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This paper is one in a series of two, and discusses the body wave propagation and the
eigenmodes for a layer of discrete particles. This con"guration is a representation for
a ballast layer used in ordinary railway tracks. The discrete nature of the ballast is simulated
via an elastic nine-cell square lattice. After deriving the equations of motion for the lattice,
the long-wave approximation for the equations of motion is compared with the equations of
motion for a classic elastic continuum. This comparison yields relations between the
macroscopic continuum parameters and the microscopic lattice parameters. Then, the
dispersion curves that characterize the eigenmodes of the discrete layer are derived. The
di!erences between these dispersion curves and those of a continuous layer are elucidated.
By means of a parametric study, the in#uence is shown of the particle diameter and thickness
of the layer on the dynamic response. In an accompanying paper, the layer response to
a moving, harmonically vibrating load is analyzed, which is a representation for a ballast
track that is subjected to an instantaneous train axle passage.
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1. INTRODUCTION

In the development of the high-speed railway lines, analysis of the structural wave processes
generated by the train is necessary for a proper assessment of the deterioration and safety
aspects of a railway system. An important wave type in such analyses is the surface wave,
which, by de"nition, carries its energy along the surface of the track structure. The group
velocity of a surface wave may be of the same magnitude as that of the train velocity. The
ensuing accumulation of the energy under the train wheels can be characterized as
resonance, resulting in a considerable ampli"cation of the train}track response. The train
velocities at which this occurs are commonly named critical velocities (see, for example,
references [1, 2]). Track measurements in England [3] and in France [4] as well as visual
0022-460X/01/060001#18 $35.00/0 ( 2001 Academic Press



2 A. S. J. SUIKER E¹ A¸.
track inspections in these and other countries have revealed the in situ existence of critical
train velocities. Consequently, for safety reasons and to limit track deterioration, train
speed limits have been imposed on currently operating high-speed railway lines.

The magnitude of the critical velocities generally depends on the geometry and
material characteristics of the railway track. For a ballast layer on a softer substratum of
sand, clay or peat, various moving load models [1, 2, 5], as well as in situ track
measurements [3] have shown that the lowest critical velocity occurs at/near the Rayleigh
wave velocity of the soft substratum. Indeed, for this con"guration the dynamic response
is mainly characterized by the substratum properties. On the contrary, when a ballast
layer is supported by a sti!er substratum of concrete (railway foundations, bridges
or tunnels) or rock, the ballast layer itself is the determining factor in the characterization
of the structural response. This is especially the case when the train vehicle induces
strong vibrations, as for example, generated by the sleeper distance [6}9]. The emphatic
in#uence of the ballast properties on the structural response is due to multiple re#ections of
the train-induced waves at the ballast}substratum interface, causing the wave energy to be
captured within the ballast layer. Correspondingly, the ballast layer behaves as
a waveguide.

Although the studies mentioned above have explained important features of high-speed
railway systems, it has to be realized that the models used in these studies are constructed
within a continuum mechanics framework. As the nature of the continuum mechanics
theory results in a limited accuracy level with regard to the modelling of heterogeneous
e!ects by the discrete particles, the representation by these models becomes less accurate
when the transmitted wavelength reaches the order of magnitude of the ballast particle size.
The analysis of such heterogeneous e!ects is most relevant in the case of a ballast layer on
a sti!er substratum, since then the ballast layer is able to guide waves with a relatively short
wavelength.

For a better understanding of the particle interactions in a ballasted railway track, the
dynamic response of a rigidly supported layer of discrete particles is analyzed in a series of
two papers. In this paper, the body wave propagation through the discrete layer is
examined, as well as the dispersion branches that re#ect the eigenmodes of the layer. In the
companion paper, the steady state response of the layer to a moving, harmonically vibrating
load will be elaborated. Here, the moving load is supposed to represent an instantaneous
train axle passage. The discrete layer is modelled by a square lattice consisting of individual
cells that are mutually connected via elastic longitudinal springs and shear springs. The
distance between the cells thus equals the ballast particle size. It is justi"ed to use an elastic
material law for the lattice, since the response of a ballast layer to an instantaneous
train axle passage is mainly reversible. Although a railway structure is a typical
three-dimensional structure, the ballast layer has been modelled in a two-dimensional
manner. Nevertheless, the plane in which the load propagates strongly determines the
characteristics of the dynamic response, so that, apart from the di!erent geometrical
radiation, the dynamic characteristics of two-dimensional moving load models and
three-dimensional moving load models are equivalent [2].

