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1. INTRODUCTION

Axially moving materials are of technological importance, since there are widespread
applications in the form of thread lines, high-speed magnetic tapes and paper sheets, strings,
power transmission chains and belts, band-saws, "bers, beams, aerial cable tramways and
pipes conveying #uid. The work done has been reviewed by Ulsoy et al. [1] and Wickert
and Mote [2] up to 1978 and 1988 respectively. Wickert and Mote [3] investigated the
response of axially travelling strings and beams subjected to arbitrary excitation and initial
conditions. They used travelling string eigenfunctions and introduced a convenient
orthogonal basis suitable for discretization. They presented a modal analysis using complex
state eigenfunctions and their conjugates [4]. Ulsoy [5] dealt with a model for the
transverse vibration of an axially moving beam, including elastic coupling between the two
adjacent spans. The system was then analyzed using a classical approximate solution
method. The simulation showed that a beating phenomenon exists at zero transport
velocity, but was destroyed at higher velocities and/or when there were di!erences in the
axial tension in adjacent spans. Al-Jawi et al. [6}8] investigated the e!ects of tension
disorder, inter-span coupling and translation speed on the con"nement of the natural
modes of free vibration. A theoretical basis for the analysis of band vibration and stability
was studied by Ulsoy and Mote [9]. The band natural frequencies were found to decrease
with increasing axial velocity at a rate dependent on the wheel support system constant, and
to increase with increasing axial tension or &&strain''.

Miranker [10] considered a model using a variational procedure and derived the
equations of motion for variable axial velocity. Mote [11] investigated the problem of an
axially accelerating string with harmonic excitation at one end and determined stability by
Laplace transform techniques. Pakdemirli et al. [12] re-derived the equations of motion for
an axially accelerating string using Hamilton's principle and made a stability analysis using
Floquet theory for sinusoidal velocity function. Pakdemirli and Batan [13] made a stability
analysis for periodic constant acceleration}deceleration type of velocity case.

Pakdemirli and Ulsoy [14] investigated the principal parametric resonances and the
combination resonances for an axially accelerating string. They obtained instability regions
for velocity #uctuation frequencies nearly twice any natural frequency, no instabilities were
found for the frequencies close to zero. For combination resonances, instabilities occurred
only for those of sum type. No instabilities were detected for di!erence-type combination
resonances in agreement with reference [15]. OG z et al. [16] investigated the transition
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behavior from strip to beam for axially moving continua. An outer solution is studied. An
approximate analytical expression for the non-linear natural frequency was given for the
problem. The stability borders were determined analytically depending on velocity. The
beam e!ects were studied. OG z and Pakdemirli [17] considered a simply supported
Euler}Bernoulli beam moving with variable velocity. The natural frequency variation
depending on velocity for various #exural sti!ness values were determined for the "rst two
modes. The authors arrived at the same results as in references [14, 15] for the axially
moving beams. Wickert [18] analyzed free non-linear vibrations of a moving beam over the
sub- and superharmonic transport speed ranges. Chakraborty et al. [19] investigated the
free and forced vibrations of a travelling beam using a model similar to that of reference
[18]. Pellicano and Zirilli [20] presented a boundary layer solution for the axially moving
beam problem with vanishing #exural sti!ness and weak non-linearities. Asokanthan and
Ariaratnam [21] investigated #exural instabilities in moving bands under harmonic tension
#uctuation. They discussed the e!ects of damping, mean band speed, and the band
compliance on the band stability. OG z et al. [22] investigated linear and non-linear
vibrations of moving beams with time-dependent velocity. The authors calculated
non-linear frequencies depending on mean velocity and #exural sti!ness. They obtained
amplitude-phase-modulation equations, determined stable and unstable regions for trivial
and non-trivial solutions. OG z and Boyaci [23] studied a tensioned pipe conveying #uid with
time-dependent velocity. They obtained stability boundaries and reached similar results in
agreement with references [14, 16, 17].

In this study, the vibrations of an Euler}Bernoulli-type beam having di!erent #exural
sti!ness values and moving with harmonically varying velocities are considered. The beam
is on "xed}"xed supports. The natural frequency variation depending on transport velocity
for various #exural sti!ness values are determined for the "rst two modes. The principal
parametric resonances are investigated. For velocity #uctuation frequencies nearly twice
any natural frequency, an instability region occurs, whereas for frequencies close to zero, no
instabilities are detected. The #exural e!ects and the e!ect of support conditions on the
natural frequencies and on the stability are discussed.

2. APPROXIMATE ANALYSIS

For the axially moving beam, following a similar derivation as given in reference [18], it
can be shown that the linear, time-dependent, dimensionless equation of motion is

(wK#2wR @t#w@t5 )#l2
f
w*l#(t2!1)wA"0, (1)

where w is the transverse displacement, t is the axial velocity, l
f

is the #exural sti!ness, wK ,
2twR @ and t2wA denote local, Coriolis and centripetal acceleration components respectively.

The boundary conditions for a "xed}"xed beam are

w (0, t)"w(1, t)"0, w@(0, t)"w@(1, t)"0. (2)

The dot denotes di!erentiation with respect to time and the prime denotes di!erentiation
with respect to the spatial variable x.

