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This paper describes the use of proper orthogonal decomposition (POD) for problems in
which sound radiation is caused by turbulent #ow interacting with rigid surfaces. For
a complete solution the statistics of the turbulent velocity #uctuations must be de"ned, and
it is customary to base these on spectral analysis. This paper will describe how proper
orthogonal modes provide a better approach than spectral analysis for inhomogeneous
turbulent #ows. One of the additional advantages of POD is that sound radiation problems
may be analyzed in the time domain and this may prove useful in rotor noise applications
where time-domain calculations are frequently used. For #ows that are stationary in time or
homogeneous in at least one direction, it will be shown that there are advantages in using
a combination of POD and a linear stochastic estimator to describe the #ow. This provides
a decomposition of the two-point cross-correlation function of the turbulence that requires
fewer modes than POD.

( 2001 Academic Press
1. INTRODUCTION

It is customary to specify turbulent #ows in terms of their time-averaged statistics such as
the time-averaged turbulent stresses, the cross-correlation function or the cross-spectrum.
An alternative approach is to use proper orthogonal decomposition (POD) [1] in which the
#ow is de"ned using a set of modes with time-varying amplitudes. It was demonstrated by
Lumley [1] that the optimum modes were orthogonal and had amplitudes which were
uncorrelated with each other. POD requires the speci"cation of the two-point
cross-correlation function throughout the #ow, which is very time consuming to measure
with devices such as hot-wire probes. Most of the interest in POD has therefore been from
the theoretical viewpoint [2]. However, the development of direct numerical simulations
(DNS) and laser light sheet measurements (PIV) has provided capabilities to specify turbulent
#ow "elds in the detail required for POD and this has lead to renewed interest in the method
[3}5]. The purpose of this paper is to consider how POD may be applied to typical problems
found in aero- or hydroacoustics, given the data set required to de"ne the modes.
0022-460X/01/040767#18 $35.00/0 ( 2001 Academic Press
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Proper orthogonal decomposition is optimal because the modal expansion requires the
minimum number of modes to describe the #ow. For homogeneous #ows the optimum
modes are harmonic, and so the problem is reduced to classical Fourier analysis. For
inhomogeneous #ows POD provides a rigorous method for reducing the data set to its
simplest description in the spatial domain. Applying this approach to problems in
aeroacoustics, such as the noise radiated from a strut in a turbulent #ow (see Figure 1),
enables the radiated noise from the #ow structure interaction to be calculated directly. The
contribution of each mode to the sound "eld can then be identi"ed. For homogeneous #ows
this o!ers little new insight over and above the existing, well-known, Fourier analysis
techniques. However, time-domain calculations for stochastic #ows can be de"ned in
a rigorous fashion using POD, as will be discussed in section 3.

Homogeneous turbulent #ows require a large number of wavenumber components to
describe completely all the appropriate scales, and so for #ows which are homogeneous in at
least one direction, the number of proper orthogonal modes (POMs) required to describe
the #ow may be very large. An alternative to POD is linear stochastic estimation (LSE) [6],
which seeks to minimize the error between the turbulent #uctuations and the terms in
a modal expansion. The modes obtained from LSE are time-averaged representations of the
#ow, and di!er from POMs because they cannot be used to reconstruct the time history of
the #ow. However, as will be discussed in section 4, they can be used in combination with
POD to decompose the cross-correlation function into a set of uncorrelated modes. This
new decomposition approach leads to the de"nition of compact eddy structures (CES)
which are obtained from applying POD in the inhomogeneous directions of the #ow, and
LSE in the homogeneous directions. The CES can be used to calculate the response of
a structure to the incoming #ow, in the same way as POMs, and the response can be
associated directly with particular structures that have clearly identi"able characteristics.
This will be illustrated in section 5 by considering the noise radiated by a turbulent wake of
"nite width incident on a stationary airfoil. It will be shown how each mode couples with
the sound "eld, and interestingly, how only a very limited number of modes are responsible
for the sound radiation.

2. PROPER ORTHOGONAL DECOMPOSITION

We will start by considering the problem of calculating the surface pressure #uctuations
on an airfoil induced by an unsteady in#ow. We will assume that the linearized equations of
motion may be used, which is a valid assumption for thin airfoils at high Reynolds numbers
[7]. We will also assume that the surface pressure at the location x may be calculated
provided that the #ow is speci"ed upstream of the computational domain shown in
Figure 1.

