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The theoretical approach presented in this paper allows SEA coupling loss factors for
subsystems to be modelled with FEM. It is then possible to take into account the
complicated substructure that can be encountered in practical industrial application. The
technique relies on the basic SEA relation for coupled oscillators and the use of dual modal
formulation to describe vibration of coupled subsystems. With this approach, the boundary
conditions of uncoupled subsystems are clearly de"ned and, as assumed in SEA, no modal
coupling exists in a subsystem. Modes of two di!erent subsystems are coupled together by
gyroscopic elements and the coupling strength is related to eigenfrequencies of the
uncoupled subsystems and mode shapes through the interaction modal works. A general
expression for CLF has been obtained, and it allows CLF to be determined only from the
knowledge of the modes of the uncoupled subsystems and the modal damping. Finite
element model can be used to calculate the modal information in the case of complex
substructures. It is possible to treat the case of heterogeneous subsystems having
three-dimensional vibration motions without di$culty. Contrary to the classical approach
which is based on SEA inverse matrix and numerical experiments which necessitate
calculations of subsystem energies for the coupled structures for many excitation points, this
technique calculates CLF directly from the governing equations without solving them. In
a companion paper, the present approach is applied to a simple example to illustrate and
validate the approach.
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1. INTRODUCTION

Statistical energy analysis (SEA) allows the vibro-acoustic behaviour of complex structures
in mid- and high-frequency range to be predicted. The method relates the power #ow
exchanged by two-coupled subsystems to total subsystem energies by the coupling loss
factor (CLF). Writing the power balance for stationary motion in each subsystem produces
a linear equation system where the unknowns are the total energies of subsystems. Then, the
di$culty in applying SEA is not due to solving complicated equations, but to the evaluation
of coupling loss factors.

Several techniques have been developed to determine CLF. The travelling wave
approach is the most popular to obtain a theoretical expression in simple cases of coupled
beams, plates, and shells (see reference [1], Chapter 10). Based on the evaluation of the
wave transmission coe$cient, this approach is easy to use. However, it can lead to
mistakes for a system having a low modal overlap (see reference [2]). CLF can be only
0022-460X/01/050907#24 $35.00/0 ( 2001 Academic Press
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calculated for theoretical substructures which limits the application in the case of
manufacturing structures. Di!erent experimental approaches have been elaborated to
evaluate CLF by measurement [3] using measured point mobility [4]; with the concept
of energetic mobility [5]; and from measured impulse responses in the coupled system
[6}8]; based upon inversion of the SEA equation. The latter, called the power injection
method, is the most popular. The di$culty of the method relies on the number of
measurements of transfer functions that are necessary and also the evaluation of
the spatial averaged energy from some measurement points in the case of hetero-
geneous subsystems. These experimental techniques are useful in an industrial
context but they necessitate having the mechanical structure in place, so that it is not
a predictive method. To solve this problem, the possibility of using a Finite Element
Method to calculate numerically the response of two-coupled subsystems and then to
identify CLF has been used [9}11]. This type of approach is predictive, and has been used
to study the validity of some SEA assumptions. The di$culties of this approach are
similar to experimental approach for heterogeneous substructures. The limits of
application are, of course, the frequency range to use FEM, and the di$culty to give
di!erent damping loss factors to the various subsystems because global modes are used.
The approach presented in reference [12] di!ers from previous methods by the use of the
numerical Green functions of the un-coupled subsystems and a receptance-based
approach. It is then possible to take into account di!erent damping for various
subsystems and to increase, in some cases, the frequency range considered because the
FEM calculations are made for individual uncoupled subsystems. However, it is necessary
to include su$cient uncoupled modes to constitute the Green function which can be
a frequency limitation.

The approach presented in this paper allows CLF to be calculated directly from
subsystem modal equations. The method uses the modal de"nitions of CLF which are
established in the basic SEA formulation (see reference [1], Chapter 3, [13,14]) and
reviewed in Section 2. The expression of the power #ow exchanged by two oscillators
coupled by a gyroscopic element will be used to calculate the coupling loss factor by
summation of the di!erent intermodal coupling factors.

Section 3, describes the major theoretical contribution of this paper. The purpose
of this section is to propose one general approach allowing modal equations of motion
to be obtained which can be represented as set of oscillators (modes) coupled by
gyroscopic elements. These modal equations will enable the modal coupling coe$cients
necessary to calculate intermodal coupling factors to be identi"ed and thus, coupling
loss factors. The formulation will be presented in the general case of the two-coupled
continuous three-dimensional elasto-dynamic systems. This approach is based on two
subsystem modes de"nitions, and on the use of the dual modal formulation (DMF). It is
analogous to the approach used to describe the mechanical structure}cavity coupling
[15}17]. Therefore, a generalization similar to that suggested in reference [18] is presented
here.

In the "nal section, DMF is applied to a discretized system to determine the modal
coupling coe$cients. Then, in the cases of complex subsystems, FEM can be used to
calculate the modes of each uncoupled subsystem and to deduce the coupling loss factor.

SEA provides statistical estimates of energy for an ensemble average of systems whereas
FEM gives the deterministic response for a system whose characteristics are known exactly.
In consequence, the direct use of "nite elements results gives only an estimate of CLF based
on one system. However, one advantage of the proposed method is the possibility of
deriving a statistical estimate of CLF by introducing a random distribution of
eigenfrequencies, and calculating the associated average CLF.
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2. CLF EXPRESSION DEDUCED FROM MODAL SEA FORMULATION

2.1. POWER FLOW EXCHANGED BY TWO OSCILLATORS COUPLED BY GYROSCOPIC ELEMENT

Two oscillators coupled via a gyroscopic element (see Figure 1) are considered. M
1
, M

2
are the masses, and K

1
, K

2
are the sti!nesses of the oscillators. The natural angular

frequencies of each uncoupled oscillator are thus u
1
"JK

1
M~1

1
for oscillator 1 and

u
2
"JK

2
M~1

2
for oscillator 2. (A list of nomenclature is given in Appendix A.)

