAL FREQUENCIES OF A CIRCULAR MEMBRANE
WITH A CENTERED STRIP

L. H. YuanDp C. Y. WaANG
Department of Mathematics, Michigan State University, East Lansing, M1 48824, U.S.A.

(Received 30 March 2000)

1. INTRODUCTION

Consider the vibrations of a circular membrance with a circular core, Wang [ 1] showed that
when the core diameter shrinks to zero, the frequency decreases to that of a circular
membrane without a central core. This means pinpoint constraints, while affecting
vibration mode, do not affect the frequency.

The present note studies whether this phenomenon would extend to membrane with an
internal line constraint. Unlike a circular core, the line constraint does not change the
membrane area. We ask, how does the frequency change when the length of the line shrinks
to zero?

Related literature on internal line constraints are few. Gruner [2] studied the equivalent
of a rectangular membrance with a rectangular core, the latter can be shrunk to a line.
Veselor and Gaydar [3] considered a circular membrane with a central, cross-shaped line
constraint. Rozzi et al. [4] found frequencies for the elliptic membrane with an internal
confocal strip. None of these authors considered asymptotic case when the constraint is very
small.

2. ELLIPTIC MEMBRANE WITH AN INTERNAL CONFOCAL STRIP

First, consider the elliptic membrane with a line constraint which connects the foci
(Figure 1(a)). As the focal distance approaches zero, the outer elliptical boundary
approaches a circle. Thus, its frequency behavior mimics that of a circular membrane with
a short centered strip.

The governing Helmholtz equation is

AW + K2W =0, (1)

where W is the vertical displacement and k is the frequency normalized by L

\/ density/tension per length. L is a characteristic length defined by /area/m. The elliptic
co-ordinates, (&, 1) are related to the Cartesian co-ordinates (x, y) by

x = ccosh & cosy, y = ¢ sinh & sin g, 2)
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Figure 1. (a) Elliptic membrane with a centered strip, (b) circular membrane with a centered strip.

where 2c¢ is the distance between the foci. Equation (1) can be separated by W = V(&) ®(n)
resulting in Mathieu equations [4, 5]
d’y d’o

—— + [h*cosh* & —b]¥Y =0, —5+[b—h*cosh’>n]® =0, (3, 4)
d¢ dy
where h = kc and b is a separation constant. For the fundamental frequency, ¥ is the even
radial Mathieu function of zeroth order while the solution of ¥, with the boundary
conditions ¥(0) = 0, ¥(p) = 0, gives the characteristic equation

No(h, 0)Mo(h, p) — Mo(h, 0)No(h, p) =0, ©)

where M, and N, are the even zeroth order radial Mathieu functions of the first and second
kind, respectively, related to Bessel functions J,, Y, by

Mo(h &) = VB”/ 2% (S (3e) ©

A h ho_
g (—=1)"B,, n<ze‘5>J,, <ze 5), (7

and the B, are coefficients depending on h and b.

Since lengths are normalized by L, the family of ellipses has the same area as the circle of
radius L, thus ¢ = (cosh p sinh p)~ '/2. We shall investigate the asymptotic properties of k as
¢ —>0and p - 0. Since ¢ is small, we expand

NO(h7 é) =

k= ko + kid1(c) + ka02(c) + 0(d2(c)), )

where Jd,(c) is an asymptotic sequence to be determined. Then

h h(2 ¢ W Th*
e "z < . By=1+4—4+— + ... 9, 10
5¢ 2<c+16+ > o=1l+gtat ©, 10)
n h? h*
B, — " B,— 1 .. 11, 12
2 8 64+ ) 4 512+ ) ( ) )
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where h = c(koy + k101(c) + ky9,(c) + 0(d,(c))). Equation (5) becomes

{Jo(ko) — Ji(ko)k101(c) = Ji(ko)k265(c) + % (3, (ko) — Jo(ko)) k353 (c) + }
x(ne+Inky—Ind+y+ )

— {Yo(ko) — Y (ko)k161(c) — Yi(ko)ks05(c) + %(Yz(ko) — Yo (ko) kidi(c) + - }

3k0 4 _
()ie e ) -a "

where y ~ 0-5772. Comparing the leading orders gives

The first root, k, = 2-4048, is the fundamental frequency of the circular membrane. The next
orders yield

_ TCY()(k()) 1. . 1
= = S 0= (15, 16)
= (1/2)k1 Y, (ko) + (k1) 5(ko)/4) + T (ko)ki(In kg —In 4 + ) _n
ky = 00 — 01208, (17
1

We see that the fundamental frequency, for small ¢, is a quadratic in |In ¢|~*. The property
would be reflected for a circular membrane with a short centered strip.

3. CIRCULAR MEMBRANE WITH A CENTERED STRIP

Consider the circular membrance with an interior line constraint of length 2¢ (Figure
1(b)). Since an exact formula for the characteristic equation does not exist, the frequency will
be found numerically by eigenfunction expansions and matching.