Since the problem is assumed linear, a solution can be obtained by considering an in#ow
disturbance that is harmonic in space and time, and by superimposing the results for each
wavenumber and frequency to give the complete solution. Consequently, if a vortical in#ow
disturbance w

j
exp(!ik ' y!iut) is de"ned far upstream of the airfoil, the surface pressure

can be speci"ed in the form

P(x, t)"w
j
g
j
(x, k, u) exp(!iut), (1)

where g
j

is the response of the system to the jth component of the incoming gust.
For a general in#ow disturbances u

j
(y, t), we de"ne w

j
using a space}time Fourier



Figure 1. A typical problem in aeroacoustics: an airfoil excited by a turbulent in#ow.
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transform so that
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where< is de"ned as a large volume upstream una!ected by the presence of the airfoil. This
is a modelling requirement that is necessary to de"ne the response of the system to the #ow
disturbance. This requirement could also be met by de"ning the #ow through the volume of
interest, but without the airfoil being present. If the in#ow is turbulent we can only de"ne its
mean or average statistics and so we are primarily interested in the cross-power spectrum of
the surface pressure #uctuations at x and x@ in the form
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This basic result shows that the surface pressure spectrum is de"ned in terms of the
wavenumber transforms of the in#ow disturbance. This can be related to the cross-spectrum
of the velocity #uctuations by
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A double-volume integral is therefore required to specify the random in#ow to the
computational domain. Furthermore, the interpretation of equation (4) is far from
obvious and it is not clear how the features of the #ow are coupled to the surface
pressure #uctuations. Inevitably, simplifying assumptions have been used to help
with the interpretation of this problem and the most useful of these is to assume
a homogeneous turbulent #ow so that the cross spectrum is a function of y}y@ only. Then
equation (4) yields

n
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In this representation the surface pressure is de"ned in terms of the wavenumber energy
spectrum U(k, u) of the turbulent #ow. Various models are available for this function which
allow it to be speci"ed in terms of a turbulence intensity and integral length scale (or for
anisotropic turbulence, lengthscales in each orthogonal direction). This simpli"es #ow
measurements by an order of magnitude. The wavenumber spectrum model also allows the
integral in equation (6) to be carried out analytically and so a closed-form solution can be
obtained [6]. While this leads to a relatively attractive result, it imposes a very severe
condition on the description of the in#ow, namely that it should be homogeneous.
Unfortunately, this assumption is unrealistic for almost all #ows of interest, and, unless
conditions such as &&local homogeneity'' can be applied, the full wavenumber integral
de"ned in equation (4) must be used to evaluate equation (3).

An alternative approach is to use a modal expansion of the in#ow of the type originally
proposed by Lumley [1]. The concept is to expand the unsteady in#ow velocity as a set of
orthogonal modes in the form

u
i
(y, u)"+

n

a
n
(u)/(n)

i
(y, u). (7)

It is shown by Lumley (see Appendix A) that the optimal set of modes is obtained by
optimizing the projection of u

i
(y, u) onto the mode function /(n)

i
. This leads to the de"nition

of the modes in terms of the eigenvalue problem
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where j(n)u are the eigenvalues of the nth mode at the frequency u. Because the cross-
spectrum function is symmetric we can use spectral theory to show that the eigenvalues are
real, the modes are orthogonal (see equation (A.7)), and each mode is uncorrelated (see
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Appendix A) so that
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These results summarize the theory of proper orthogonal decomposition. They show
a number of simple relationships for functions that would require multiple Fourier integrals
to be evaluated if spectral analysis was used.

We will apply these results to the analysis of the gust/airfoil interaction problem. First, by
taking Fourier transforms of equation (7) we "nd
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where functions in M N are Fourier transforms as de"ned in equation (2). Using the result in
equation (3) we obtain
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(12)

The advantage of this approach is that computations of the surface pressure can be
carried out for each mode individually. The acoustic power spectrum will then be the
independent sum of the mean square output from each modal calculation. Using the modal
expansion (7) the #ow has not been restricted in any sense and we can allow for
inhomogeneous turbulence without di$culty. Furthermore, we can identify dominant
modes and their coupling e$ciency, and this may lead to a better understanding of the
features of the in#ow which a!ect the blade response.

The computation time for the evaluation of either equation (3) or equation (12) will
typically be dominated by the calculation of the response functions g

i
(x, k, u).