After deriving the equations of motion for an inner cell (i.e., a cell in the interior of the
layer) and a boundary cell (i.e., a cell at the surface of the layer), the long-wave
approximation of the lattice wave equations is compared with the wave equations of
the classic elastic continuum (see also, references [10}12]). This comparison results in
a relation between the macroscopic constitutive parameters of the continuum model and
the microscopic constitutive parameters of the discrete lattice model. Then, the propagation
characteristics of the body waves in the lattice are derived, followed by the derivation of the
dispersion curves that re#ect the eigenmodes of the discrete layer. These dispersion curves
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are compared to those of a correspondent elastic continuous layer, where the typical
features of the particle diameter and the layer thickness are illustrated via a parametric
study.

2. THE GOVERNING EQUATIONS FOR A SQUARE LATTICE

In Figure 1, a rigidly supported layer of equal-sized, circular particles with diameter d is
depicted. This con"guration represents a ballast layer of a common railway track. Trivially,
the assumption of all particles having the same size is a simpli"cation of an in situ ballast
gradation. The internal layer geometry as well as the micro-structural particle interactions
are modelled by a square lattice. The square lattice consists of individual cells that are
connected to each other via elastic longitudinal springs and shear springs. Here, two
di!erent cell types can be distinguished, which are the inner cell situated in the interior of the
layer and the boundary cell situated at the free surface of the layer. In this section, for both
cell types the equations of motion are derived, where it is required that in the long-wave
limit the equations of motion for the inner cell reduce to those of the standard elastic
continuum.

2.1. EQUATIONS OF MOTION FOR AN INNER CELL

Figure 2 shows an inner cell in the interior of the square lattice. The inner cell has
dimensionless co-ordinates (m, n), and is connected via axial longitudinal springs Kn

axi
and

axial shear springs Ks
axi

to four neighbouring mid-side cells at distance d, and via diagonal
longitudinal springs Kn

dia
and diagonal shear springs Ks

dia
to four neighbouring edge cells at

distance J2d. The lattice cells have two degrees of freedom, which are the displacements in
x and z directions Mu

x
, u

z
N. The dynamic behaviour of the inner cell (m, n) can be expressed in

terms of the Lagrangian ¸, according to

¸(m,n)"E(m,n)
kin

!E(m,n)
pot

, (1)

with E
pot

the potential energy and E
kin

the kinetic energy. The potential energy may be
formulated as

E(m,n)
pot

"1
2

4
+
i/1

(Dl2
(i)

Kn
axi

#Ds2
(i)

Ks
axi

)#1
2

8
+
i/5

(Dl2
(i)

Kn
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#Ds2
(i)
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), (2)

in which Dl
(i)

and Ds
(i)

are the length variations of the ith spring in the longitudinal direction
and in the shear direction. In correspondence with Figure 2, the linear form of these length
Figure 1. Layer of equal-sized, circular particles.



Figure 2. Inner cell of square lattice.
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variations is as follows:
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Additionally, the kinetic energy of the inner cell (m, n) is given by

E(m,n)
kin

"1
2
M[(u5 (m,n)

x
)2#(u5 (m,n)

z
)2], (4)

in which M represents the cell mass. The superimposed dot designates the full derivative
with respect of time, so that MuR (m,n)

x
, uR (m,n)

z
N represent the velocities in x and z directions

respectively. Combining expressions (1)} (4), followed by applying the Lagrange equations
(see, for example, reference [13]), yields

L¸(m,n)
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d

dt A
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d

dt A
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z
B"0, (5)

providing the equations of motion for the inner cell:
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where MuK (m,n)
x

, uK (m,n)
z

N are the accelerations in x and z directions.

2.2. EQUATIONS OF MOTION FOR A BOUNDARY CELL

The procedure used for the derivation of the equations of motion for the inner cell (m, n)
can also be applied to the boundary cell (m, 0) depicted in Figure 3. One again starts with



Figure 3. Boundary cell of square lattice.
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presenting the potential energy, which for the boundary cell yields
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Here, the variations of spring length in the longitudinal direction Dl
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direction Ds
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For obvious reasons, the expression for the kinetic energy of the boundary cell has the same
form as that of the inner cell (see equation (4)). By combining equations (7) and (8) with
respectively, equations (1), (4) and (5), the equations of motion for the boundary cell are
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obtained as
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2.3. LATTICE MODEL VERSUS CONTINUUM MODEL