Each oscillator is damped by a viscous absorber of damping coe$cient: D
1

for oscillator
1, and D

2
for oscillator 2. The coupling forces transmitted through the coupling of constant

G
C
are proportional to the mass velocities, y5

1
and y5

2
. It is assumed that when the velocity of

oscillator 1 is positive, the force applied on oscillator 2 is negative and when the velocity of
oscillator 2 is positive, the force applied on oscillator 1 is positive. The equations of motion
for the two coupled oscillators excited by external forces F

1
and F

2
are then given by
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where the gyroscopic modal coupling coe$cient, c, is

c"G
C
/JM

1
M

2
. (2)

Now, it is assumed that external excitations are independent (uncorrelated), stationary
and to have a constant PSD (white noise). It has been demonstrated in this case [1] that the
time-averaged power #ow from oscillators 1 to 2, P

12
, is proportional to the di!erence

between the time-averaged total energies of the oscillators (E
1
!E

2
),

P
12
"b(E

1
!E

2
), (3)

where the coe$cient b is expressed by

b"
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)
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Note that the coe$cient b depends on the normal angular frequencies of the uncoupled
oscillators, the damping constants and the coupling coe$cient c.
Figure 1. Two oscillators coupled by gyroscopic element.
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2.2. FROM TWO-COUPLED OSCILLATORS TO TWO COUPLED SUBSYSTEMS

Now, consider two-coupled mechanical subsystems. The interaction between these
subsystems may correspondingly be studied by investigating the interaction between two
sets of resonant modes in the frequency band considered. This assertion, which is given little
attention in the literature, will be the subject of a detailed study in Section 3. It will be shown
that for an appropriate choice of modes and using dual modal formulation, the modal
equations of motions have the form
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where c1
p
, M1

p
, u1

p
and a2

q
, M2

q
, u2

q
are respectively the modal amplitudes, generalized masses,

and natural frequencies of mode p of subsystem 1 and those of mode q of subsystem 2,
F1
p

and F2
q

are the generalized &forces' applied on respectively subsystem 1 and subsystem 2,
and c12

pq
are the modal coupling coe$cients between the pair of modes (p, q).

In the frequency band, is considered to include N
1

resonant modes for subsystem 1 and
N

2
resonant modes for subsystem 2. The choice of modes of Section 3 will go in this

direction, which suggests that these resonant modes can approximately represent the
dynamic behaviour of the coupled subsystems in the frequency band considered.

Then, equations (5) can be schematically represented as Figure 2; one mode of one
subsystem is not coupled with modes of the same subsystem but is coupled by gyroscopic
elements with the modes of the other subsystem.

Isolating, in the equations system, the coupling between the mode p of subsystem 1 and
the mode q of subsystem 2, gives

cK 1
p
(t)#D1

p
c5 1
p
(t)#(u1

p
)2c1

p
(t)!S

M2
q

M1
p
(u1

p
)2

c12
pq

a5 2
q
(t)"

¸
1pq

M1
p
(u1

p
)2

,

aK 2
q
(t)#D2

q
a5 2
q
(t)#(u2

q
)2a2

q
(t)#S

M1
p
(u1

p
)2

M2
q

c12
pq

c5 1
p
(t)"

¸
2pq

M2
q

, (6)
Figure 2. Illustration of coupling of N
1

modes of subsystem 1 with N
2

modes of subsystem 2.
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where the terms ¸
1pq

and ¸
2pq

contain the generalized forces and the interactions forces
with all the others modes.

Then, by analogy with the equations of motions of two coupled oscillators (1), the power
#ow, P12

pq
exchanged by these two modes can be deduced,
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pq
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q
), (7)

where E1
p

and E2
q

are the modal energies of mode p of subsystem 1 and mode q of subsystem
2, b12

pq
, called the intermodal coupling factor (ICF), can be determined by analogy with

equation (4) as a function of the natural angular frequencies u1
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q
, the modal damping
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q
and the modal coupling coe$cient c12
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The application of equation (3) for the coupling of these two modes implies that the forces
¸
1pq

and ¸
2pq

are uncorrelated, stationary, and have #at spectra in the frequency band. The
condition of validity of this assumption has not been clearly established in the literature. It
implies a certain independence of modal amplitudes (see reference [1, pp. 60}61]).
According to Fahy [19, see pp. 434}436], the forces due to coupling with other modes will
be relatively #at if modal overlap is su$cient and their correlation is small if the coupling
between subsystems is weak.

The power #ow exchanged by the two subsystems P
1~2

is the sum of all the individual
mode-to-mode power #ows. Then
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Modal energy equipartition assumption is made,
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where e
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and e
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are two constants.
With the orthogonality property of modes
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where m
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and m
2

represent the time-averaged total energies of subsystems 1 and 2.
Therefore, using equations (10) and (11), one can write
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and this can be put in equation (9). Finally,
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where the coupling loss factor g
12

is expressed by

g
12
"

+N
1

p/1
+N

2

q/1
b12
pq

N
1
u

c

, (14)

with u
c
the central angular frequency of the frequency band of interest.

This "nal expression allows the coupling loss factor from the intermodal coupling factors to
be estimated which depend on subsystems modes and on modal coupling coe$cients, c12

pq
.

SEA provides statistical estimates of energy for an ensemble average of subsystems
whereas equation (14) is derived from one individual system. As in reference [20], the
coe$cient obtained from (14), which concerns one individual case, can be distinguished
from the traditional CLF that is used for the SEA ensemble. One advantage of the proposed
method is the possibility of deriving a statistical estimate of CLF by introducing a random
distribution of eigenfrequencies, and by calculating the associated ensemble average CLF.
To obtain this statistical estimate of CLF, the intermodal coupling factors would have to be
averaged over a population of structures. Lyon [1] gives a mean value of the ICF for
a particular population of structures such that the natural frequencies of each subsystem are
random variables with values uniformly probable over the frequency band of interest, *u:

Sb12
pq

Tu1
p
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q
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2Du
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pq

)2. (15)

This formula could replace the deterministic ICF in equation (13) in order to obtain the
ensemble-averaged coupling loss factor:
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q
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This approach produces simple results but the population of structures considered can be
unrealistic. A second approach consists of replacing the deterministic eigenfrequencies by
Gaussian random variables centred on the corresponding eigenfrequencies. Then one can
get an ensemble-averaged CLF from a Monte Carlo simulation.