Assuming that the velocity is harmonically varying about a constant mean value t
0
, one

writes
t"t

0
#et

1
sinXt, (3)

where e is a small parameter and et
1

and X represent the amplitude of #uctuations and
#uctuation frequency respectively. Substituting equation (3) into equation (1) and keeping
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terms up to the "rst order of approximation, one has
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Applying the method of multiple scales in a similar way to reference [17], and arranging
the equations one obtains
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where u
n

is the natural frequency of oscillations and >
n

is the shape function with the
following "xed end conditions:
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The solution of equation (5) is
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where b
in

satisfy the following dispersive relation:
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Applying the boundary conditions to the solution, one obtains the matrix equation
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For non-trivial solutions, the determinant of the coe$cient matrix must be zero, which
yields the support condition
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Numerical values of u
n
and b

in
can be calculated using equations (8) and (10) and natural

frequencies will be presented in section 4. Using the boundary conditions (6), one can "nd
the coe$cients C
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3. PRINCIPAL PARAMETRIC RESONANCES

In this section, three di!erent cases are investigated depending on the numerical value of
the frequency.

3.1. X AWAY FROM 2u
n

AND 0

The solvability condition requires (see references [17, 24, 25] for details of calculating
solvability conditions)

D
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A

n
"0, (15)

where A
n
is the complex amplitude. This means a constant amplitude solution up to the "rst

order of approximation
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Hence, solutions are bounded for this case up to O(e).

3.2. X CLOSE TO 0

The nearness of X to zero is expressed as

X"ep. (17)

Following the calculations in references [17, 24, 25] for this case one obtains the solvability
condition as
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After solving equation (18), one gets
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Since Dsinp¹
1
D)1 and Dcos p¹

1
D)1, the complex amplitudes are bounded in time.

Therefore, no instabilities exist up to this order of approximation.

3.3. X CLOSE TO 2u
n

In this case, the nearness of velocity-variation frequency to twice that of the natural
frequencies can be expressed as

X"2u
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#ep, (21)

where p is a detuning parameter. The solvability condition is
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where AM
n

is the complex conjugate of amplitude A
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and k
0

is

k
0
"

G1/2(X!2u
n
)P

1

0

>M @
n
>M
n
dx!it

0 P
1

0

>M A
n
>M
n
dxH

2GiunP
1

0

>M
n
>
n
dx#t

0 P
1

0

>M
n
>@
n
dxH

t
1
. (23)

Following the solution method in references [17, 24, 25] one obtains
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where k
0R

and k
0I

are real and imaginary parts of k
0

respectively. The two values of
X denote the stability boundaries for small e. When the amplitude of #uctuations
t
1

increases, the stability regions widen.

4. NUMERICAL EXAMPLES

In this section, numerical plots for the natural frequencies and stability borders will be
presented.

Natural frequencies are found by solving equations (8) and (10) simultaneously and
plotted in Figures 1 and 2 for the "rst and second modes, respectively, for three di!erent
#exural sti!ness values. As can be seen the natural frequencies decrease with increasing
mean velocity. At the critical velocity divergence instability occurs. Increasing the #exural
sti!ness values increases natural frequencies in agreement with references [17, 18]. The
natural frequencies for the "xed}"xed axially moving beam are higher than those of the
simply supported one calculated in reference [17].

In Figures 3 and 4, stable and unstable regions are plotted for principal parametric
resonances case for the "rst mode for two di!erent #exural sti!ness values (l

f
"0)6 and 1)
Figure 1. Comparison of "rst natural frequency values for di!erent #exural sti!nesses.



Figure 2. Comparison of second natural frequency values for di!erent #exural sti!nesses.

Figure 3. Stable and unstable regions for principal parametric resonances for the "rst mode (n"1, l
f
"0)6).
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obtained by using equation (24). The regions in between the planar surfaces are unstable
whereas the remaining regions are stable. Increasing the #exural sti!ness value, the stability
regions shift to higher X values. Increasing the velocity variation amplitude widen the
stability regions in agreement with reference [17]. In Figures 5 and 6, stable and unstable
regions are given for the second mode. Similar conclusions can be drawn. The values for the



Figure 4. Stable and unstable regions for principal parametric resonances for the "rst mode (n"1, l
f
"1)0).

Figure 5. Stable and unstable regions for principal parametric resonances for the second mode (n"2, l
f
"0)6).
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axially moving beam on "xed supports are higher than the values of the simply supported
travelling beam in reference [17].

5. CONCLUSIONS

In this study, the vibration of an axially moving Euler}Bernoulli beam with "xed end
conditions is investigated. The velocity is assumed to be harmonically varying about a mean
value. The velocity-#uctuation amplitude is assumed small. Natural frequencies are found
depending on mean velocity by using a standard root-"nding algorithm for di!erent



Figure 6. Stable and unstable regions for principal parametric resonances for the second mode (n"2, l
f
"1)0).
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#exural sti!ness values for the "rst two modes. The natural frequencies increase with
increasing #exural sti!ness and decrease with increasing mean velocity. Divergence
instability occurs at the critical velocity. The natural frequencies for the "xed}"xed axially
moving beam are higher than those of a simply supported one.

The analysis is valid for the mean value of axial velocity from zero to the critical velocity.
Stability boundaries are calculated for the principal parametric resonance cases. For
velocity #uctuation frequencies nearly twice any natural frequency, an instability region
occurs. For frequencies close to zero, no instabilities are detected up to the "rst order of
approximation. The stability regions are plotted. The beam e!ects cause the stability
boundaries to shift to higher frequency values and increasing the velocity variation
amplitude causes the stability regions to be wider. The values for the axially moving beam
on "xed supports are higher than the values of a simply supported travelling beam.
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