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1. INTRODUCTION

Horns are waveguides that have a varying cross-sectional area. If the horn cross-section
expands the wave amplitude is reduced while if the tube becomes narrower an increase in
the density of the energy #ow occurs. Rayleigh and Webster were the "rst to derive
independently a plane-wave approximation for the acoustic propagation in circular-section
ducts of varying section. Putland [1] has given some details about the conditions under
which the Webster equation is approximately correct and has shown that every single
parameter acoustic "eld obeys this equation. Salmon [2] used the Webster theory to obtain
some famous families of horns. In addition, Weibel [3] used Hamilton's variational
principle to obtain the wave equation for horns. This equation can be solved analytically for
some shapes [4] such as exponential, conical, parabolic, catenoidal [5] and sinusoidal [6],
but in many cases no analytical expression can be found. Moreover, in a horn with a "nite
length, a re#ection from its open end occurs which causes a re#ected wave to propagate in
the negative direction of the axis.

Hence, the resultant acoustic "eld in the horn consists of the sum of both solutions of the
Webster equation. Mawardi [7] has presented two approaches to solve the Webster
equation, which consider an electrical analogue and the singularities of the di!erential
equation. One technique which has been employed to solve this problem involves the
partition of the horn into a number of conical-shaped elements, which together coincide
approximately with the walls of the horn. In this approach, the solution for the acoustic
pressure is a summation of the products of Legendre polynomials and spherical Hankel
functions [8]. Another approach consists of using stepped cylindrical elements which give
the axial pressure in terms of Bessel functions. Cummings [9] has transformed the problem
into matrix form and has used the fourth order Runge}Kutta integration method of
solution to study the phenomenon of #ow-induced acoustic oscillations in a wine bottle
used as a resonating device. Kergomard [10] showed that the continued fraction solution of
the Ricatti equation leads to equivalent circuits for acoustical horns of arbitrary shape.
Holland et al. [11] developed a one-parameter "nite-element-type model using exponential
elements and compared their results with a numerical solution of a system of di!erential
equations. In a later paper, Holland and Morfey [12] corrected the linearly predicted sound
"eld for non-linear distortion at the end of each exponential element and concluded that the
model can predict the degree of non-linear waveform distortion associated with the
propagation of large-amplitude waves in loudspeaker horns. Any attempt to calculate
the input acoustic impedance of a horn implies a knowledge of the radiation impedance at
the mouth. A study of the output impedance of various exponential and catenoidal horns
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has been presented by Fleisher [13] who gives comparisons between experimental results
and theoretical values for a piston in plane and spherical ba%es. However, a complete
description of the inaccuracies introduced by using the impedance of a piston in an
in"nite ba%e is not clear from the literature. For the case of musical horns, the importance
of the radiation impedance in determining the input impedance has been investigated
by Amir et al. [14]. They suggested that a horn function equivalent to a barrier potential,
as used in the Schroedinger equation, contains most of the information needed to compute
the input impedance. Schuhmacher and Rasmussen [15] have presented a wave-
guide-oriented numerical simulation model for horn loudspeakers used for out-
door sound reinforcement systems. This model is able to predict the output from horns
with square openings under general conditions but the results depend on the number
of modes included in the simulation. The directivity, main-axis frequency response and
overall e$ciency are now of interest as horn design parameters. Finally, modern
numerical techniques including the boundary element method (BEM) [16] and the
"nite element method (FEM) [17] can also be used to design and predict the behavior of
horns.

2. DESCRIPTION OF THE COSINE-SHAPED HORN

A cosine-shaped horn is of interest. Most of the typical horn pro"les have no null "rst
derivative at the mouth. If we choose a proper cosine-shaped horn it is possible to obtain
a pro"le that has a zero slope at both the throat and the mouth. Webster assumed that the
dimensions of the cross-section of the horn are small compared with a wavelength. With this
assumption it can be assumed that the acoustic pressure and velocity are independent of the
radius r over the whole cross-section at some distance x at any given instant. The Webster
equation for a harmonic steady state solution is

d2P

dx2
#

1

S (x)

dS

dx

dP

dx
#k2P(x)"0, (1)

where P(x) is the acoustic amplitude, S (x) is the cross-sectional area of the horn and k is the
free-"eld wave number (u/c). If the section is circular, the function S (x)"nr2(x), where r(x)
is the radial distance from the longitudinal axis of the horn to the pro"le boundary at some
point x.

In order to study the behavior of a cosine-shaped horn we have to "nd the proper
function for S (x), that is to say, r(x).

The most general case can be described using r (x)"r
0
#A(1!cos x/h), where r

0
is the

radius at x"0 and h is de"ned as l/n where l is the length of the horn. The geometry of the
problem is shown in Figure 1.

