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Starting with the analysis of the #uid drag and lift on a suspended travelling cable
subjected to transverse #uid excitation, the paper presents the expression of forces on the
cable, and then a set of partial di!erential equations of in-plane and out-of-plane motions of
the cable. In the case of small ratio of sag to span, the in-plane and out-of-plane modes of the
"rst order dominate the motions of cable. Thus, the partial di!erential equations of cable are
reduced to two ordinary di!erential equations of the second order by means of the Galerkin
approach. Because the sti!ness terms disappear in the ordinary di!erential equations when
the cable is at equilibrium position, the co-ordinate transform proposed by Pilipchuk is used
to describe the stretch and rotation of mid-span section of cable from the equilibrium
position so that the transformed di!erential equations include linear sti!ness terms.
Afterwards, the di!erential equations are simpli"ed by using the perturbation approach of
two variables under the assumption that the Young's module of cable is not very small. As
a result, the approximate cable dynamics yields a two-dimensional autonomous system and
does not exhibit any chaotic motions. According to the approximated model, two
equilibrium positions of cable are determined and their stability is analyzed. Finally, the
in#uences of travelling velocity and cable density on the cable dynamics are discussed on the
basis of numerical computations. The case studies show that the travelling velocity should
be limited when a very light cable is laid under water in order to avoid harmful and
dangerous swings.

( 2001 Academic Press
1. INTRODUCTION

Suspended travelling cables are extensively used in various "elds of engineering. The
observed cable dynamics often exhibits complex non-linear behavior. Here are a few, but
typical examples. (1) The cable of shipping crane may have aperiodic swings and produce
poor position accuracy. (2) The balloon formation in ring spinning process often limits the
moving speed of the yarn. (3) The tethered satellite deployed from an orbiting shuttle may
undergo very complex vibration. Hence, it is essential to understand and predict the
complicated non-linear dynamics of suspended travelling cables in their design phase.

In marine engineering, the dynamics of underwater cables, as an important topic, has
drawn much attention since 1970s. For example, Choo and Casarella reviewed the early
work on the mathematical models for anchoring cables with hydrodynamics taken into
account [1]. Nair and Hung analyzed the stability of a towing cable immersed in water
[2, 3]. Papazoglou and his co-authors made an experiment on the non-linear response of
a cable immersed in water [4]. Recently, Vassalos and Huang summarized four types of
analysis methods for the marine cable dynamics and presented the numerical simulation
and experiment of a marine cable, one of ends of which is subjected to horizontal excitation
0022-460X/01/030515#15 $35.00/0 ( 2001 Academic Press
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[5]. Mavrakos and Chatjigeorgiou studied the dynamic behavior of mooring cable with
submerged buoys [6]. They found a way to reduce the dynamic tension of the cable by
properly choosing buoys and their positions. Chang and his co-authors presented a detailed
analysis of non-linear interaction of the "rst two in-plane modes of a suspended cable
subjected to a #uid #ow in direction of cable [7]. To the authors' knowledge, however, the
non-linear dynamics of suspended travelling cables subject to transverse #uid #ow is still an
open problem.

When an underwater cable is being laid, it is travelling at certain velocity. This makes the
cable dynamics are complicated than a suspended cable. Intensive studies have been made
for the dynamics of travelling cable in air, such as the deployed cable of a tethered satellite,
tapes of video recorder. For example, Pekins and Mote Jr. established the
three-dimensional non-linear dynamic model for an arbitrarily sagged travelling cable with
arbitrarily inclined eyelets in air by using the description of "nite strain [8]. Compared with
those studies, the dynamics of underwater cable is a tougher problem.

The aim of this paper is to reveal the dynamics of a suspended travelling cable under the
transverse #uid #ow. The paper is organized as follows. To properly describe the cable
dynamics, the #uid drag and the lift on the cable are analyzed "rst. Then a set of partial
di!erential equations of motion is established. The Galerkin approach, the Pilipchuk
transform and the perturbation technique of two variables are successively used to simplify
the partial di!erential equations to a two-dimensional autonomous system. Afterwards, the
equilibrium positions and their stability are analyzed in detail. Finally, some case studies
are discussed.