With regard to the equipartition assumption, it can be noted that with the approach
presented in reference [21] and with the calculation of the intermodal coupling factors by
the present approach, it is possible to extend SEA to the case of non-modal energy
equipartition.

The boundary conditions necessary to establish equations (5) and how to evaluate the
modal coupling coe$cients have not yet been de"ned. It is the aim of the next section.

3. DEFINITION OF SUBSYSTEM MODES AND USE OF THE DUAL MODAL
FORMULATION TO OBTAIN CLF

The approach presented here is not classical for mechanical coupled systems. However,
the dual formulation is the standard approach used to study the coupling cavity}structure
(see references [15}17]).

Therefore, for each time possible, a reference will be made, to this case, to facilitate
comprehension.
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The present formulation is based on the work of Karnopp. Indeed, in reference [18]s he
initiated the use of dual formulation (enunciated in reference [22]) to the coupling of
mechanical subsystems and applies the method for the coupling of two rods of identical
section. A generalization of this approach for the coupling of two continuous mechanical
systems is presented here.

3.1. STRUCTURE DESCRIPTION

Two elastic continuous mechanic systems are considered which are rigidly coupled on
S
Coupling

as shown in Figure 3. <1 and <2 represent the volumes occupied by subsystem
1 and subsystem 2. S1

Clamped
and S1

Free
, and S2

Clamped
and S2

Free
are respectively the boundary

surfaces with blocked displacements and with free displacements for subsystem 1 and
subsystem 2. Initially, free vibration of elastic conservative systems is considered to "nd
modal equations of motion of the coupled subsystems.

In Lagrangian coordinates x
i
, (i"1, 2, 3), is de"ned respectively on the surfaces of

volume <1 and <2 and the unit vectors n1 and n2 along the outer normals of the volumes.
The variables=1

i
and=2

i
represent displacements in <1 and<2 respectively. p1

ij
and p2

ij
are

the stress tensors, e1
ij

and e2
ij

are the strain tensors, and S1
ijkl

and S2
ijkl

are the compliance
tensors associated to materials of <1 and <2 respectively. o

1
and o

2
are the mass densities

and are independent of time. The dynamical behaviour of the structure between time t
0

and
t
1

is studied.
The continuity conditions on S

Coupling
can be expressed by

=1
i
"=2

i
on S

Coupling
]]t

0
, t

1
[, (17)

p1
ij
n1
j
#p2

ij
n2
j
"0 on S

Coupling
]]t

0
, t

1
[. (18)

n1
i

and n2
j

are the jth components of the outer normal vectors n1 and n2.
s It may be noted that several typing errors and one error of sign are present in the equations of this paper.

Figure 3. Representation of the coupling of the two elastic continuum systems.
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3.2. DEFINITION OF SUBSTRUCTURES

For the substructuring of the problem, it is now necessary to separate these two
subsystem, and to prescribe displacements or forces on S

Coupling
for each subsystem.

S1
Coupling

and S2
Coupling

are de"ned (as the coupling surfaces S
Coupling

in subsystem 1 and
subsystem 2) respectively.

Displacements on S1
Coupling

are prescribed for the subsystem 1 and forces on S2
Coupling

for the
subsystem 2 (see Figure 4). Then, for subsystem 1, the boundary condition on S1

Coupling
is

assumed to be

=1
i
"=M c

i
on S1

Coupling
]] t

0
, t

1
[, (19)

and, for subsystem 2, the boundary condition on S2
Coupling

to be

p2
ij
n2
j
"F

N
c
i

on S1
Coupling

]]t
0
, t

1
[. (20)

Note: For the cavity}structure coupling, the boundary conditions for the cavity coupled
with the structure are the displacements imposed by the structure (like subsystem 1) and the
boundary conditions for the structure coupled with the cavity are the pressures imposed by
the cavity (like subsystem 2).

Then, from the fundamental equations and principles of continuum mechanics, the linear
"eld equations describing the dynamics of both subsystems can be expressed.

For subsystem 1, the following equations constitute an initial problem called problem 1:

Equations of motion:

o
1

L2=1
i

Lt2
"p1

ij, j
in <1]]t

0
, t

1
[. (21)
Figure 4. Illustration of the "ctive separation of subsystems.
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Constitutive equations for Hookean linear elastic solid:

e1
ij
"1

2
(=1

i,j
#=1

j,i
)"S1

ijkl
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kl

in <1]]t
0
, t

1
[. (22)

Boundary conditions:
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]]t
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1
[, (23)
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i
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Clamped
]]t

0
, t

1
[, (24)

=1
i
"=M c

i
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]]t

0
, t

1
[. (25)

For subsystem 2, one has problem 2.
Equations of motion:

o
2

L2=2
i

Lt2
"p2

ij,j
in <2]]t

0
, t

1
[. (26)

Constitutive equations for Hookean linear elastic solid:
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0
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1
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Boundary conditions:
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j
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0
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1
[, (28)

=2
i
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]]t

0
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1
[, (29)
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j
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i
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]]t

0
, t

1
[. (30)

3.3. VARIATIONAL FORMULATION OF THE PROBLEMS USING THE REISSNER PRINCIPLE

For each subsystem, it is possible to express the dynamic problem by using the Reissner
principle. This formulation will enable the use of the modal expansions.