Consequently, the orthogonal modes do not necessarily o!er major computational
advantages if the calculation of the response function is carried out in the wavenumber
domain. However, if the computations are carried out for each mode velocity vector
/(n)
i

(y, u) and the response to this mode is de"ned as P (n) (x, u) then, since the contribution
from each mode is uncorrelated, the surface pressure spectrum is simply the linear sum of
the modal response functions in the form
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This clearly provides a major reduction in the computational e!ort required to solve this
problem and, since the modal description is optimal, the number of terms required to be
evaluated in equation (13) will be minimized, providing the most e$cient computational
approach.

The optimal set of modes is obtained from the solution of the eigenvalue problem de"ned
in equation (8). This requires that the cross-correlation function be speci"ed everywhere in
the in#ow volume. It would appear therefore that the modal decomposition approach has
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not provided any reduction in detail required for the description (or measurement) of the
#ow. However, the modes provide a more rigorous basis on which to interpret the #ow.
Furthermore, the number of modes required to describe the #ow [4] can be signi"cantly less
than the number of wavenumber components required to de"ne the same #ow and so
computational savings in evaluating equations (12) or (13) rather than equation (3) may be
signi"cant.

3. TIME-DOMAIN APPLICATION

The analysis in the previous section applies to linear problems that can be considered in
the frequency domain. For non-linear problems, or problems which are more amenable to
time-domain formulations, this approach does not apply. Also, the formulation in the
frequency domain requires a modal decomposition to be carried out for each frequency
which results in a very non-compact description of the unsteady #ow. However, there is no
reason why proper orthogonal decomposition cannot be applied in four dimensions, giving
both time- and space-dependent modes. The time-domain representation of the unsteady
velocity is given by the expansion
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b
n
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)t(n)

i
(y, t), (14)

where b
n
(t
R
) are a set of uncorrelated stochastic random variables which describe the

amplitude of the modes and are evaluated for a given realization speci"ed by the reference
time t

R
. The time-domain modes can be obtained from the solution to the eigenvalue

problem (see Appendix A)
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This requires the complete space}time correlation function for the entire #ow over all time.
The detail required to invert equation (15) in four dimensions is large, but for
non-stationary problems this is the only approach which is available since time histories in
the input volume are an important feature of the results.

Another application for time-domain modes is the calculation rotor noise. Very accurate
time-domain methods [8] have been developed for this by using a direct evaluation of the
Ffowcs Williams and Hawkings equation. The loading noise component of the radiated
noise is obtained from formulae of the type
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P
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where p is the radiated acoustic pressure, P is the blade surface pressure, r"Dx!y D, n
i
is the

blade surface normal and M
r
the convection Mach number. Accurate calculations of the

blade surface pressure are obtained from direct computations and the acoustic "eld is then
calculated from equation (16) or its variations. This approach has been used successfully for
sound radiation from steady loadings and blade vortex interactions for which the in#ow is
speci"ed precisely. However, it is hard to apply in the time domain for stochastic variations
of the surface pressure. This problem is overcome by using proper orthogonal
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decomposition. Formally, the surface pressure is de"ned using a set of proper orthogonal
modes P (n) which are the solutions to the eigenvalue problem
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Then, by using P (n) in equation (16), we can calculate the contribution of each mode to the
far"eld sound giving an acoustic "eld p(n)(x, t). It is customary to calculate the far"eld sound
pressure spectrum for broadband rotor-noise sources and this can be obtained by taking the
Fourier transform of p(n)(x, t) with respect to time and summing the modal contributions
using
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The advantage of this approach is that broadband noise calculations can be carried out
using the very accurate time-domain methods which have been developed for rotor noise
calculations [9]. There are obvious limitations, for example the modal decomposition is not
trivial and calculations have to be carried out for each mode. However, the advantage is
that proper orthogonal decomposition provides a formal approach for the time-domain
stochastic calculations.

4. COMPACT EDDY STRUCTURES

For time stationary #ows and/or #ows which are homogeneous in at least one direction,
proper orthogonal modes are not necessarily the best description to use. The modes in the
homogeneous directions are Fourier modes, and so, if the #ow is only locally correlated,
large numbers of modes will result. A more compact description can be obtained by using
compact eddy structures (CES) as described in Appendix B. These give the best estimate
of the #ow as a function of displacement in time and/or space in the homogeneous
directions, given the proper orthogonal modes in the inhomogeneous directions. For a #ow
that is stationary in time, these modes are de"ned using the cross-correlation of the velocity
#uctuations as
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The CES cannot be used to reconstruct the #ow in the same way as the proper orthogonal
modes, but they can be used to reconstruct the ensemble averages of the #ow. For example,
the cross-spectrum of the velocity #uctuations can be obtained as
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Figure 2. Sound radiation from a wake of width 2d incident on an airfoil of in"nite span and chord 2b.
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Using this in equations (3) and (4) we obtain a result which is equivalent to equation (12)
which is
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*
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Note that the CES are related to the ensemble average of the output. The eddies themselves
do not necessarily occur in the #ow as speci"c features, but they do represent average #ow
structures. The response of the blade to the averaged #ow structures then gives the spectral
average of the response.