2. MODEL OF A SUSPENDED TRAVELLING CABLE

As shown in Figure 1, a cable, subjected to a transverse, uniformly distributed #uid #ow
at constant velocity <

f
, is moving at constant velocity c through two eyelets spanned under

water. The dashed curve in Figure 1 represents the static con"guration of cable in still water.
To describe the motion of cable, a set of Cartesian co-ordinates is established in Figure 1
such that the x-axis connects the two eyelets, the y-axis is on the horizontal plane and
perpendicular to x-axis, and the z-axis points the direction of gravity. In addition, an arc
co-ordinate s is introduced along the cable to position the speci"c section of the cable.

In the frame of Cartesian co-ordinates, the #uid #ow moves in the y direction and drives
an arbitrary inertial point of the travelling cable from the spatial position P i (x, v

0
, w

0
) to

Pf (x#u, v, w) as shown in Figure 1. The accurate modelling of a cable gives rise to
a non-linear dynamic system having in"nite degrees of freedom. In the case of small ratio of
Figure 1. A suspended travelling cable subjected to transverse #uid #ow.



Figure 2. The forces on a short segment of travelling cable.
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sag-to-span, say 1 : 8, it has been proved that such a complicated system could be greatly
simpli"ed. In this paper, the small sag-to-span ratio is a basic assumption. Hence, the slope
and curvature of the cable are also very small.

To analyze the forces applied on the cable, a short segment AB of length ds is separated
from the cable and shown in Figure 2. In the frame of Caretesian co-ordinates, the external
force on the cable segment can be decomposed as f

x
, f

y
and f

z
. The forces on the cable

element AB are shown in Figure 2. As the cable is moving at velocity c, the segments EF and
AB are parallel to each other. From the vector relation V

r
"u5 #w5 #(V

f
!v5 ), the relative

velocity of #uid #ow to cable is in the direction GF and has magnitude <
r
, where the dot

represents the partial derivative with respect to time t. In the case of small sag-to-span ratio,
the angle between the segment AB and the horizontal plane xoy is b

1
+w@@1, and the angle

between the segment AB and the vertical plane xoz is b
2
+v@@1, where the prime represents

the partial derivative with respect to the co-ordinate x.
Let F

D
be the #uid drag, along the segment GF, on the cable segment AB. It is obvious

that the #uid lift F
L

is perpendicular to the plane spanned by the segment GF and the cable
segment AB. Let the segment OG rotate an angle b

3
in the plane EGH, and then rotate an

angle b
4

around the force vector F
D
. Thus, the direction of #uid lift F

L
can be determined.

According to the Morison drag term in hydrodynamics, it is easy to write out the #uid drag
and lift on the cable element of unit length

F
D
"1

2
o
f
D

C
C

D
<
r
D<

r
D, F

L
"1

2
o
f
D

C
C

L
<
r
D<

r
D, (1)

where o
f

is the #uid density, D
C

the equivalent diameter of cable section, C
D

and C
L

are the
coe$cients of #uid drag and lift respectively. In the frame of Cartesian co-ordinates de"ned
above the contributions of #uid drag and lift are expressed as

f
y
"F

D
cos b cos b

3
!F

L
cos b

4
sin b

3
, f

z
"!F

D
cos b sin b

3
!F

L
cos b

4
cos b

3
. (2)

In what follows, it is assumed that the #ow velocity <
f

is much larger than the velocity
components of cable in directions y and z, i.e., vR /<

f
@1 and wR /<

f
@1. From the triangle EFG

in Figure 2 and the cosine theorem, one can derive the relative velocity between the cable
and #ow

<
r
+b<

f
(1!kM v@), (3)
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where

b"J1#j2
0
, kM "

j
0

1#j2
0

, j
0
"

c

<
f

. (4)

By substituting the following geometric relations:

cos b"
(1!j

0
v@)<

f
<
r

, cos b
3
"

<
f
!vR
<
f

, sin b
3
"

wR
<
f

, cos b
4
+1 (5)

into equation (2), one obtains the components of #uid force on the cable element of unit
length

f
y
"!1

2
o
f
bD

C
<
f
[bC

L
wR (1!kM v@ )!C

D
(<

f
!vR ) (1!j

0
v@ )](1!kM v@ ),

(6)
f
z
"!1

2
o
f
bD

C
<
f
[bC

L
(<

f
!vR ) (1!kM v@ )#C

D
wR (1!j

0
v@ )](1!kM v@ ).