In order to have a consistent relation between the macro-scale material behaviour and
the micro-scale material behaviour, in the long-wave limit the equations of motion derived
for the discrete lattice (6) need to reduce to the equations of motion for the classic elastic
continuum [10}12, 14]. To verify this, the "rst step is to replace the discrete degrees of
freedom of the cell (m, n) by corresponding continuous "eld variables,
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in which the tilde on top of the degrees of freedom on the right-hand side denotes the
continuous character. Then, the degrees of freedom of the neighbouring cells of cell (m, n),
located at points (x"(m#p)d, z"(n#q)d), are replaced by second order Taylor
approximations of the continuous "eld variables,
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where x and z are spatial derivatives. Employing equations (6) and invoking equations (10)
and (11) then leads to the equations of motion in the long-wave limit,
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with t the partial derivative with respect to time. The micro-level constitutive coe$cients of
the lattice model can be related to macro-level constitutive coe$cients by projecting
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equations (12) onto the equations of motion for a classic elastic continuum,
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in which j and k are the LameH constants and o is the density. Apparently, equations (12) and
(13) coincide if the following equalities hold:
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As a result of the anisotropic character of the lattice, expressions (14b) and (14c) provide two
di!erent relations for the LameH constant j, i.e.,
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For retrieving the isotropic classic elastic continuum from the long-wave approximation of
the square anisotropic lattice, it is a prerequisite that equations (15a) and (15b) are
equivalent, leading to the constraint
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Inserting expression (16) successively into equations (15) and (14c) gives for the LameH
constants j and k
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Subsequently, substituting equations (16) and (14e) into the equations of motion (6) for the
inner cell (m, n) yields

MuK (m,n)
x

"Kn
axi

[!3u(m,n)
x

#u(m`1,n)
x

#u(m~1,n)
x

#1
4
(u(m`1,n`1)

x
#u(m~1,n`1)

x

#u(m~1,n~1)
x

#u(m`1,n~1)
x

)#1
4
(u(m`1,n`1)

z
#u(m~1,n~1)

z

!u(m`1,n~1)
z

!u(m~1,n`1)
z

)]#Ks
axi

[!u(m,n)
x

#u(m,n`1)
x

#u(m,n~1)
x

!1
4
(u(m`1,n`1)

x
#u(m~1,n`1)

x
#u(m~1,n~1)

x
#u(m`1,n~1)

x
)

!1
4
(u(m`1,n`1)

z
#u(m~1,n~1)

z
!u(m`1,n~1)

z
!u(m~1,n`1)

z
)],

MuK (m,n)
z

"Kn
axi

[!3u(m,n)
z

#u(m,n`1)
z

#u(m,n~1)
z

#1
4
(u(m`1,n`1)

z
#u(m`1,n~1)

z

#u(m~1,n~1)
z

#u(m~1,n`1)
z

)#1
4
(u(m`1,n`1)

x
#u(m~1,n~1)

x

!u(m`1,n~1)
x

!u(m~1,n`1)
x

)]#Ks
axi

[!u(m,n)
z

#u(m`1,n)
z

#u(m~1,n)
z

!1
4
(u(m`1,n`1)

z
#u(m`1,n~1)

z
#u(m~1,n~1)

z
#u(m~1,n`1)

z
)

!1
4
(u(m`1,n`1)

x
#u(m~1,n~1)

x
!u(m`1,n~1)

x
!u(m~1,n`1)

x
)], (18)



DYNAMICS OF LAYER OF DISCRETE PARTICLES, PART 1 9
while substituting these constraints in the equation of motion (9) for the boundary cell (m, 0)
results in
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x

]#1
2
Ks

axi
[!3u(m,0)

z
#2u(m`1,0)

z
#2u(m~1,0)

z
!1

2
u(m`1,1)
z

!1
2
u(m~1,1)
z

!1
2
u(m`1,1)
x

#1
2
u(m~1,1)
x

]. (19)

3. DISPERSION CURVES OF BODY WAVES

Now that the equations of motion for the inner cell have been determined, the
propagation of body waves through the lattice can be analyzed. To this end, a solution of
equations (18) will be sought in the form of plane harmonic waves

u(m,n)
x

"A exp(i(ut!mk
x
d!nk

z
d)),

u(m,n)
z

"B exp(i(ut!mk
x
d!nk

z
d)), (20)

in which u is the angular frequency, A and B are the wave amplitudes and k
x

and k
z
are the

wave numbers in the x and the z direction respectively. The vector of wave numbers
k"(k

x
, k

z
) is related to the vector of wavelengths K"(K

x
, K

z
) via the scalar product

k )K"2n. (21)