For problem 1, the associate Reissner functional W1
R
(=1

i
, p1

ij
) can be expressed by (see

references [23, 24] for the second form of the Reissner functional)

W1
R
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i
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The associate admissible spaces are

X1
R
(<1x]t

0
, t

1
[)"M=1

i
/=1

i
3H1 (<1); =1

i
"0/S1
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N, (32)
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; p1

ij
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j
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The problem constituted by equations (21}25) can be replaced by searching for=1
i

and
p1
ij

in their respective admissible spaces X1
R

and R1
R

which render the functional W1
R
(=1

i
, p1

ij
)

stationary.
In the same way, for problem 2, the Reissner functional W2

R
(=2

i
, p2

ij
) can be expressed by

(see the "rst form of the Reissner functional in references [23, 24])
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R
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i
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i
=2

i
dSHdt. (34)

The associate admissible spaces are

X2
R
(<2x]t

0
, t

1
[)"M=2

i
/=2

i
3H1 (<2); =2

i
"0/S2

Clamped
N, (35)

R2
R
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0
, t

1
[)"Mp2

ij
/p2

ij
"p2

ji
; p2

ij
3¸2 (<2); p2

ij
) n2

j
"0/S2
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In this case, the problem constituted by equations (26}30) can be replaced by searching
for=2

i
and p2

ij
in their respective admissible spaces X2

R
and S2

R
which render the functional

W2
R
(=2

i
, p2

ij
) stationary.

3.4. MODES OF UNCOUPLED SUBSYSTEMS

3.4.1. De,nition of subsystem modes

Initially, modal expansion will be used to solve the two previous variational problems
separately. The sets of mode shapes which will be considered generate subspaces of
admissible spaces associated with each variational problem. The approximate solutions of
these problems will then be found by considering these subspaces. The de"nition of the
modes of each subsystem must be judicious in order to link the two problems in a second
step. The coupling of the problems will be possible if modal expansion of the stress "eld of
subsystem 1 allows the force excitation of subsystem 2 to be determined and `inverselya, if
modal expansion of the displacement "eld of subsystem 2 allows the displacement
excitation of subsystem 1 to be calculated. The subspaces of admissible spaces, and
consequently, the mode' de"nitions must be chosen appropriately.

Modes of subsystem 1 are then de"ned with blocked displacements on S1
Coupling

(see
Figure 5(a)). These are called the modes of the uncoupled-blocked subsystem or, in short,



Figure 5. Subsystem de"nition: (a) uncoupled-blocked subsystem 1; (b) uncoupled-free subsystem 2.
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the blocked modes. These modes comply with the admissibility conditions on stresses for
the problem 1. (In the case of cavity}structure coupling, the modes of the cavity are the
blocked modes because they are determined with rigid walls.)

On the other hand, modes of subsystem 2 are calculated with null stresses on S2
Coupling

(see
Figure 5(b)). These are called the modes of the uncoupled-free subsystem or free modes.
These modes comply with the kinematic admissible conditions for the problem 2. (They
correspond to the modes of the in vacuo structure in the case of cavity}structure coupling.)

3.4.2. Calculations and properties of modes

The eigenvalue problems independently compiled with each "eld can be obtained from
equations of motion, constitutive law and boundary conditions expressed in mixed
variables.

For the displacement "eld of subsystem a (a"1, 2), the eigenvalue problem called the
primal problem can be written after a separation of time and space,=a

i
(M, t)"=I a

i
(M)e juat:

!oa (ua)2=I ai"1
2
S~1
ijkl

(=I a
k,l
#=I a

l,k
)
,j

in <a#boundary conditions. (37)

For the stress "eld of subsystem a, the eigenvalue problem called the dual problem can be
written with pa

ij
(M, t)"p8 a

ij
(M) e juat :

!oa (ua)2p8 a
ij
"Sa~1

ijkl
(p8 a

km,m,l
#p8 a

lm,m,k
) in <a#boundary conditions. (38)

These two problems (primal and dual) are extracted from the same problem expressed in
mixed variables. In general, the problem with mixed variables is respected by the couple of
solutions (ua ,=I ai , p8 aij). However, it can be noted that one solution of the dual problem
having a null eigenvalue can exist and does not have equivalence in the primal problem.
This solution does not then appear in mixed variables. For a cavity, it corresponds to the
Helmholtz mode that is found in terms of pressure and not in terms of displacement. This
solution having a null eigenfrequency will have a negligible contribution in the modal
expansion (because it is non-resonant) as soon as other resonant modes participate to the
response. As the CLF calculation takes into account only the resonant modes in a frequency
band, the Helmholtz mode contribution can be neglected. Thus, the problem in mixed
variables can be used to de"ne the stress and displacement shapes of each mode.
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One can de"ne, for the uncoupled-blocked subsystem 1, u1
p
, the natural angular

frequency of mode p;=I 1p
i

, the displacement mode shape; and p8 1p
ij

, the stress mode shape
with the following equations (for u1

p
O0):

!o
1
(u1

p
)2=I 1p

i
"p8 1p

ij,j
in <1, (39)

1
2

(=I 1p
i, j
#=I 1p

j,i
)"S1

ijkl
p8 1p
kl

in <1, (40)

p8 1p
ij

n1
j
"0 on S1

Free
, =I 1p

i
"0 on S1

Clamped
, =I 1p

i
"0 on S1

Coupling
(41)

Similarly one can de"ne for the uncoupled-free subsystem 2, u2
q
, the natural angular

frequency of mode q; =I 2q
i

, the displacement mode shape; and p8 2q
ij

, the stress mode shape
with the following equations (for u2

q
O0):

!o
2
(u2

q
)2=I 2q

i
"p8 2q

ij,j
in <2, (42)

1
2
(=I 2q

i,j
#=I 2q

j,i
)"S2

ijkl
p8 2q
kl

in <2, (43)

p8 2q
ij

n2
j
"0 on S2

Free
, =I 2q

i
"0 on S2

Clamped
, p8 2q

ij
n2
j
"0 on S2

Coupling
. (44)

These modes have the following orthogonality properties (see reference [25]) for subsystem
a (a"1, 2):

P<a
ua

p
ua

q
oa=I api =I aqi d<"Ka

p
d
pq

, (45)

P<a
p8 ap
ij

Sa
ijkl

p8 aq
kl

d<"Ka
p
d
pq

, (46)

P<a
p8 ap
ij, j
=I aq

i
d<"Ka

p
d
pq

, (47)

P<a
p8 ap
ij

1
2
(=I aq

i,j
#=I aq

j, i
) d<"Ka

p
d
pq

, (48)

where Ka
p
is the modal sti!ness of mode p of subsystem a, and d

pq
is the Kronecker symbol

(d
pq
"0 if pOq; d

pq
"1 if p"q).