According to the Hamilton principle, one can derive a set of partial equations that govern
the dynamics of suspended travelling cable as follows:

L2v
Lt2

!

L2v

Ls2
E

o
eN"

f
y

oA
,

L2w
Lt2

!

L2w

Ls2
E

o
eN"

f
z

oA
#gN , (7)

where

o"o
c
#C

I
o
f
, gN "

go
c

o
, (8)

o
c
is the density of the cable, C

I
the coe$cient of #uid inertial attached to the cable, g the

gravitational acceleration, A the section area of cable, E the Young's module of cable, and
eN the averaged longitudinal stain of cable as de"ned in reference [7]:

eN (t)"
1

2H P
H

0
CA

Lv

LxB
2
#A

Lw

LxB
2
!A

Lw
0

Lx B
2

D dx. (9)

Here w
0
(x)"D sin(nx/H) is the static con"guration of the cable at the equilibrium position

in still water, H the span of cable, and D the sag of cable in the absence of gravity.

3. SYSTEM REDUCTION AND PILIPCHUK TRANSFORM

To simplify the dynamic equation (7) with the expressions of #uid force substituted, a set
of new variables and parameters are de"ned "rst

g"
x

H
, <"

v

D
, ="

w

D
, q"

d

HS
E

o
t , d"

D

H
, k"S

o
c
gH4

ED3
,

(10)

c
f
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C
L

C
D

, v
f
"

<
f

d2 S
o
E

, D
f
"
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f
v
f
C

D
D

C
D

2oA
, j"dj

0
, k"dkM .

Then, the in-plane and out-of-plane motions of cable are approximated by the vibration
modes of the "rst order as follows:

< (g, q)"sin(ng)q
1
(q), =(g, q)"sin(ng)q

2
(q). (11)
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By means of the Galerkin approach, equation (7), with equation (6) substituted, is simpli"ed
as

qK
1
#e

q
q
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"!D
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MmqR
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!d
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f
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1
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2
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(12)
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where

e
q
"

eN
d2
"

n2

4
(q2

1
#q2

2
!1), p"

k2n2

4
, m"bc

f
, n"1#j2

0
, d

1
"

4

n
, d

2
"

16

3n
. (13)

The dot in equation (12) is rede"ned as the derivative with respect to the dimensionless time
q. This equation governs the horizontal and vertical motions of the mid-span section of
cable.

Intuitively speaking, the motion of mid-span section of cable is similar to that of a spring
pendulum of two degrees of freedom. Like the study on the spring pendulum, it is very
natural to consider a co-ordinate transform suggested by Pilipchuk in reference [9]:

q
1
(q)"[1#m (q)] sin u (q), q

2
(q)"[1#m (q)] cos u(q), (14)

where m (q) and u (q) are the radial stretch and the rotation angle of mid-span section of cable
respectively. As shown in Figure 3, u is measured from the bottom position of cable, where
the cable is at rest in still water, and in clockwise direction.

From equation (14), one can see that m"0 corresponds to the circular motion of
mid-span section of cable. For this kind of motion, one has

e
q
"

n2

4
(q2

1
#q2

2
!1)"0. (15)

Equation (15) indicates that the averaged longitudinal strain of cable vanishes when the
mid-span section of cable moves exactly on the unit circle. So do all the sti!ness terms in
equation (12). This phenomenon usually makes a trouble to the perturbation analysis. One
can immediately "nd, however, that in the new co-ordinates, at least one dynamic equation
remains a sti!ness term.
Figure 3. De"nition of new variables in Pilipchuk transform.
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By substituting transform (14) into Equation (12) and neglecting the higher order terms of
m, one obtains a set of dynamic equations that govern the stretch and rotation of mid-span
section of cable as following:

mG#D
f
mQ #u2

0
m!(mD

f
!uR )uR !