We notice that the de"nition of the non-dimensional parameter a"A/(r
0
#A) implies

that

r (x)"
A

a
(1!a cos x/h). (2)

Then,
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Figure 1. Finite cosine-shaped horn.
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Now, substituting for dS/dx in the Webster equation, for steady state conditions we
obtain

d2P

dx2
#

2a
h

sin x/h

(1!a cosx/h)

dP

dx
#k2P"0. (4)

This is the di!erential equation to be solved.

3. WKB APPROXIMATION

The WKB method is commonly used in quantum mechanics to solve some problems
involving atomic wave functions. The WKB method, named after Wentzel, Kramers, and
Brillouin, is a powerful tool for obtaining global approximations for the solution of linear
di!erential equations. In summary, it states that when, in the equation WA#K2W"0, the
coe$cient K does not change by a large fraction over a wavelength, then the WKB
approximation yields a complex exponential solution. In other words, the WKB approach
is valid whenever K2 does not change too rapidly with axial position. This is satis"ed with
most practical horns and by all horns at su$ciently high frequency [18]. Using the
transformation

P(x)"
f (x)

(1!a cos x/h)
, (5)

and substituting for dP/dx in equation (4) and after some algebra, we obtain

d2 f

dx2
#Ak2!

a
h2

cosx/h

(1!a cos x/h)B f"0. (6)

Equation (6) has no analytic solution, therefore, we must use some approximate method
of solution and remember the resulting restrictions. Before using the WKB method we
notice that from the theory for di!erential equations we know that f A#Q(x) f"0 requires
Q(x) to be positive for all values of x in order to "nd harmonic solutions. This requires the
restriction of plane wave propagation. Taking into account that the parameter a3[0, 1),
a value for the cut-o! frequency limit f

c
for the WKB approximation is obtained from one of
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the bounds of the function Q(x):

f
c
"

c

2nh S
A

r
0

. (7)

We note that below this frequency f
c
, the WKB approximation for impedance will be

zero.
Thus, using the WKB method, the solution of equation (6) can be approximated by

f (x)&C
1
K~1@4 expG!j P

x

0

JK (s) dsH#C
2
K~1@4 expG j P

x

0

JK (s) dsH , (8)

where K (x)"k2!(a/h2)(cosx/h/(1!a cosx/h)), and C
1

and C
2

are the complex
amplitudes of the forward and backward travelling waves [19].

4. ACOUSTIC IMPEDANCE

An estimation of the acoustic impedance presented by a horn to a velocity source placed
at the throat is of great importance for evaluating the performance of the horn.

The power output for a given source velocity input is proportional to the real part of this
impedance. Hence, sometimes the ratio of the real part of the impedance and the
characteristic impedance of the medium is termed as the transmission coe$cient of the
horn. In the frequency domain, this information gives an indication of the frequency
response, e$ciency and low-frequency limit of the horn. On the other hand, the imaginary
part of the impedance shows the reactive load presented to the source by the horn. An
estimate of the acoustic impedance can be obtained using the sound pressure from the WKB
approximation and the particle velocity from the Euler equation. Thus, the complex
acoustic impedance Z

s
for the cosine horn is approximated by

Z
s
(x)&juog(x)

C
1
e~+W(x)#C

2
e+W(x)

C
1
g (x)e~+W(x)#C

2
g*e+W(x)

, (9)

where

g (x)"1!a cos x/h, (10)

g (x)"
a
h

sin x/h#g(x) A
1

4K(x)
#jJK(x)B , (11)

W(x)"P
x

0

JK(s) ds, (12)

and u is the circular frequency, o is the density of the medium and * indicates complex
conjugation. Now, let Z

1
be the impedance at x"0 (throat) and Z

2
be the impedance at the

mouth (x"l ). Then, after some algebra the combination of both boundary conditions gives

Z
1
(u)&juo(1!a)

P!Qe~+2W(l)

g(0)P!g*(0)Qe~+2W(l)
, (13)

where P"Z
2
g*(l )!juog(l) and Q"Z

2
g (l )!juog(l ).
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Equation (13) gives a closed-form solution for calculating the approximate impedance at
the throat of the cosine horn in terms of the impedance at the mouth Z

2
. The "nal result for

the function W (x) can be expressed in terms of a long and complicated result involving
elliptic integrals. However, for the purpose of this work, a numerical evaluation of W (x) will
be used.