5. WAKE}AIRFOIL INTERACTION

As an example of how these methods may be applied, we will consider the well-known
problem of a turbulent wake interacting with an airfoil, modelled as a #at plate (see
Figure 2). The wake is assumed to be at 903 to the span of the airfoil. We will also assume
that the plate is of in"nite span and chord 2b, but that the gust has a spanwise width of 2d.
Since the #ow is bounded it will be inhomogeneous in the spanwise direction, but may be
considered homogeneous in the direction of the #ow.

The radiated acoustic "eld is given by Amiet [7] as
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Combining these results gives
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In this formulation the in#ow gust is de"ned in the y
1
-, y

2
-plane and Taylor's hypothesis

is assumed. Therefore, when a POD is used to describe the #ow the decomposition need
only be carried out in two dimensions. This is a simpli"cation of the formulation given in
Appendix A. The velocity "eld is de"ned as
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If the upwash is in the i"3 direction then the radiated "eld has a power spectral density of
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where M N
f

represents the two-dimensional Fourier transform of the modes. Alternatively,
since the #ow is homogeneous in the x-direction we can use a compact-eddy structure
approach to obtain in the same result. First, we calculate the POMs in the y

2
-direction so

the velocity can be expanded as the series
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with eigenvalues j(n)
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and then we calculate the CES as
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so that the radiated sound power spectral density is given as

S
PP

(x, u)"
n
¹

+
n

j(n)
c K

2n2uzo
0
bg

f
(c

1
, c

0
, t

0
)

c
0
p2 K

2
Mi(n)

3
(c

0
, t

0
)N

f
M/(n)

3
(t

0
)N*

f
. (30)



Figure 3. Eigenvalue spectra from the one-dimensional proper orthogonal decomposition in the y
2
-direction.

;
w

is the axial mean velocity de"cit at the wake centerline.
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This relates the acoustic "eld directly to the CESs and hence provides some insight into
the types of #ow structures which radiate sound. To demonstrate this we will consider the
results of a recent study [10] in which the CESs of a turbulent wake were measured. The
eigenvalue spectrum for the one-dimensional modes given by equation (28) is shown in
Figure 3. The contributions from the "rst two modes are dominant, but the amplitudes of
the higher order modes decay quite slowly.

It was found that the "rst four modes were dominated by the velocity #uctuations in the
y
1
- and y

2
-directions that did not a!ect the upwash incident on the airfoil. Only modes of

orders 5, 6, 9, 10, etc. included upwash components and their CESs are shown in Figure 4.
To demonstrate how each compact-eddy contributes to the sound "eld, Figure 5 shows
a plot of J

n
"j(n)

c
Mi(n)

3
(c

0
, 0)N

f
M/(n)

3
(0)N*

f
as a function of frequency. This gives the

contribution of each term in equation (30) to the radiated "eld in the direction normal to the
airfoil.

Note that those compact eddies that are antisymmetric across the airfoil span do not
contribute to the radiated "eld because the integral of the upwash across the span is zero
(e.g., eddies 6 and 10 in Figure 4). This is the result of choosing the observation position to
be directly above the intersection between the wake centerline and airfoil. If the observer
were at any other angle, there would be a propagation delay across the span and even order
modes would contribute. Consequently, Figure 5 only includes the contributions from the
symmetric modes.

Figure 5 shows that all the contributing compact eddies produce the same spectral shape.
This is an inevitable result of them having the same time dependence; see equation (19). The
spectral levels, however, depend both on the eigenvalues, and the radiation e$ciency, which
vary substantially with mode number. Indeed, spectral levels fall o! very rapidly with mode
number suggesting that a reasonably accurate sound calculation could be performed using
only a few, say 4, eddies. (Note that the function J

n
given in Figure 5 does not include the

e!ect of blade response, which will tend to increase the contribution from the higher



Figure 4. Contours of i(n)
3

(y
1
, y

2
) for the compact eddies corresponding to the "rst four non-zero = modes.