The natural angular frequencies can be expressed by

ua
p
"JKa

p
/Ma, a"1, 2, (49)

where Ma
p

is the modal mass of mode p of subsystem a.
Note: The blocked modes of subsystem 1 comply with the admissibility conditions on

stresses of the variational problem 1. Thus the set of the stress mode shapes
Mp8 1p

ij
(M), p"1, 2,2,#RN (taking into account the stress mode of null frequency if it

exists) constitutes a base of the admissible space R1
R
. In a same way, the uncoupled-free

modes of subsystem 2 comply with the kinematic admissible conditions of the variational
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problem 2. The set of the displacement mode shapes M=I 2q
i

(M), q"1, 2,2,#RN
constitutes a base of X2

R
(the displacement kinematically admissible space). This will enable

the stress "eld for subsystem 1 and the displacement "eld for subsystem 2 on the coupling
boundary to be calculated from the modal expansion.

3.5. MODAL EXPANSION OF THE SOLUTION

Expanding displacements and stresses of each subsystem in the modal bases yields

=1
i
(M, t)"

=
+
n/1

a1
n
(t)=I 1n

i
(M), p1

ij
(M, t)"

=
+

m/1

b1
m
(t)p8 1m

ij
(M), (50)

=2
i
(M, t)"

=
+
r/1

a2
r
(t)=I 2r

i
(M), p2

ij
(M, t)"

=
+
s/1

b2
s
(t)p8 2s

ij
(M). (51)

The expansion allows the weak solutions of the two problems (21}25), (26}30) to be found
by using the Reissner principle and subspaces of admissible spaces. These solutions are
weak solutions because the subspace generated by mode shapes will not permit strict
veri"cation of equation (25) for problem 1 and equation (30) for problem 2.

Upon introducing expansions (50, 51) into the variational principles (31, 34), and using
the modes' orthogonality properties (45}48), the solution of each problem is then obtained
by "nding modal amplitudes that give stationary the Reissner's Functional. That is, modal
amplitudes satisfying the Euler equation (52) associated to a1

n
, b1

m
and a2

p
,b2

q
for subsystem

1 and subsystem 2, are respectively,

/q
i
:

L
Lq

i

(F (q
i
(t), qR

i
(t)))!

d

dt A
L

LqR
i

(F (q
i
(t), q5

i
(t)))B"0, (52)

where F (q
i
(t), qR

i
(t)) is the considered functional which depends on q

i
(t), q5

i
(t).

Finally, for subsystem 1

/a1
p
: !

K1
p

(u1
p
)2

aK 1
p
(t)!K1

p
b1
p
(t)"0, (53)

/b1
p
: !K1

p
a1
p
(t)#K1

p
b1
p
(t)!PS1

Coupling

=M c
i
p8 1p
ij

n1dS"0, (54)

and for subsystem 2.

/a2
q
: !

K2
q

(u2
q
)2

aK 2
q
(t)!K2

q
b2
q
(t)#PS2

Coupling

FM c
i
=I 2q

i
dS"0, (55)

/b2
q
: !K2

q
a2
q
(t)#K2

q
b2
q
(t)"0. (56)

According to the dual formulation used by Karnopp [18], the behaviours of subsystem
1 with stress modal amplitudes, b1

p
(t), and subsystems 2 with displacement modal

amplitudes a2
q
(t) must be described. It is analogous to the coupling cavity}structure where
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the pressure is the descriptive variable for the subsystem with blocked modes (cavity), and
the displacements are the descriptive variables for the subsystem with free modes (structure).
Therefore, combining time second derivative of equation (54) with equation (53), and
equation (55) with equation (56) gives

bG 1
p
(t)#(u1

p
)2b1

p
(t)"

1

(u1
p
)2M1

p
PS1

Coupling

=1G c
i
p8 1p
ij

n1
j
dS, (57)

aK 2
q
(t)#(u2

q
)2a2

q
(t)"

1

M2
q
PS1

Coupling

FM c
i
=I 2q

i
dS. (58)

3.6. FREE VIBRATIONS OF COUPLED SUBSYSTEMS

Equations (57) and (58) describe the coupling through speci"ed displacements on
subsystem 1 and forces on subsystem 2. To express coupling conditions, the speci"ed force
acting on subsystem 2 is opposite of the stress boundary vector of subsystem 1 (see equation
(18)), and, the prescribed displacements on subsystem 1 are the displacements of subsystem
2 on the coupling surface (see equation (17)). It is now easy to express the accelerations and
the forces on the coupling surface by using modal expansions:

FM c
i
"!

=
+

m/1

b1
m
(t)p8 1m

ij
n1
j

on S
Coupling

, (59)

=M G c
i
"

=
+
r/1

aK 2
r
(t)=I 2r

i
on S

Coupling
. (60)

Putting equation (60) in equation (57), and equation (59) in equation (58), yields the
following system of equations

bG 1
p
(t)#(u1

p
)2b1

p
(t)"

1

(u1
p
)2M1

p

=
+
r/1

aK 2
r
(t) PS

Coupling

=I 2r
i

p8 1p
ij

n1dS ∀p3[1,2,R[,

aK 2
q
(t)#(u2

q
)2a2

q
(t)"!

1

M2
q

=
+

m/1

b1
m
(t) PS

Coupling

=I 2q
i

p8 1m
ij

n1dS ∀q3[1,2,R[. (61)

To have equations analogous to equations (5), it is necessary to carry out the change of
variable

b1
p
(t)"c5 1

p
(t). (62)

For the cavity}structure problem, the pressure is replaced by the acoustic}#uid velocity
potential, which, with the Euler law in the #uid medium, represents a change of variable
similar to equation (62).
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Finally, the following equations governing free vibrations of coupled substructures are
obtained:

cK 1
p
(t)#(u1

p
)2c1

p
(t)"

1

(u1
p
)2M1

p

=
+
r/1

aR 2
r
(t) PS

Coupling

=I 2r
i

p8 1p
ij

n1
j
dS ∀p3[1,2,R[,

aK 2
q
(t)#(u2

q
)2a2

q
(t)"!