dF(u)

du
#G(mQ , u, uR ) sin2 u"0, (16a)

uK#D
f
uR #(mD

f
#2uR )mQ #F (u)#H (mQ , u, uR ) sin2 u"0, (16b)

where

F (u)"d
1
[(k2!mD

f
v
f
) sin u!D

f
v
f

cos u],

G(mQ , u, uR )"p
1
(nmQ !muR )!4p

2
(n sin u!m cos u), (17)

H(mQ , u, uR )"p
1
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2
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and

u
0
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J2
, p

1
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n2k2D
f

4
, p

2
"

nk2D
f
v
f

3
. (18)

Now, the elastic restoring force in cable gives rise to the static sti!ness terms in equation
(16a) as long as the motion of mid-span section of cable deviates from the unit circle. Even if
the mid-span section of cable is moving along the unit circle, the e!ects of gravity, #uid drag
and lift still o!er a sti!ness term to equation (16b).

4. APPROXIMATE SOLUTION

To further simplify equation (16), an important phenomenon of cable dynamics should be
noticed. That is, the magnitude of radial stretch of mid-span section of cable is usually much
smaller than the magnitude of rotation angle since the Young's module of a real cable
cannot be very small. This is the case when the cable is made of metal or even glass "bre. In
most cases, the assumption of EAo

c
gH4/D3 holds true, there follows a small parameter

k according to its de"nition in equation (10). When a steel cable under water is taken as an
example, the curves of small k versus H for some practical ratios of sag-to-span are shown in
Figure 4.

In the case of small k, the perturbation technique can be used to give an approximate
analysis of cable dynamics under the transverse #uid #ow. For this purpose, one can rescale
the time, generalized displacements and two parameters as follows:

t
0
"kq, m"k2mM (q), u"uL (kq)#k2uN (q), D

f
"kDM

f
, v

f
"kvN

f
. (19)

By substituting equation (19) into equation (16) and dropping the higher order terms, one
obtains
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Figure 4. Small parameter k versus span H at practical ratios of sag-to-span (g"9)8 m/s2, o
c
"7)8]103 kg/m3,

E"210 GPa). , d"0)12; } }} }, d"0)10; ) ) ) ) ) ), d"0)08; **, d"0)06; - - - - -, d"0)04.

NON-LINEAR DYNAMICS OF A SUSPENDED TRAVELLING CABLE 521
where
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3
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2
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4
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1
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Let tI"u
0
q be a new dimensionless time scale, i.e., mM "mM (tI , t

0
) and uN "uN (tI , t

0
). It is easy to

see that equation (20) involves a slow time scale t
0

and a fast time scale tI . According to the
two variable perturbation approach [10], the solution of equation (20) should be in the
form

mM "mM
0
(tI , t

0
)#kmM

1
(tI , t

0
)#O(k2),

(22)
uN "uN

0
(tI , t

0
)#kuN

1
(tI , t

0
)#O(k2).

By substituting equation (22) into equation (20) and equating the same power of k, one has
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0
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Because the right-hand side of equation (23) involves the slow time scale t
0

only, the
solution of equation (23) reads

mM
0
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0
(t
0
) sin( t3 )#B

0
(t
0
) cos( t3 )#

1
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0
C!A

duL
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0
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3
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4
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where A
0
(t
0
) and B

0
(t
0
) are the functions in slow time scale. Similarly, solving equation (24)

for uN
0

and dropping the secular terms give

uN
0
"0. (28)

From the cancellation condition of secular terms in equations (25) and (26), one can "nd the
approximate solution of the "rst order for equation (16):
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where a
0

and b
0

are the arbitrary parameters determined by the initial conditions, whereas
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From equations (24) and (28), one can see that uL yields

d2uL
dq2

#Q
2

duL
dq

#Q
4

sin uL !Q
3

cos uL "0. (31)

In the sense of the "rst order approximation, equation (31) serves as a simpli"ed dynamic
equation of the original cable system. As equation (31) is equivalent to a two-dimensional
autonomous system, the approximated model of cable does not exhibit any chaotic
motions. Furthermore, Q

2
, the coe$cient of velocity term, involves the parameter D

f
'0

and keeps positive. Hence, the system is energy dissipative and does not undergo any Hopf
bifurcation.