Distances normalized on the half-wake width, ¸
w
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frequencies.) Furthermore, the dominant eddy (mode 5, Figure 4) has a particularly simple
structure.

This example shows how compact eddy structures can provide both a rigorous and
e$cient basis for performing aeroacoustic calculations. Perhaps more importantly, though,
it illustrates how the present approach can provide, at least in a time-average sense, a view
of the speci"c types of #uid motions most responsible for the sound radiation. Such
information may be valuable in providing physical understanding of the sound generation
process itself and in formulating control strategies.

6. CONCLUSIONS

The objective of this paper has been to show how proper orthogonal decomposition can
be used to solve problems in aeroacoustics where the complete description of a turbulent
#ow is required. It has been shown that the proper orthogonal decomposition of time
stationary #ows can be given in terms of compact eddy structures, which represent the
time-average characteristics of the #ow. The response of an airfoil and the subsequent
sound radiation has been given in terms of the CESs and hence can be related to speci"c
features of the #ow. This is important because it provides a rigorous way in which to
interpret turbulent #ows and de"ne turbulent #ow &&structures''. The energy in the structure
is de"ned by the eigenvalue of the associated POM and each structure may be considered as
uncorrelated. In previous analyses of the turbulence/airfoil interaction problem [7]



Figure 5. Spectra Dj(n)
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restrictive assumptions were required to include the e!ect of "nite span on the radiated
sound. In the approach given here these assumptions are not required. To illustrate the
application of this theory, results have been given which show the CES in a wake and the
sound radiation from it's interaction with a downstream airfoil.

This paper is dedicated to Phil Doak for his 80th birthday. While I was a graduate
student at the ISVR I took a course on Advanced Acoustics taught by Phil. In the course he
showed what could be learned from attention to detail and sparked my imagination on the
application of theoretical concepts to practical applications. His course has had a bigger
e!ect on my subsequent career than any of the others which I took during my time as
a student. Subsequently, I have enjoyed working with Phil as both a colleague and a friend,
and have always been amazed at how he could correct a manuscript at the same time as
holding a conversation and cleaning his pipe! One of the things that Phil always encouraged
his students to do was to &&dig around in text books for nuggets of gold''. This paper, written
with William Devenport, is the result of doing just that in reference [2]. Hope you enjoy it
Phil, Happy Birthday.

SG
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APPENDIX A: THE THEORY OF PROPER ORTHOGONAL DECOMPOSITION

For completeness this appendix is included to summarize the theory of POD. For a more
detailed discussion of this theory the reader is referred to References [1, 2].

The objective of proper orthogonal decomposition (POD) is to decompose an unsteady
velocity "eld into the optimum set of normalized modes. For example, if we consider the
Fourier transform with respect to time of an unsteady velocity "eld, then we can de"ne
a modal expansion in the form

u
i
(y, u)"+

n

a
n
(u)/(n)

i
(y, u). (A.1)

The optimal set of modes is obtained by optimizing the projections of u
i
(y, u) onto the

mode functions /(n)
i

, with a suitable normalization, by maximizing

Ex[D(1/<):
V
u
i
(y, u)/*
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(y, u) d< D2]

(1/<):
V
/
i
(y, u)/*

i
(y, u) d<

, (A.2)



780 S. A. L. GLEGG AND W. J. DEVENPORT
where summation is implied over the repeated indices. To achieve this we de"ne the
functional

J (a)"ExCK
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The optimum modes are then obtained by maximizing the functional for any mode shape by
evaluating [LJ/La]a/0

"0, which gives
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This is satis"ed if the terms in the brackets [ ] are zero. Hence, the optimum modes are
de"ned as the solution to the eigenvalue problem
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where C
ij
(y, y @, u)"(n/¹)Ex[u

i
(y, u)u*

j
(y @, u)] is the cross spectrum of the velocity

#uctuations and j(n)u are the eigenvalues of the nth mode at the frequency u. Because the
cross-spectrum function is symmetric we can use spectral theory to show that the
eigenvalues are real, and the modes are orthogonal. To verify this consider
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If the eigenvalues j(m)
u are unique then the only possible solutions to this equation occur if

the eigenvalues are real and
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Hence, the modes are orthogonal when the eigenvalues are distinct. Spectral theory also
shows that this is also true for eigenvalues that are duplicated. For example, if two or three
eigenvalues are the same the associated eigenvectors can be arbitrarily rearranged into two
or three orthogonal vectors.