Also, the vector of wave numbers is related to the vector of phase velocities c"(c
x
, c

z
) via

the scalar product

k ) c"u. (22)

Inserting solutions (20) into the equations of motion for the inner cell (18) results in a system
of homogeneous algebraic equations with respect to the wave amplitudes A and B:

A[Mu2#Kn
axi

(2 cos(k
x
d)#cos(k

x
d) cos(k

z
d)!3)#Ks

axi
(2 cos(k

z
d)

!cos(k
x
d) cos(k

z
d)!1)]#B[(Kn

axi
!Ks

axi
) (!sin(k

x
d) sin(k

z
d))]"0,

A[(Kn
axi

!Ks
axi

)(!sin(k
x
d) sin(k

z
d))]#B[Mu2#Kn

axi
(2 cos(k

z
d)

#cos(k
x
d) cos(k

z
d)!3)#Ks

axi
(2 cos(k

x
d)!cos(k

x
d) cos(k

z
d)!1)]"0. (23)

The system of equations (23) has a non-trivial solution if, and only if, for a given set of elastic
parameters, its determinant D(u, k

x
, k

z
) is equal to zero. This leads to

[Mu2#Kn
axi

(cos(k
x
d)#cos(k

z
d)#2 cos(k

x
d) cos(k

z
d)!4)

#Ks
axi

(cos(k
x
d)#cos(k

z
d)!2 cos(k

x
d) cos(k

z
d))]

][Mu2#(Kn
axi

#Ks
axi

)(cos(k
x
d)#cos(k

z
d)!2)]"0. (24)
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In equation (24), the "rst (second) expression between parentheses characterises the
propagation of the compression wave (shear wave). As the lattice is anisotropic (see
Figure 2), the character of the dispersion relations (24) depends on the direction of the body
wave propagation. When considering the body waves to be propagating along the x-axis, an
in"nite number of dispersion curves can be constructed, where the individual dispersion
curves are characterised by their wave number k

z
in the z direction. For each body wave, the

domain of dispersion curves is enclosed by a lower-frequency curve and an upper-frequency
curve. The lower-frequency curve is determined by the minimum value for the normalized
wave number in the z direction; k

z
d"0, yielding cos(k

z
d)"1. The upper-frequency curve

ensues upon adopting a maximum value for the normalized wave number in the z direction;
k
z
d"n (or k

z
d"!n), yielding cos(k

z
d)"!1. The backgrounds of this maximum

normalized wave number will be treated in more detail later in this section.
In Figure 4, the dispersion curves for the compression wave and the shear wave are

depicted. Because the dispersion curves are symmetric with respect to k
x
"0 and u"0,

only the positive wave number axis and the positive frequency axis have been depicted. The
dispersion curves have been computed by using a Young's modulus E"200 MPA,
a Poisson's ratio l"0)20 (corresponding to LameH constants j"55)5 MPa, k"83)3 MPa)
and a density o"1800 kg/m3. These parameters constitute a ballast material used in
ordinary railway tracks [15]. The cell distance d of the discrete lattice relates to the diameter
of the ballast particles, which has been chosen as d"100 mm. This is the largest particle
size that can be found in a broadly graded ballast [15]. Via the particle diameter d and the
LameH constants j and k, the particle contact sti!nesses Kn

axi
and Ks

axi
can be calculated by

inverting equation (17).
The angular frequency band that will be considered for the analysis in this paper and the

companion paper equals u3[0, 10 000 rad/s]. This approximately corresponds to
a frequency band [0, 1500 Hz], whose range is reckoned to be signi"cant for the vibrations
of concrete sleepers in ballasted tracks [16}18]. Because, during an instantaneous train axle
passage concrete sleepers hardly dissipate vibrations, this frequency band is expected to be
transmitted almost completely to the ballast underneath.

For an increasing wave number, the sinusoidal character of the dispersion relations (24)
causes a repetitiveness of zones: k

x
d3[!n, n]#[2nn, 2n(n#1)], where n is an integer.