5. STABILITY ANALYSIS OF EQUILIBRIUM POSITIONS

5.1. DETERMINATION OF EQUILIBRIUM POSITIONS

From equation (16), the equilibrium position (u
0
, m

0
) yields

u2
0
m
0
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0
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0
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namely
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NON-LINEAR DYNAMICS OF A SUSPENDED TRAVELLING CABLE 523
One can "rst solve equation (33b) for the rotation angle u
0

and then gets the radial stretch
m
0

from equation (33a).
For simplicity, "rst consider the case when the cable is not travelling in direction x, i.e.,

c"0. This results in

j
0
"0, m"c

f
, n"1, p

2
"0 (34)

such that equation (33) is simpli"ed as
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Solving equation (35b) for u
0

gives two possible angles of equilibrium
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The corresponding values of radial stretch are
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According to Figure 3, the equilibrium positions corresponding to (u
01

, m
01

) and (u
02

, m
02

)
are referred to as the left equilibrium position and the right equilibrium position
respectively.

In the case of k2'c
f
v
f
D

f
, one has u

01
3(0, n/2) and u

02
3 (n, 3n/2). That is, the left

equilibrium position is below the x-axis and the right one is above the x-axis. If
k2(c

f
v
f
D

f
, the reverse order can be observed. An interesting phenomenon is the critical

case when two equilibrium positions happen to be on the horizontal plane, i.e., u
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"n/2

and u
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"!n/2, if k2"c

f
v
f
D

f
. Substituting the original system parameters into this

equation, one arrives at
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This indicates that the weight of cable of unit length is just balanced by the lift of #uid #ow
on the cable segment. As a consequent result, the tension in cable is balanced by the #uid
drag only. In this case, the radial stretch of cable reached its minimum 8v

f
D

f
/n5. Obviously,

this case happens only when c
f
'0 and v

f
'0 since D

f
is proportional to v

f
, and k'0.

Hence, the conditions of C
L
'0 and <

f
'0 should hold true. That is, the cable must be

subjected to the transverse #uid #ow that produces enough #uid lift.
When the cable is travelling in x direction, a more detailed form of equation (33b) reads
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By means of h"sin2 u
0
, equation (39) can be tansformed to
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h2#a

2
h#a

3
"0, (40)
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where

a
0
"n2p2

2
(m2#n2)*0, a

1
"np

2
[2v

f
D

f
(m2#n)!(2mk2#np

2
n2)],

(41)
a
2
"(k2!mv

f
D

f
)2#v2

f
D2

f
!2nnp

2
v
f
D

f
, a

3
"!v2

f
D2

f
(0.

It can be proved, through a lengthy algebraic manipulation on MAPLE, that equation (40)
has only one positive real root h

1
3[0, 1], which corresponds to two actual roots and two

pseudo-roots of equation (39). With the help of equation (39), the two pseudo-roots can be
removed and a pair of rotation angles of equilibrium position is determined as follows:

u
01
"arccos

k2!m(v
f
D

f
#np

2
h
1
)

J[k2!m(v
f
D

f
#np

2
h
1
)]2#(D

f
v
f
#nnp

2
h
1
)2
3(0, n),

(42)
u
02
"u

01
#n3 (n, 2n).

Then, equation (33a) gives the corresponding solutions of radial stretch.

5.2. STABILITY ANALYSIS

In order to analyze the stability of equilibrium positions, one should study the linear
perturbation in equation (16) at (u

0i
, m

0i
), i"1, 2. To simplify this procedure, recall the

approximate solution (m, u) given by equation (29) near the equilibrium position. Because
Q

2
'0, (m, u) possesses the same stability property as uL governed by equation (31).

Consider the perturbed equation of equation (31) at a rotation angle u
0i

of equilibrium
position

d2DuL
dq2

#D
f

dDuL
dq

#CAQ3
#

LQ
4

Lu
0i
B sin u

0i
#AQ4

!