It is common to use the impedance of a piston in an in"nite ba%e as the impedance at the
mouth of the horn, Z

2
. Pierce [20] gives this as

Z
piston

"ocA1!
2J

1
(2kr

m
)

2kr
m

#j
2Su (2kr

m
)

2kr
m
B , (14)

where r
m

is the radius of the mouth, J
1
(x) is the Bessel function of the "rst order and Su(x) is

the Rayleigh}Struve function of the "rst order.
In addition, a horn connector can be used to join two pipes of di!erent cross-sectional

areas. In this case, the connector acts as a simple discontinuity when its length is short
compared with a wavelength and as an acoustic impedance transformer when its length is
greater than half the wavelength. A transformer can be used as in electrical circuits to
change the acoustic impedances from one value to another without appreciable re#ection,
for sound reproduction purposes. On the other hand, an appropriately designed connector
can produce a certain amount of re#ection, which could be useful for noise reduction. In
fact, when the horn is used as a connector it transforms acoustical #uctuations with large
sound pressures and small volume velocities to those with small sound pressures and large
volume velocities and vice versa.

If we assume that the second pipe is of in"nite extent and ignoring any losses, a plane
wave front undergoes no change in cross-sectional area as it propagates, and the normalized
acoustic impedance at any point along or across the pipe is purely resistive and equal to
unity. Then, this boundary condition can be used instead of the plane piston #ush mounted
in an in"nite ba%e in this second horn application.

5. EQUIVALENT SYSTEM OF NON-LINEAR DIFFERENTIAL EQUATIONS
FOR THE IMPEDANCE

Another way to calculate the acoustic impedance of a horn begins with the de"nition of
acoustic impedance an the linearized momentum equation for zero mean #ow. Substituting
the de"nitions in Webster equation (4) it can be shown that [11]

dZ

dx
"jk(Z2!1)#F(x)Z, (15)

where F (x)"(2a/h)(sinx/h/(1!a cos x/h)). That is to say, we can transform the original
problem of a linear di!erential equation for the sound pressure to a new non-linear
di!erential equation for acoustic impedance. To separate the active and reactive parts for
the impedance, we denote Z(x)"X(x)#jY(x), then

dX

dx
"!2kXY#F (x)X,

dY

dx
"k (X2!Y2!1)#F (x)Y, (16)

will be the new equations to be solved. Therefore, if we know the boundary condition for the
impedance at x"l, we can develop a numerical backward integration of the system of
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non-linear di!erential equations in order to obtain the value of X and Y at x"0. This
method has the advantage of using boundary conditions for impedance. This approach is
more appropriate for horns, instead of using the boundary conditions given for sound
pressure or particle velocity. This latter approach is more useful in resonating cavities
problems. Equation (15) can be considered as a general expression for the impedance for
a horn with any shape pro"le, characterized by the function F (x). This function can be
expressed in terms of the variable section of the horn as F(x)"(1/S(x)) (LS/Lx). This
function, for some practical applications of real horns, can be de"ned or measured. On the
other hand, there are several numerical techniques for solving equation (15), which depend
on the degree of accuracy required, the computational run-time and the ratio between the
step-size and the frequency. Certainly, solving equation (15) numerically, will take a long
computer run-time for an acceptable degree of accuracy, particularly at high frequencies
where the step-size in the numerical algorithm must be reduced.

6. RESULTS

An example of a cosine-shaped horn was proposed in order to evaluate its throat
impedance. The length of the horn was kept constant at l"1)6256 m (64 in) and the throat
and mouth dimensions were selected to be 0)08 and 0)508 m respectively. The parameters
used for the cosine-shaped horn were calculated for use in equation (2).

The resulting expression is r(x)"0)147[1!0)7278 cos(0)615nx)]. The value for the
critical frequency obtained from equation (7) is 171 Hz, which limits the validity of the
approximate impedance given by equation (13). In the evaluation of the Rayleigh}Struve
function its integral representation in terms of the Weber function was used [21].

Figure 2 shows the result for the acoustic impedance for the cosine horn, obtained from
a numerical solution of equation (16) compared with the solution obtained using equation
(13). The numerical evaluation for the system of di!erential equations was obtained using
a fourth order Runge}Kutta algorithm with a variable step-size. We observe that the horn
exhibits resonance characteristics due to the large change in acoustic impedance waves
&&see'' in passing from the mouth to the free atmosphere, which introduces re#ections at the
mouth, and as a result large variations in the acoustic impedance characteristics with
frequency. It is observed that good agreement between both methods can be achieved for
frequencies above the second resonance. It is not possible to obtain a WKB solution for
frequencies below f

c
. It can be observed in Figure 2 that the cosine-shaped horn has its "rst

resonance frequency at about 86 Hz, and the second one very close to f
c
. It is noted, that as

expected, for very high frequencies the normalized reactance goes to zero and the
normalized resistance tends asymptotically to a limiting value of unity. The horn possesses
a high value of resistance at its second resonance and this value is approximately 3)5 times
greater than the "rst resonance. This di!erence is less marked at higher frequencies. This
condition can be an undesirable one in sound reproduction but can be useful for other
applications. In addition, analysis of equation (16) and from similar numerical results show
that shortening the cosine-shaped horn while keeping the throat and mouth dimension
"xed, results in a decrease in the amplitude of the resistance at "rst resonance but that the
frequency of this resonance is increased.