Decompose the membrane into two regions; for region A (r < ¢) the general solution to
equation (1) which is even in 0 and satisfies W = 0 on the strip is

o0

Wa(r, 0) = Z 1) A, T3 1 (kr) cos[(2n — 1)0]. (19)

Here, A4, are coefficients to be determined. The factor (2n)! is to ensure that 4, would not be
too large. The general solution for region B (r = ¢) which is even in 6 and satisfies W = 0 on
r=1is

(1, 0) = z C, H,,(r) cos(2n0), (20)

n=1
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where
H,(r) = J20(k) Y2, (kr) — Y2,(k)J 2, (kr). (21)
Now W, and Wy are continuous on r = c:

ow oW,
—2 (e, 0)=—2(c, 0). (22, 23)
r or

Wa(c, 0) = Wp(c, 0),

Truncate 4, and C, to N + 1 terms. Multiplying equation (22) by cos(2mf) and integrating
from O to m/2 give
N+1 (_ )n+1
,,;1 2n—1
N+1 (_1)n+m+1 (_1)n—m+1 2 'A I k cH 12 N 25
Z (n—%+m)+(n—%—m) ( I’l). n 2n—1( (')_TC m m(c), m=1,2,...,N. ( )

n=1

(20)! Ay -1(ke) = 5 CoHolo) 24

Similarly, equation (23) gives

N+L (_ )n+1

,,;1 2n —1

(20)! A, -1 (k) = 5 CoHp(o) (26)

N+1 (_1)n+m+1 (_1)n—m+1
Z {(n—é-i—m) (n—%—m)

}(2n)!A,,J’2,,_1(kc) =nC,H,(c), m=12..,N. (27)
n=1

Equations (24)-(27) represent 2N + 2 homogeneous equations and unknowns. For the
non-trivial solution, the determinant of the coefficients is set to zero. This gives the
characteristic equation which is solved for the minimum value of k. Accuracy is improved
by increasing N. Table 1 shows that the convergence occurs when N is about 35.

The characteristic equation is in closed form when ¢ = 0 or 1. For ¢ = 0, the geometry is
the circle and the fundamental frequency is the first root of Jy(k) = 0, or k = 2-4048. For
¢ =1, the geometry is the semi-circle and the fundamental frequency is the first root of
Ji(k) =0,0r k =3-8317. For 0 < ¢ < 1, the method described above is used. Table 2 shows
the result for all values of strip lengths c.

TaBLE 1

Convergence of k

N c=01 c=03 c=05 c=07 c=09
5 3-052 3-478 3-740 3-821 3-831
10 3-057 3-489 3-748 3-823 3-831
15 3-058 3-493 3751 3-824 3-831
20 3-059 3-495 3-752 3-824 3-831
25 3-:060 3-496 3753 3-824 3-831
30 3-061 3-497 3754 3-824 3-831
35 3-061 3-498 3754 3-824 3-831
40 3-061 3-498 3-754 3-824 3-831
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TABLE 2

Fundamental frequency for circular membrane with line constraint

c 0 0-001 001 01 02 03 04 05 06 07 08 09 10

k 24048 2629 2741 3-061 3297 3-498 3-655 3-754 3-804 3-824 3-830 3-831 3-8317

.4<26_

2.4 1 1 1 1 1
0 01 02

1

IIn cl

Figure 2. Fundamental frequency of a circular membrane with a centered strip for small c. Circles are computed
values. Line is the asymptotic formula from equation (29).

Of interest is the behavior for small c. Guided by our analysis for the elliptic membrane,
we propose a similar asymptotic formula

k=ko+ 0 F imep

-, ¢—0, (28)

The value of k, is the basic frequency of the circular membrane as shown from the limit for
the elliptic membrane as ¢ — 0. The other coefficients k; and k, may be different and we
used a least-squares fit on our numerical results for the range ¢ =107 to ¢ = 10"°
(numerical instability occurs for ¢ < 10~ °). Figure 2 shows the frequency as a function of
lIn ¢|~! and the curve fit

1-55 0012
k=24048 4+ — — ——+ -, ¢—0. (29)
Incl |Inc|

Equation (29) describes the rapid rise of fundamental frequency as c is increased from zero.
Note the differences in the coefficients k; and k, as compared to the elliptic membrane case.

4. DISCUSSIONS

A membrane with an internal strip has similarities and differences in comparison to that
of an internal circular core. In both cases, for an infinitesimal constraint dimension, the
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fundamental frequency is the same as that without the constraint, and the increase is
proportional to [In ¢/~ ! which is singular. For large constraint dimensions c, the frequency
behavior is quite different. The curvature of k(c) is negative for the line constraint as
k approaches a constant value (3-8317) when ¢ — 1 while the curvature is positive for the
circular core constraint when ¢ — 1. In fact, if the membrane is circular with a circular core,
the frequency approaches infinity as ¢ — 1. This is because the membrane area of the line
constraint does not change while the circular core decreases the membrane area by the
square of the core radius.
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