LQ
3

Lu
0i
B cos u

0iDDuL "0. (43)

As D
f
'0, equation (43) is asymptotically stable if and only the following inequality holds

true:

AQ3
#

LQ
4

Lu
0i
B sin u

0i
#AQ4

!

LQ
3

Lu
0i
B cos u

0i
'0. (44)

When the cable is not travelling, equation (44) can be simpli"ed as

dF(u
0i
)

dq
"d

1
[(k2!c

f
v
f
D

f
) cos u

0i
#v

f
D

f
sin u

0i
]'0. (45)

Substituting equation (36) into equation (45) gives

dF(u
01

)

dq
"

d
1

J(k2!c
f
v
f
D

f
)2#(v

f
D

f
)2
'0, (46a)

dF(u
02

)

dq
"

d
1

J(k2!c
f
v
f
D

f
)2#(v

f
D

f
)2
(0. (46b)

Hence, the left equilibrium position is always asymptotically stable and the right
equilibrium position is unstable when the #uid #ows from the right to the left. It is easy to
see that the right equilibrium position is a saddle point.
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In the case of travelling cable, it seems impossible to derive an analytical stability
criterion like equation (46) for the equilibrium positions. However, the tuition and a great
number of numerical examples support the similar assertion. That is, the left equilibrium
position is asymptotically stable.

6. CASE STUDIES

6.1. ACCURACY OF APPROXIMATE SOLUTION

To check the accuracy of approximate solution (29) determined by equation (31) with
a small parameter k, a great number of numerical comparisons were made between the
Figure 5. Comparison between solutions of equations (16) and (31) (d"0)1, c
f
"0)5, v

f
"0)1, D

f
"0)1).

(a) Stretch (k"0)6, j
0
"100); (b) Rotation angle (k"0)6, j

0
"100); (c) Stretch (k"0)3, j

0
"200); (d) Rotation

angle (k"0)3, j
0
"200); (e) Stretch (k"0)1, j

0
"10); (f ) Rotation angle (k"0)1, j

0
"10), **, exact; - - - - -,

approximate.



Figure 6. Rotation angle of stable equilibrium position versus relative travelling velocity for three speci"c values
of k (d"0)1, c

f
"0)5, v

f
"0)1, D

f
"0)1). **, k"0)1; - - - - -, k"0)2; ) ) ) ) ), k"0)3.
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approximate solution and the numerical solution of equation (16), which is referred to as
&&exact solution'' for short. All the numerical examples showed very good agreement
between those two kinds of solutions in a wide range of parameters. For example, it is very
hard to identify the di!erence between the exact and approximate solution shown in
Figures 5(a) and 5(b) even for k"0)6 and j

0
"100. Figures 5(c) and 5(d) show an

identi"able, but very small di!erence between the exact and approximate solutions when
the travelling velocity was so high that limq?`=

u(q)P3)04, i.e., the mid-span section of
cable arrived at the top equilibrium position.

It should be pointed out that in the above two case studies, the initial state of solution (29)
was set to meet the requirement of u

0
(0)"0, uR

0
(0)"0, a

0
"0, b

0
"0, and so was the state

of exact solution. As a result, the high-frequency components do not appear in the stretch
and rotation of cable. To show the accuracy of approximate solution when the exact
solution involves high-frequency components, Figures 5(e) and (5(f ) give the comparison of
exact and approximate solutions when u

0
(0)"0, uR

0
(0)"0)01, a

0
"0, b

0
"0. In this case,

the approximate stretch o!ers a kind of averaged slow trend, as shown in Figure 5(e), of the
exact stretch, which engineers are interested in. As for the rotation angle, the approximate
solution still coincides with the exact one as shown in Figure 5(f ).