1

M2
q

=
+

m/1

cR 1
m
(t) PS

Coupling

=I 2q
i

p8 1m
ij

n1
j
dS ∀q3[1,2,R[. (63)

3.7. FORCED VIBRATION OF COUPLED SUBSYSTEMS

By introducing excitation and damping in equations (63), the system of equations
describing the forced response of the coupled subsystems from the modal amplitudes of the
modes of the uncoupled subsystem is obtained as

cK 1
p
(t)#D1

p
cR 1
p
(t)#(u1

p
)2c1

p
(t)!

1

(u1
p
)2M1

p

=
+
r/1

aR 2
r
(t) PS

Coupling

=I 2r
i

p8 1p
ij

n1
j
dS

"

F1
p

(u1
p
)2M1

p

∀p3[1,2,R[,

aK 2
q
(t)#D2

q
a5 2
q
(t)#(u2

q
)2a2

q
(t)#

1

M2
q

=
+

m/1

cR 1
m
(t) PS

Coupling

=I 2q
i

p8 1m
ij

n1
j
dS

"

F2
q

M2
q

∀q3[1,2,R[. (64)

Here modal viscous damping has been introduced through the modal damping bandwidths
D1
p

and D2
q
, and external excitations through the generalized terms F1

p
and F2

q
.

To identify the modal coupling coe$cients as de"ned in the basic modal of two-coupled
oscillators, only the coupling of the pth mode of subsystem 1 and the qth mode of subsystem
2 is considered:

G
cK 1
p
(t)#D1

p
cR 1
p
(t)#(u1

p
)2c1

p
(t)

!S
M2

q
(u1

p
)2M1

p
C

1

J(u1
p
)2M1

p
M2

q
PS

Coupling

=I 2q
i

p8 1p
ij

n1
j
dSD a5 2

q
(t)

"

¸
1pq

(u1
p
)2M1

p

∀(p, q)3([1,2,R[)2,

aK 2
q
(t)#D2

q
a5 2
q
(t)#(u2

q
)2a2

q
(t)

#S
(u1

p
)2M1

p
M2

q
C

1

J(u1
p
)2M1

p
M2

q
PS

Coupling

=I 2q
i

p8 1p
ij

n1
j
dSD cR 1

p
(t)"

¸
2pq

M2
q

. (65)

Here ¸
1pq

and ¸
2pq

contain the generalized &forces' and the interaction &forces' with all the
other modes.
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The modal coupling coe$cient between the pth mode and the qth mode can be deduced
directly by comparison with equation (6):

c12
pq
"

1

J(u1
p
)2M1

p
M2

q
PS

Coupling

=I 2q
i

p8 1p
ij

n1
j
dS. (66)

Physically, it is important to note that the integral represents the interaction modal work
exchanged by the pth blocked mode of subsystem 1 and the qth free mode of subsystem 2.
The interaction modal work is given by

W12
pq
"PS

Coupling

=I 2q
i

p8 1p
ij

n1
j
dS. (67)

This is demonstrated in the general case of three-dimensional continuum mechanical
subsystems, and thus can be accepted as a basic principle that can be applied in simpli"ed
models of beams, plates and shells. In these cases, the work associated with dual variables
introduced in 1-D or 2-D models (force}displacement, moment}rotation, etc.) has to be
considered.

3.8. DISCUSSION

It is an advantage of the dual formulation, as compared to displacement formulation and
free modes, that there are no &direct couplings' between modes of the same subsystem (see
reference [26]). Indeed, from a formal point of view, mode p of subsystem 1 and mode q of
subsystem 2 are coupled with the modes of subsystem 2 and subsystem 1, respectively, but
are not directly coupled with the other modes of subsystem 1 and subsystem 2, respectively.
When using classical displacement formulation, also the introduction of blocked modes
gives no direct coupling for modes of same subsystem (see reference [1, p. 61]). However, the
modes of di!erent subsystems are coupled by mass, sti!ness and damping elements. The
damping oscillator/mode coupling is not taken into account in classical SEA, and that
poses a problem; the present approach has no such problem, the modal coupling being only
gyroscopic.

In some structures, coupling dissipative joints are present. This situation can be
schematically represented as in Figure 6 where one has introduced one sti!ness coupling
element and one dissipative element between the two subsystems.

In this case, the uncoupled-subsystems shown in Figure 7 can be used; subsystem 1 is
blocked and subsystem 2 is free. The uncoupled-blocked subsystem takes into account the
sti!ness and dissipative elements. The modes of this uncoupled-subsystem are obtained by
considering the associated conservative structure. The damping coupling element is taken
into account by the damping loss factor of subsystem 1. Of course, as for the general case,
the modal couplings are gyroscopics. Then, the dual modal formulation allows dissipative
coupling between subsystem to be taken into account without modi"cation of SEA
relations.

As mentioned by Karnopp [18] for two identical coupled rods, the dual modal
formulation can converge even if the subsystems have equivalent impedance. For this
particular case, it could be necessary to consider a large number of modes to converge,
whereas for cases which one subsystem is sti!er that the other, it is only necessary to



Figure 6. Two subsystems coupled by sti!ness and dissipative elements.

Figure 7. Subsystem de"nition. (a) uncoupled-blocked subsystem 1; (b) uncoupled-free subsystem 2.
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consider a few modes of one subsystem to be coupled with a few modes of the other. In
section 2, the interactions between the subsystem modes which have their eigenfrequencies
in the frequency band have been considered as SEA. The present approach, considering
resonant modes and using blocked modes for one subsystem and free modes for the other, is
then well suited to coupling in which one subsystem is sti!er that the other, but leads to
approximation when both subsystem tends to have some sti!ness. Obviously, the soft
subsystem has to be blocked and the sti! subsystem has to be considered to be free.
The in#uence of a poor choice of modes on CLF results will be presented in the companion
paper. In the particular case of equally sti! subsystems on the coupling boundary,
the choice is arbitrary but the prediction is not so good as in the case of impedance
rupture.
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3.9. CALCULATION OF COUPLING LOSS FACTORS

Combining equations (8), (14), (66) and (67), a general expression is obtained which allows
the coupling loss factors to be calculated from subsystem modal information:
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) (D1

p
(u2

q
)2#(D2

q
(u1

p
)2)BD .