These zones are commonly named &&Brillouin zones'', and are a typical feature in the
Figure 4. Body wave dispersion curves for square lattice: **, Compression wave; } }, Shear wave.
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dynamic response of a discrete system [19]. Normally, only the "rst Brillouin zone
k
x
d3[!n, n] is considered, because the incorporation of higher Brillouin zones results in

a non-unique relation between the frequency and the wave number [19]. Consequently, the
maximum (normalized) wave number transmitted by the discrete medium equals k

x
d"n

(or k
x
d"!n), relating to a minimum admissible wavelength of two times the particle

diameter K
x
"2d. Figure 4 illustrates that at this wave number the slope of the dispersion

curves is horizontal, corresponding to a zero group velocity: cg
x
"Lu/Lk

x
"0. Because for

unabsorbed propagating harmonic waves the group velocity equals the velocity of the wave
energy, at the maximum admissible wave number k

x
d"n the energy does not propagate.

Hence, this wave can be called a standing wave.
As illustrated in Figure 4, at the long-wave limit k

x
d"0, the tangential slope of the

lower-frequency curves corresponds to the body wave velocities in a classic linear elastic
medium, i.e.,

compression wave: ccompr.,kx/0
x

"S
(3Kn

axi
!Ks

axi
)d2

2M
"S

j#2k
o

,

shear wave: csh.,kx/0
x

"S
(Kn

axi
#Ks

axi
)d2

2M
"S

k
o
. (25)

For an increasing wave number, the phase velocity of the lower-frequency curves of the
discrete system starts to deviate from the corresponding continuum body wave velocity (25).
This phenomenon is known as dispersion, and can be ascribed to the particle size e!ect,
which becomes more pronounced for shorter wavelengths. The fact that the particle size is
explicitly included in the discrete model, provides the dispersion curves also with
a frequency maximum. Actually, the discrete medium acts as a granular "lter that transmits
only relatively low frequencies.

For analyzing the waves propagating through the layer, it is necessary to solve expression
(24) for the wave number k

z
, which, via straightforward algebra, yields the following

expressions:

k(1), (2)
z

"$

1

d
arccosA

Mu2#Kn
axi

(cos(k
x
d)!4)#Ks

axi
cos(k

x
d)

!Kn
axi

(2 cos(k
x
d)#1)#Ks

axi
(2 cos(k

x
d)!1)B

k(3), (4)
z

"$

1

d
arccosA

!Mu2!Kn
axi

(cos(k
x
d)!2)!Ks

axi
(cos(k

x
d)!2)

Kn
axi

#Ks
axi

B. (26)

In correspondence with the four solutions k(j)
z

, the amplitude vectors of the harmonic
solutions (20) have four components as well A"[A(1), A(2), A(3), A(4)]T and B"[B(1), B(2),
B(3), B(4)]T. The eigenvector D that contains the amplitude ratios of the body waves B(j)/A(j),
with j3M1, 2, 3, 4N, ensues from either equation (23a) or (23b). The former relation yields for
the components of this vector

D(j)"
B(j)

A(j)
"[Mu2#Kn

axi
(2 cos(k

x
d)#cos(k

x
d) cos(k(j)

z
d)!3)

#Ks
axi

(2 cos(k(j)
z

d)!cos(k
x
d) cos(k(j)

z
d)!1)]

][(Kn
axi

!Ks
axi

) sin(k
x
d) sin(k(j)

z
d)]~1

with j3M1, 2, 3, 4N. (27)



12 A. S. J. SUIKER E¹ A¸.
By combining equations (20), (26) and (27), the displacements under harmonic body wave
propagation may then be formulated generally as

u(m,n)
x

"(A(1) exp(!ink(1)
z

d)#A(2) exp(!ink(2)
z

d)#A(3) exp(!ink(3)
z

d)

#A(4) exp(!ink(4)
z

d)) exp(i(ut!mk
x
d)),

u(m,n)
z

"(A(1)D(1) exp(!ink(1)
z

d)#A(2)D(2) exp(!ink(2)
z

d)#A(3)D(3) exp(!ink(3)
z

d)

#A(4)D4 exp(!ink(4)
z

d)) exp(i(ut!mk
x
d)). (28)

4. DISPERSION BRANCHES OF THE LAYER MODES

The dispersion branches that characterize the eigenmodes of the layer can be deduced by
inserting the displacements under body wave propagation (28) into the boundary
conditions at the top and the bottom of the layer. The eigenbehaviour of the layer is
re#ected by requiring the boundary cells at the top of the layer z"0 to be free of loading.
Accordingly, the boundary conditions at the top of the layer are equal to the equations of
motion for the free boundary cell (i.e., equations (19)):