In addition, the use of the horn as connector used to join two pipes of di!erent sections
was studied (in this case with a ratio S

2
/S

1
"40)3, were S

2
and S

1
are the areas of the mouth

and throat respectively). Assuming that the second pipe is of in"nite extent, the results for
the impedance at the throat were calculated for the cosine-shaped geometry. Figure 3 shows
the results using both methods of solution. The results show good agreement between the



Figure 2. Normalized throat resistance and reactance of a cosine-shaped horn 1)6256 m long with throat and
mouth dimensions 8 and 50)8 cm respectively:**, approximate solution (WKB); ) ) ) ) ) , numerical solution of the
system of di!erential equations (SDE).
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numerical solution and the WKB approximation for frequencies above the second
resonance. The cosine connector has a maximum above 200 Hz and it does not exhibit more
signi"cant resonance peaks at higher frequencies. Additional observations can be made for
the cosine connector by analyzing equation (13) with a mouth impedance of unity.
A reduction in length of the connector produces displacement of the acoustic impedance
curve towards high frequency with only a very small change of shape of the curve. This
observation has been tested with additional numerical experiments. In addition, it can be
observed that the cosine-shaped connector possesses some negative values of normalized
reactance.

Finally, the results for the normalized sound pressure level along the axis of
the cosine-shaped horn using the boundary condition given by equation (14) were
calculated from the WKB approximation. They are presented in Figure 4, for the third,
fourth and "fth resonance. Figure 4(b) displays the same results but normalized instead by

JS(x). That is to say, the normalization of the sound pressure is performed by multiplying
it by the square root of the cross-section. This is important to determine whether the
reduction in sound pressure is due to the spreading of the acoustic energy over progressively
larger wave fronts or due to the resonance produced by the boundary condition at the
mouth. Here, the maximum and minimum of the sound pressure can be seen. The number of
minima found between the throat (x"0) and the mouth (x"l) gives the order of the
resonance. Similar results can be found in the literature for exponential horns (see reference
[14]).



Figure 3. Normalized throat resistance and reactance for a cosine-shaped connector used to joint two pipes of
di!erent cross-sectional areas: **, approximate solution (WKB); ) ) ) ) ) , numerical solution of the system of
di!erential equations (SDE).
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7. CONCLUSIONS

A WKB method to calculate the approximate value of the impedance of a cosine-shaped
horn has been presented. In addition, a comparison with a numerical solution of a system of
non-linear di!erential equations for the acoustic impedance has been presented. Formulae
for calculating the cut-o! frequency for the approximation have been given in consideration
of the di!erential equation involved. This particular cosine-shaped horn can feature some
advantage when it is used as a connector, since the slopes at the ends are zero and with
proper design it can avoid turbulence noise when used in a #ow duct. In addition, the
assumption of a ba%ed piston radiation impedance at the mouth is obviously more valid for
this particular shape. On the other hand, this sort of geometry is commonly found in some
acoustical applications such as resonators and some musical instruments. Therefore, it is
important to "nd some harmonic solution for the di!erential equation. It is clear that the
cosine-shaped horn is e!ectively a high-pass "lter and for most designs the ratio between its
"rst and second resonance frequencies is higher than with the most well-known horns. The
use of the WKB approximation produces two advantages: (1) it can be used together with
a numerical solution at higher frequencies, where the numerical algorithms require a long
calculation time and (2) this approximation permits the calculation of the sound pressure
distribution along the axis of the horn, so that it can be used as a design tool. It is also
noticed that the values of the reactance and resistance at high frequency are the same as
those of an in"nite tube with the same throat diameter. Thus, it can act as a sound absorber.
Certainly, the behavior of the cosine-shaped horn should be studied further using



Figure 4. Results for (a) normalized sound pressure level along the axis for the cosine-shaped horn of Figure 2,
and (b) sound pressure level along the axis normalized by JS(x) : **, 248)5 Hz; ) ) ) ) ) , 344)5 Hz; } )}, 443)0 Hz.
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experimental techniques in order to completely characterize this kind of horn. Finally, it is
observed that the WKB approximation can be utilized in this particular case, because the
variable coe$cient K in the linear di!erential equation does not change too rapidly with
axial position. Thus, the WKB approximation should not be used for short connectors or
those with high ratios of mouth to throat area.
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