(68)

3.10. ENERGY PROPERTIES

The equation system (64) can be interpreted as the coupling between a set of oscillators
associated to subsystem 1 with another set of oscillators associated to subsystem 2. The
interest here is in evaluating the energy properties of these associated oscillators. In a "rst
step, the relations between subsystem energies and modal energies are established and
secondly, the links between the energies associated to amplitudes a2

q
(t) and c1

p
(t), and the

modal energies are evaluated.

3.10.1. Subsystem energy and modal energy

The instantaneous kinetic energy of subsystem a ("1, 2) is expressed by

Ea
K
"P<a

1

2
oaA

L=a
i

Lt B
2

d<. (69)

Using the displacement modal expansion and taking into account the modal
orthogonality property (45), gives

Ea
K
(t)"

1

2

=
+
n/1

Ma
n
(aR a

n
(t))2. (70)

Therefore,

Ea
K
(t)"

=
+
n/1

Ean
K

(t), (71)

where Ean
K

(t)"1
2
Ma

n
(aR a

n
(t))2 is the modal kinetic energy of mode n of subsystem a.

In the same manner, the instantaneous potential energy of subsystem a is expressed by

Ea
P
(t)"

1

2 P<a
pa
ij
Sa
ijkl

pa
kl

d<. (72)

Using the stress modal expansion, and taking into account the modal orthogonality
property (46), gives "nally

Ea
P
(t)"

1

2

=
+
n/1

Ka
n
(ba

n
(t))2. (73)

Ea
P
(t)"

=
+
n~1

Ean
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(t), (74)

where Ean
P
(t)"1

2
Ka

n
(ba

n
(t))2 is the modal potential energy of mode n of subsystem a.
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In conclusion, the total energy of a subsystem is equal to the sum of the modal total
energies of all modes.

3.10.2. Energy properties associated to amplitudes a2
q
(t) and c1

p
(t)

From the form of equation (64), the model amplitudes a2
q
(t) can be associated with the

displacement amplitude of an oscillator whose mass is the generalized mass and its
sti!ness the generalized sti!ness of mode q. It is well known that the kinetic (potential)
energy of the oscillator represents the mode q kinetic energy (potential energy, upon
taking into account equation (56)). Thus, the total energy of the oscillator is the modal total
energy.

For subsystem 1, the parameters, which must be associated to the oscillator, are not
classical (as for subsystem 2). Calculations are then necessary to identify what is represented
by kinetic energy and what is represented by the potential energy of the corresponding
oscillator.

By identi"cation from the form of equation (64), the modal parameters of the pth blocked
mode of subsystem 1 are associated with the oscillator parameters as shown in Figure 8. The
oscillator mass, M, is equal to the modal sti!ness, K1

p
, and the oscillator sti!ness, K, is equal

to (K1
p
)2/M1

p
. The kinetic energy of the oscillator at any time can be expressed by

E
K
(t )"1

2
M(y5 (t))2"1

2
K1

p
(c5 1

p
(t))2. (75)

Introducing relation (62) gives:

E
K
(t)"1

2
K1

p
(b1

p
(t))2. (76)

Thus, the kinetic energy of the associated oscillator is the potential energy of the pth
blocked mode.

The potential energy of the oscillator, is given by

E
p
(t)"

1

2
K (y (t))2"

1

2

(K1
p
)2

M1
p

(c1
p
(t))2. (77)
Figure 8. Illustration of the oscillator associated to the pth blocked modes.
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Putting equation (62) in equation (53), and then calculating the integral over the time
(taking into account that one considers stationary motion), gives

c1
p
(t)"!

M1
p

K1
p

a5 1
p
(t). (78)

Putting this into equation (77), gives

E
p
(t)"1

2
M1

p
(aR 1

p
(t))2. (79)

Thus, the potential energy of the associated oscillator is the kinetic energy of the pth
blocked mode. It is, however, important to note that the total energy of the associated
oscillator is equal to the total energy of the pth blocked modes.

4. CLF CALCULATION WITH FEM DATA

4.1. INTRODUCTION

The goal of the present approach is to apply SEA to complicated substructures. In that
case only a "nite element model of each subsystem can be used. The advantages for the
proposed method of calculating CLF in this case are as follows: (1) Subsystem boundary
conditions are clearly de"ned (the uncoupled modes are clearly de"ned). (2) Heterogeneous
subsystems having three-dimensional vibration motions can be treated without any
di$culty. This can be quite di$cult to do with the classical numerical experiment and the
inverse SEA technique due to the choice of the position and type of force which should be
applied. (3) The present technique involves a short computing time, because the solution of
the equation of motion is not necessary. The CLF are calculated directly from the
coe$cients of modal equations.

4.2. INTERACTION MODAL WORK FOR DISCRETIZED SYSTEM

In this approach, the CLFs are calculated from the interaction modal work of couple of
modes. For a FEM discretized system, the expression for the interaction modal work can be
determined directly from the nodal variables. For the node i, the displacement variables are
the three displacements (ui

k
, k"1, 2, 3) and the three rotations (ui

k
, k"4, 5, 6); and the dual

variables are the three forces ( f i
k
, k"1, 2, 3), and the three moments ( f i

k
, k"4, 5, 6).

A system composed of two vibrating subsystems discretized by "nite element and coupled
together is considered. The two subsystems have some common nodes called a `coupling
node seta on the coupling boundary. As in section 3, it can be supposed that subsystem 1 is
the uncoupled-blocked subsystem and that subsystem 2 is the uncoupled-free subsystem.
Then, subsystem 1 must be described by the nodal forces ( f 1i

k
, k"1,2,6) and subsystem

2 by the nodal displacement (u2i
k
, k"1,2,6). From the physical interpretation it can be

deduced that the interaction modal work between the pth mode of subsystem 1 and the qth
mode of subsystem 2 is expressed by

=12
pq
" +

i3G
Coupling

node set H

6
+
k/1

fI 1i
pk

u8 2i
qk
, (80)
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where fI 1i
pk

is the kth component force of node i of the pth mode of subsystem 1, and u8 2i
qk

is the
kth component displacement of node i of the qth mode of subsystem 2.