MuK (m,0)
x

"1
2
Kn

axi
[!5u(m,0)

x
#2u(m`1,0)

x
#2u(m~1,0)

x
#1

2
u(m`1,1)
x

#1
2
u(m~1,1)
x

#1
2
u(m`1,1)
z

!1
2
u(m~1,1)
z

]#1
2
Ks

axi
[!u(m,0)

x
#2u(m,1)

x
!1

2
u(m`1,1)
x

! 1
2
u(m~1,1)
x

!1
2
u(m`1,1)
z

#1
2
u(m~1,1)
z

],

MuK (m,0)
z

"1
2
Kn

axi
[!3u(m,0)

z
#2u(m,1)

z
#1

2
u(m`1,1)
z

#1
2
u(m~1,1)
z

#1
2
u(m`1,1)
x

!1
2
u(m~1,1)
x

]#1
2
Ks

axi
[!3u(m,0)

z
#2u(m`1,0)

z
#2u(m~1,0)

z
!1

2
u(m`1,1)
z

!1
2
u(m~1,1)
z

!1
2
u(m`1,1)
x

#1
2
u(m~1,1)
x

]. (29)

Since the bottom of the layer is assumed to be rigidly supported, the displacements at
z"nd"H are equal to zero:

u(m,H@d)
x

"0, u(m,H@d)
z

"0. (30)

Substitution of the expressions for body wave propagation (28) into the boundary
conditions (29) and (30) provides the following set of algebraic equations:

[A(1)#A(2)#A(3)#A(4)][Mu2#1
2
Kn

axi
(4 cos(k

x
d)!5)!1

2
Ks

axi
]

#[A(1) exp(!ik(1)
z

d)#A(2) exp(!ik(2)
z

d)#A(3) exp(!ik(3)
z

d)#A(4) exp(!ik(4)
z

d)]

][1
2
Kn

axi
cos(k

x
d)!1

2
Ks

axi
(cos(k

x
d)!2)]

#[A(1)D(1) exp(!ik(1)
z

d)#A(2)D(2) exp(!ik(2)
z

d)

#A(3)D(3) exp(!ik(3)
z

d)#A(4)D(4) exp(!ik(4)
z

d)]

][!1
2

iKn
axi

sin(k
x
d)#1

2
iKs

axi
sin(k

x
d)]"0,
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[A(1)D(1)#A(2)D(2)#A(3)D(3)#A(4)D(4)][Mu2!3
2
Kn

axi
#1

2
Ks

axi
(4cos(k

x
d)!3)]

#[A(1)D(1) exp(!ik(1)
z

d)#A(2)D(2) exp(!ik(2)
z

d)#A(3)D(3) exp(!ik(3)
z

d)

#A(4)D(4) exp(!ik(4)
z

d)] [1
2
Kn

axi
(cos(k

x
d)#2)!1

2
Ks

axi
cos(k

x
d)]

#[A(1) exp(!ik(1)
z

d)#A(2) exp(!ik(2)
z

d)#A(3) exp(!ik(3)
z

d)#A(4) exp(!ik(4)
z

d)]

][!1
2

iKn
axi

sin(k
x
d)#1

2
iKs

axi
sin(k

x
d)]"0,

A(1) exp(!ik(1)
z

H)#A(2) exp(!ik(2)
z

H)#A(3) exp(!ik(3)
z

H)#A(4) exp(!ik(4)
z

H)"0,

A(1)D(1) exp(!ik(1)
z

H)#A(2)D(2) exp(!ik(2)
z

H)#A(3)D(3) exp(!ik(3)
z

H)

#A(4)D(4) exp(!ik(4)
z

H)"0. (31)

Here, k(j)
z

and D(j) are given by equations (26) and (27) respectively. Relations (31) can be
expressed in a matrix}vector format as

EA"0, (32)

where E is a 4]4 matrix that governs the eigenbehaviour of the layer, and A"[A(1), A(2),
A(3), A(4)]T is the vector that assembles the wave amplitudes. The dispersion branches for
the eigenmodes can be obtained by requiring the determinant of the matrix E to be equal to
zero, which for a given set of elastic parameters gives

detE"D(u, k
x
, H, d)"0. (33)

Here, the symbol D is used for designating the determinant. For a prescribed layer thickness
H and particle diameter d, expression (33) yields a "nite number of eigenmodes

u(j)"u(k
x
)(j), j"1, 2,2,N, (34)

where the total number of modes N depends on the speci"c choice for the particle size and
the layer thickness. This will be demonstrated in a qualitative sense in sections 4.1 and 4.2.