6.2. EFFECTS OF TRAVELLING VELOCITY AND CABLE DENSITY ON DYNAMICS

In this study, the system parameters were set at d"0)1, c
f
"0)5, D

f
"0)1, v

f
"0)1, while

parameters k and j
0

were taken as the two changeable parameters. As v
f

was "xed, the
change of j

0
represents only the variation of travelling velocity c. In addition, the change of

k can be understood as the variation in cable density of o
c
only, because D

f
and v

f
appear in

the form of product in equation (31) so that the total density of cable system o disappears.
To gain an insight into the cable dynamics, the rotation angles of equilibrium position of

cable were computed according to equations (40) and (42) "rst. Figure 6 shows the rotation
angle of asymptotically stable equilibrium position of cable with increase of travelling
velocity for three speci"c values of k. The three curves in the similar shapes indicate that the
stable equilibrium position always goes up from the bottom to the top with increase of



Figure 7. Motions of mid-span section of cable at di!erent travelling velocities (k"0)1, d"0)1, c
f
"0)5,

v
f
"0)1, D

f
"0)1). (a) j

0
"10; (b) j

0
"20; (c) j

0
"50; (d) j

0
"200.
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travelling velocity, and the transition from the bottom to the top is very sudden at a
speci"c travelling velocity. Moreover, the increase of parameter k, i.e., the density of cable,
can greatly increase the above transition velocity.

Figure 7 shows the cable dynamics in the case of k"0)1. When the travelling velocity
was low, e.g., j

0
"10, the cable had a few swings around the low-equilibrium position "rst

and then returned to it as shown in Figure 7(a). With increase of travelling velocity, the
stable equilibrium position of cable moved up and reached the plane of xoy as shown in
Figure 7(b) when j

0
"20. To well understand this phenomenon, the global phase #ow of

equation (31) in this case is shown in Figure 8, where the equilibrium position at
u
0
+1)571+n/2 is an asymptotically stable focus and the equilibrium position at

u
0
+4)713+3n/2 is an unstable saddle. If the travelling velocity is further increased, the

cable would swing a few circles around the x-axis as shown in Figure 7(c) when j
0
"100 or

even repeated many times as shown in Figure 7(d) when j
0
"200, and "nally returned to

the stable equilibrium position at the top. This phenomenon may cause troubles in marine
engineering when an underwater cable is laid.

According to Figure 6, the cable density can greatly drop the equilibrium position and
may reduce the possibility of large swing. Thus, the cable dynamics at k"0)3 was studied.
Figure 9(a) shows the motion of mid-span section of cable when j

0
"50. In this case, the

large density prevented the cable from getting up by nature, and made the cable swing with



Figure 8. Global phase #ow of equation (31). (k"0)1, j
0
"20, d"0)1, c

f
"0)5, v

f
"0)1, D

f
"0)1).

Figure 9. Motions of mid-span section of cable at di!erent travelling velocities (k"0)3, d"0)1, c
f
"0)5,

v
f
"0)1, D

f
"0)1) (a) j

0
"50; (b) j

0
"200.
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very small amplitude and return to the stable equilibrium position at the bottom. When
j
0
"200, the stable equilibrium position of cable moved to the top as shown in Figure 9(b).

Hence, the mid-span section of cable would undergo a couple of swings around the x-axis
and settled down to the top equilibrium position at last.

7. CONCLUDING REMARKS

The motion of a suspended travelling cable subjected to transverse #uid #ow can be
approximately described by a two-dimensional autonomous system when the sag-to-span
ratio is small and the Young's module of cable is large enough. In this case, the mid-span
section of cable moves and vibrates like a spring pendulum. The cable has two equilibrium
con"gurations. One is asymptotically stable and the other is unstable. With increase of
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travelling velocity, the stable equilibrium position of mid-span section of cable can move up
from the bottom to the top of a circle. In addition, the cable has neither the Hopf bifurcation
nor the chaotic motions.

The numerical computations showed that the cable had swings of small amplitude
around the equilibrium position when the travelling velocity was relatively low. With the
increase of travelling velocity, the cable might exhibit repeated swings of large amplitude
around the axis through two eyelets. As a result, the travelling velocity should be limited
when the underwater cable is laid so as to avoid any harmful or dangerous rotations.

If the #uid #ow is not perpendicular to the vertical plane, the dynamic equations of cable
will become much more complicated due to the components of #uid drag and lift in
x direction. Some basic assumptions in section 2 may not hold true in this case. Thus, the
dynamics of a suspended travelling cable subjected to the #uid #ow in arbitrary direction is
still an open problem.
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