Note: All nodal variables must be described in the same global co-ordinate system for the
two subsystems.

In conclusion, in order to calculate the coupling loss factor of a complicated system only
the FEM eigenvalue problem must be solved for each uncoupled sybsystem. The
information which must be extracted include the natural angular frequencies, the
generalized masses and the mode shapes (nodal forces or nodal displacement) on the
coupling boundary (coupling node set). Equation (80) permits the modal interaction works
to be determined. Then expression (68) can be applied directly to calculate the CLF between
the two subsystems.

5. CONCLUSIONS

A technique is presented here to calculate SEA coupling loss factors for complicated
subsystem modelled with FEM. The technique relies on the basic modal formulation of
SEA and the use of a formulation called the dual modal formulation. The use of the DMF
presents some advantages: (a) the modal equations have no direct coupling between modes
of the same subsystem (as assumed in SEA); (b) the subsystem modes considered are the
physical local modes when there is a rupture of impedance between the two subsystems.
Therefore, these resonant modes are able to represent the behaviour of the structure in
a frequency bandwidth; (c) the natural frequencies which must be considered to determine
the CLF are the natural frequencies of the uncoupled (free or blocked) subsystems; (d) there
is not the problem of stored energy in the coupling between modes because it is only
gyroscopic (no mass and sti!ness coupling that store energy are necessary with the present
approach); (e) the method is simple to apply because it is possible to use directly the physical
interpretation of the interaction modal work.

The "nal expression for CLF which has been obtained enables it to be determined only
from the knowledge of the modes of the uncoupled-subsystems and the modal damping.
The "nite element method can be used to calculate the modal information in the case of
complex subsystems that allows this technique to be applied to industrial structures.
Contrary to the classical SEA matrix-inversion technique, the present method does not
require the solution of equations of motion for many excitations. The CLFs are directly
obtained by equation (68) without solution of an equation. This saves much computing
time. In addition, di!erent damping loss factors can be used for a subsystems without
di$culty. In the numerical simulation technique and SEA matrix inversion, there is often
the technical di$culty that FEM codes use a global damping loss factor for the considered
structure. It is then impossible to use di!erent damping loss factors for substructures.

It should be noted that it is also possible to establish an ensemble averaged estimate of
the CLF by replacing deterministic intermodal coupling factors by an ensemble average of
the intermodal coupling factors.
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APPENDIX A. NOMENCLATURE

a1
p
(t), a2

q
(t) modal amplitude of displacement expansion

b1
p
(t), b2

q
(t) modal amplitude of stress expansion

c1
p
(t), c2

q
(t) modal amplitude de"ned by equation (62)

E
1
, E

2
time-averaged total energy of oscillator

E1p
K

, E2q
K

instantaneous modal kinetic energy
E1p
P

, E2q
P

instantaneous modal potential energy
E1
p
, E2

q
time-averaged modal total energy

E1
K
, E2

K
instantaneous subsystem kinetic energy

E1
P
, E2

P
instantaneous subsystem potential energy

f 1i
k

, f 2i
k

force nodal variable
fI 1i
pk

, fI 2i
qk

force nodal mode shape
F
1
, F

2
external force

F1
p
, F2

q
generalized &&force''

FM c
i

speci"ed forces on S2
Coupling

G
c

gyroscopic constant
K

1
, K

2
oscillator's sti!ness

K1
p
, K2

q
modal sti!ness

¸1
pq

, ¸2
pq

generalized &&forces'' and interaction &&forces'' with others modes
m, n, p, q, r, s modal order
M

1
, M

2
oscillator's mass

M1
p
, M2

q
modal mass

n1
j
, n2

i
outer normal vector component

N
1
, N

2
number of resonant modes in the considered frequency bandwidth

P
12

time-averaged power #ow from oscillator 1 to oscillator 2
S1
ijkl

, S2
ijkl

compliance tensor
S1
Free

, S2
Free

boundary surface with free displacement
S1
Clamped

, S2
Clamped

boundary surface with blocked displacement
S1
Coupling

, S2
Coupling

coupling boundary surface
t
0
, t

1
, t time

u1i
k

, u2i
k

displacement nodal variable
u8 1i
pk

, u8 2i
qk

displacement nodal mode shape
<1 , <2 volume occupied by subsystem
W12

pq
interaction modal work between mode p of subsystem 1 and mode q of
subsystem 2

=1
i
, =2

i
displacement vector

=I 1p
i

, =I 2q
i

displacement mode shape
=M c

i
speci"ed displacements on S1

coupling
y
1
, y

2
oscillator amplitude

b proportional constant between P
12

and (E
1
!E

2
)

b12
pq

intermodal coupling factor (ICF) between mode p of subsystem 1 and mode q of
subsystem 2

Du angular frequency bandwidth of interest
D
1
, D

2
oscillator's damping bandwidth

D1
p
, D2

q
modal damping bandwidth

e1
ij
, e2

ij
strain tensor

g
12

coupling loss factor (CLF)
c gyroscopic coupling coe$cient between two oscillators
c12
pq

gyroscopic modal coupling coe$cient between mode p of subsystem 1 and
mode q of subsystem 2

P
12

time-averaged power #ow exchanged by two subsystems
P12

pq
time-averaged power #ow from mode p of subsystem 1 to mode q of
subsystem 2
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u
c

central angular radian frequency of the frequency bandwidth *u
u

1
, u

2
oscillator's natural angular frequency

u1
p
, u2

q
mode's natural angular frequency

X1
R
, X2

R
displacement admissible space

o
1
, o

2
mass density

p1
ij
, p2

ij
stress tensor

p8 1p
ij

, p8 2q
ij

stress mode shape
R1
R
, R2

R
stress admissible space

m
1
, m

2
time-averaged total energy of subsystem

t1
R
, t2

R
Reissner functional
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