In order to illustrate the speci"c features of the discrete layer modes, the dispersion
branches (34) will be compared to the dispersion branches for a classic elastic continuous
layer. Obviously, the dispersion branches for the continuous layer can be computed in the
same manner as shown for the discrete layer. When considering the top of the continuous
layer as stress-free, i.e., p

zz
"0, p

zx
"0, and the bottom as rigidly supported, i.e., u8

x
"0,

u8
z
"0, similar to equations (31), a set of four characteristic equations can be deduced:

AI (1)(kI (1)
z

#DI (1)k
x
)#AI (2)(kI (2)

z
#DI (2)k

x
)#AI (3)(kI (3)

z
#DI (3)k

x
)

#AI (4)(kI (4)
z

#DI (4)k
x
)"0,

![AI (1)#AI (2)#AI (3)#AI (4)]ijk
x
![AI (1)DI (1)kI (1)

z
#AI (2)DI (2)kI (2)

z

#AI (3)DI (3)kI (3)
z

#AI (4)DI (4)kI (4)
z

]i(j#2k)"0,
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AI (1) exp(!ikI (1)
z

H)#AI (2) exp(!ikI (2)
z

H)#AI (3) exp(!ikI (3)
z

H)

#AI (4) exp(!ikI (4)
z

H)"0,

AI (1)DI (1) exp(!ikI (1)
z

H)#AI (2)DI (2) exp(!ikI (2)
z

H)#AI (3)DI (3) exp(!ikI (3)
z

H)

#AI (4)DI (4) exp(!ikI (4)
z

H)"0. (35)

Here, the vector A"[AI (1), AI (2), AI (3), AI (4)]T assembles the wave amplitudes, with the
superimposed &&tilde'' indicating that a continuum is concerned. Further, the four
expressions for the wave number in the z direction kI (j)

z
are given by

kI (1),(2)
z

"$S
ou2!kk2

x
k

, kI (3),(4)
z

"$S
ou2!(j#2k)k2

x
j#2k

, (36)

while the amplitude ratios DI (j) are

DI (j)"
BI (j)
AI (j)

"

ou2!(j#2k)k2
x
!k(kI (j)

z
)2

(j#k)k
x
kI (j)
z

with j3M1, 2, 3, 4N. (37)

In correspondence with equations (36) and (37), the body wave propagation through the
continuum is expressed as

u8
x
"[AI (1) exp(!ikI (1)

z
z)#AI (2) exp(!ikI (2)

z
z)#AI (3) exp(!ikI (3)

z
z)

#AI (4) exp(!ikI (4)
z

z)] exp(i(ut!k
x
x)),

u8
z
"[AI (1)DI (1) exp(!ikI (1)

z
z)#AI (2)DI (2) exp(!ikI (2)

z
z)#AI (3)DI (3) exp(!ikI (3)

z
z)

#AI (4)DI (4) exp(!ikI (4)
z

z)] exp(i(ut!k
x
x)), (38)

which resembles equations (28) for the discrete model. Due to the complex character of
equations (31) and (35), the dispersion curves for the discrete layer and the continuous layer
can be derived only numerically. This will be done for various parameter combinations.

4.1. VARIATION OF PARTICLE SIZE

Figure 5 shows the dispersion curves for the four lowest eigenmodes of the discrete layer
(solid lines) and the continuous layer (dashed lines). The dispersion branches for
a continuous layer have been previously discussed by other authors (see, for example,
references [7, 20, 21]), though in these contributions, instead of using the actual
displacements, displacement potentials were employed. The particle radius in the discrete
model has been chosen relatively small, r"0)5 d"1 mm, while the layer thickness is
assumed as H"300 mm. The elasticity parameters and the material density correspond to
the values introduced in section 3, i.e., E"200 MPa, l"0)20, o"1800 kg/m3. Due to
symmetry with respect to k

x
"0 and u"0, only the positive wave number axis and

positive frequency axis have been depicted.
Due to the small particle size, in the domain considered the dispersion curves of the

discrete layer and the continuous layer closely agree. Apparently, for both the discrete layer
and the continuous layer it looks as if the individual dispersion curves locally intersect.
However, because the eigenmodes of the layer are coupled, the individual dispersion curves
may approach each other very closely, but there will never be any contact.