Next, we will show that the modes are uncorrelated. If we combine equations (A.7) and
(A.6) with equation (A.1) we "nd
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Then, using the orthogonality condition, we "nd that
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which proves that each mode is uncorrelated. Then it follows that
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For homogeneous turbulence the cross-correlation function is only dependent on the
displacement vector (y}y @), in which case the proper orthogonal modes are Fourier modes
[1] given by A

i
exp(ik ) y) where A2

i
"1. Hence, for homogeneous turbulence proper

orthogonal decomposition is exactly the same as conventional wavenumber decomposition.
The advantage of POD is that it is rigorous for both homogeneous and inhomogeneous
#ows.

In some problems we need to de"ne the time history of the in#ow and this needs a slightly
di!erent formulation. First, we will consider the spatial decomposition of the #ow at a "xed
time, say t

R
. In this case, we choose the expansion

u
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)/(n)
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where the modes are now de"ned only as a function of position and a
n
(t
R
) speci"es a set of

random stochastic coe$cients which are associated with the time of evaluation, but are not
necessarily related to the time history of the #ow (since this would imply that the separation
of time and space variables was valid for the #ow). Using the same analysis as before,
keeping t

R
"xed, leads to the symmetric eigenvalue problem for the optimum modes in the

form
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where R
ij
(y, y @, 0) is the cross-correlation tensor at zero time delay. Here again we can use

spectral theory to show that the modes are uncorrelated, and, because of the optimization
procedure, the number of modes required to de"ne the #ow is a minimum.

To obtain a complete description of the #ow, we also require the time history of the
modes and this can be achieved by carrying out proper orthogonal decomposition in four
dimensions. To illustrate this we use the modal expansion
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n

b
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)t(n)

i
(y, t). (A.12)

In this approach, the coe$cient b
n
are determined by a reference time, but should also be

considered as a set of stochastic random variables. We then optimize the modes by
minimizing their projection onto the velocity "eld using
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Following the same procedure as before the optimal modes are found as the solution to the
eigenvalue problem
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To show that the time-varying modes are orthogonal consider
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and so, if the eigenvalues are unique, we obtain the orthogonality condition
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It then follows that the modes are uncorrelated and that
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For a stationary time series we expect Fourier modes [1]. To illustrate this consider the
expansion
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where t(m)
i

(y) represent an orthogonal set of functions, so that each term in equation (A.18)
satis"es the orthogonality condition given by equation (A.16). The expansion represents
two modes with uncorrelated random amplitudes and, if these have the properties that
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the correlation function becomes
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which is a function of the time delay t}t@ only. This shows that for a stationary time series
two modes with the same eigenvalues are required to represent the correlation function
correctly. It follows that the same approach may be used in any direction where the
correlation function is only dependent on the separation of the measurement points.
Fourier modes are therefore the optimum modes to describe the #ow in the homogeneous
directions.

APPENDIX B: COMPACT EDDY STRUCTURES

One of the problems with proper orthogonal decompositions is that a large number of
Fourier modes are required to describe #ows which are homogeneous (or stationary in time)
and compactly correlated (i.e., the correlation function decays rapidly as a function of the
separation in time or space). This is not necessarily so for #ows with inhomogeneous
directions for which proper orthogonal decomposition provides the minimal number of
modes needed to describe the #ow. To investigate this we will consider expansions that use
POD in the inhomogeneous directions, and an alternative formulation in the homogeneous
directions. For simplicity, we will consider a time stationary #ow so that by using equation
(A.10), the #ow can be described as
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This only describes the #ow at the reference time t
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The optimum eddy functions are obtained by considering the functional
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The optimum modes are obtained from the minimum of the functional when a"0, so
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If all terms in this series are required to be zero then

j(n)
0

i(n)
i

(y, t!t
R
)"Ex[a

n
(t
R
)u

i
(y, t)]. (B.4)

The solution to this equation is obtained by substituting for a
n
(t
R
). By using equation (B.1)

and the orthogonality of the modes we "nd that
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then, by combining equations (B.4) and (B.5) we obtain
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The functions i(n) provide a more compact de"nition of the time varying part of the #ow,
and given the coe$cients a

n
(t
R
) , are the best estimate for the time history of the modes. They

also provide an expansion of the correlation function since by multiplying equation (B.4) by
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This suggests that the compact eddies may be used to decompose the statistical averages of
the #ow space}time history and hence represent averaged #ow structures. By taking the
Fourier transform with respect to the time delay q"t!t

R
we obtain the cross-spectral

density
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