Figure 5. Dispersion branches for the four lowest eigenmodes of the discrete layer (==, r"1 mm,
H"300 mm) and the continuous layer (- - - - -, H"300 mm).
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For the continuous layer, the total number of eigenmodes is in"nite. This is di!erent for
the discrete layer, which has a "nite number of eigenmodes as a result of the frequency
"ltering by the discrete particles. The highest layer mode possible approaches the
upper-frequency curve of the compression body wave. In fact, in the frequency range where
body waves cannot be transmitted, layer modes also cannot emerge. Although in Figure (5)
only the four lowest modes are depicted, actually a very large number of layer modes exists.
This is, since for a relatively small particle radius of r"1 mm, the bounding behaviour by
the upper frequency curves for the body waves occurs in the very high-frequency range.
However, by increasing the particle size to r"50 mm, the upper-frequency curves for the
body waves considerably descend along the frequency axis, causing the total number of
modes to be reduced to only six modes. This is shown in Figure 6, in which the layer
dispersion curves have been plotted together with the body wave dispersion curves. Here,
the characteristic limitation of the layer modes by the envelope of the high-frequency body
wave curves is clearly illustrated. It can also be noticed that at the end of the "rst Brillouin
zone, k

x
d"n, all dispersion curves show a horizontal tangential slope. The zero group

velocity at this stage implies that no wave energy is conveyed anymore, so that the modes
degenerate into a standing wave.

As for the body wave dispersion curves, the dispersion curves for the eigenmodes of the
layer are periodic with respect to the Brillouin zones, i.e.,

u(k
x
)(j)"u(k

x
#2nn/d)(j), where n3Z, (39)

with j the mode number and n an arbitrary integer. For reasons mentioned previously, the
eigenmodes have no clear physical meaning for wave lengths smaller than two times the
particle diameter. In Figure 6, this minimum admissible wavelength is re#ected by
a maximum admissible wave number kmax

x
"n/d+31)4/m, which thus borders the "rst

Brillouin zone.

4.2. VARIATION OF LAYER THICKNESS

For investigating how the characteristics of the layer modes are in#uenced by the layer
thickness, the layer thickness is increased from 300 to 600 mm while keeping the particle



Figure 6. Dispersion branches for the eigenmodes (==) and the body waves (- - - - -) of the discrete layer
(r"50 mm, H"300 mm).

Figure 7. Dispersion branches for the eigenmodes (==) and the body waves (- - - - -) of the discrete layer
(r"50 mm, H"600 mm).
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radius constant, r"50 mm. Figure 7 shows that the total number of layer modes then
increases from 6 to 12. The reason for the increasing number of layer modes is that a thicker
layer reduces the frequencies of the modes, thereby causing more modes to be captured in
the domain bordered by the envelope of the high-frequency body wave curves.

The current parameter study has demonstrated that the magnitude of the minimum
admissible wavelength depends only on the size of the particles. On the other hand, the total
number of layer modes is determined by both the particle size and the layer thickness.
Because there are two length-scale parameters involved in the layer model, it is not possible
to normalize the dispersion curves for arbitrary length-scale parameters into one unique
graphical representation, as often is done for a continuous layer that contains only one
length-scale parameter (see, for example, reference [20]).
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5. CONCLUSION

In this paper, the harmonic body wave propagation as well as the eigenmodes for a layer
of discrete particles have been analyzed. The discrete character of the layer has been
modelled by a square lattice, consisting of individual cells that are connected by
longitudinal springs and shear springs. After deriving the equations of motion for a lattice
cell, the propagation characteristics of the harmonic body waves have been elaborated. It
has been demonstrated that the dispersive behaviour of the body waves becomes more
pronounced for shorter wavelengths, as a result of the discrete nature of the layer. The
particles thereby cause the higher frequencies to be retained. This feature does not appear
during wave propagation through a continuous medium.

It has been shown that a discrete layer has a limited number of eigenmodes. This number
is determined by the size of the particles in combination with the thickness of the layer.
More speci"cally, a larger (smaller) particle size decreases (increases) the number of
eigenmodes, while a larger (smaller) layer thickness increases (decreases) the number of
eigenmodes. Further, for smaller particles the dispersion curves for the discrete layer
approach the dispersion curves for a continuous layer more closely.

In the companion paper, the response of the discrete layer to a moving, harmonically
vibrating load will be investigated. This analysis re#ects the dynamic behaviour of a layer of
ballast particles subjected to an instantaneous train axle passage.
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