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1. INTRODUCTION

Free vibration and stability behaviour of uniform beams with non-linear elastic end
rotational restraint were studied using finite element formulation [1]. For economic and
efficient use of material, tapered beams with their near-optimum configuration are
effectively used in weight-sensitive space applications of launch vehicle and spacecraft
structures. Free vibration characteristics of tapered beams with linear end rotational
restraints have been studied by many researchers [2-5]. However, the effect of the
non-linear rotational springs on the free vibration behaviour of tapered beams is not readily
available in the literature. In continuation of the earlier work [1], the free vibration
behaviour of tapered beams with simply supported condition and non-linear end elastic
restraints against rotation are studied using the standard finite element formulation.
Essentially, the problem addressed presently is a non-linear eigenvalue problem and can be
solved, in general, by using a simple iterative technique. If the beam has identical non-linear
springs at the ends, the solution can be obtained directly without resorting to any iteration.
However, if the rotational springs at the ends have different stiffnesses, the iterative method
of solution has to be employed. Numerical results are obtained for both identical and
different rotational springs at both ends of the beam and are presented in the form of tables.
A brief description of the finite element formulation and the iterative method is given below
followed by results and discussion.

2. FINITE ELEMENT FORMULATION

Following reference [1] and generalizing the formulation to consider the variation of
geometry along the length of the beam, energy functional © can be written for a tapered
beam of length L, moment of inertia I and area of cross-section A and Young’s modulus E,
with non-linear rotational end restraints at the ends A and B (Figure 1) as
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M, and Mj are the moments at the ends and a4, i1, o, and f3, are the constants which
determine the spring behaviour, p is the mass density and w is the circular frequency. It can
be interpreted from equations (2) and (3) that oy, «, and f{, 5, are the linear and non-linear
parts of rotational end restraints respectively. I, and A, are the moment of inertia and area
of cross-section at the ends of the beam and d; and d,, are depths of the beam at the centre
and the ends. The depth is considered to vary linearly while the breadth is maintained
uniform as shown in Figure 1.

Non-dimensionalizing the length dimensions with respect to L and taking the first
variation of equation (1), and equating it to zero we get

1 1
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0 0

+[o, W W' + 2B, W3W oo + [ W OW' + 2B, W3W ] x=1=0. (7)

The parameters I, 4, J, 2, &,, f; and B, in equation (7) will be defined later.
Expressing W in terms of the shape functions N; and nodal displacements {W;} as

W =[Ni] {Wi}- @®)

Iy dy, Ay I.d, A I, do, A,

| L |
e {FH

Figure 1. A tapered beam with a non-linear rotational end restraint.
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Equation (7) becomes
1 1

om = [ TORJTINITING (03] 0 — 2 | A (W [N [N (oW ax
0 0

+ [ W W + 2B, W2 {0W il lx=o + [ W {OW} + 2B, W {Wi}1x=1 = 0. (9)

After taking transpose, equation (9) can be written as

1

oW [ | TINTT NG X — [ Arvr v ax

0 0
+ (& 4+ 2B Wx—0 + (G2 + 2B W)x=1] (W =0, (10)

where A is the frequency parameter (defined as p Agw?* L*/EI,). I = I/I, (I is defined by
equation (4)), A = A/A, (A is defined by equation (5)), W = w/L and X = x/L.

In equation (10) the first term denotes the elastic stiffness matrix and the second term
denotes the mass matrix, the third and fourth terms are the equivalent spring stiffness
coefficients (where &, = oy L/EI, &, = a,L/EI, By = p;L/EI and f, = B,L/EI) which
have to be added to the corresponding diagonal terms of the stiffness matrix.

The matrix equation governing the free vibration after the usual assembly of element
matrices can be written as

[[KW")]—2[MI]{W} =0. (11)

Equation (11) can be solved to obtain eigenvalues and eigenvectors using any standard
algorithm. It is to be noted that the assembled stiffness matrix contains terms consisting of
W' because of the non-linear part of the rotational elastic restraint. However, as has already
been mentioned, these non-linear terms appear at two discrete similar points only, i.e., at
X =0and 1. In the case of springs of same stiffness parameters (with same & and f) at both
ends, any specific W' value can be assumed directly in the stiffness matrix and equation (11)
can be solved and no iteration on the solution is necessary. However, if the spring
parameters are not identical at the ends, the following iterative method of solution is to be
followed to solve equation (11).

3. ITERATIVE METHOD OF SOLUTION

The main steps of the iterative method are

(a) All the W’ terms in the stiffness matrix are neglected in equation (11) and the resulting
eigenvalue problem is solved to obtain the eigenvalue and eigenvector.

(b) The eigenvector obtained is scaled up so that the value of W' is equal to a prescribed
value of W at the end A. It may be noted here that at this stage the value of WY at the
end B also will be the same as W’ at the end A.

(c) The spring stiffness values are updated corresponding to the values of W} and W7,.

(d) These updated spring stiffness values are added to the corresponding diagonal terms of
the elastic stiffness matrix to get an updated stiffness matrix.

(e) Using the updated stiffness matrix in equation (11) the eigenvalue and the eigenvector
are obtained
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() Steps (b)—(e) are repeated till the value of W’ converges to a specified accuracy (10~ # in
the present study).
(g) Steps (a)—(f) are repeated for different values of W at the end A.

4. NUMERICAL RESULTS AND DISCUSSION

By using the finite element formulation described in the previous section, fundamental
frequencies of tapered beams with non-linear end elastic rotational restraints have been
evaluated. For the symmetric configuration, i.e., identical non-linear springs at the ends,
only one-half of the beam is considered and idealized into 10 elements of equal length based
on convergence studies. The beam is of rectangular cross-section with linearly varying
depth taper as shown in Figure 1. The frequency parameters (1) are presented for the depth
ratio (d = d,/d,) ranging between 1-0 and 1-5 in steps of 0-1. Various values of &( = &,
=d,) and f( = B, = B,) and four values of W, (= W3) specified at the two ends A and
B are considered for the numerical computations. This problem involves only one
rotational spring and it is sufficient to use the value of the prescribed rotation W along
with spring constants & and /3 in the elastic stiffness matrix and solve the eigenvalue problem
to get the frequency parameter.

The results are presented in Tables 1-6. It can be observed from these tables that the
frequency parameter /. is mainly governed by & for small values of . The effect of
non-linearity is predominant when & is small and  and W/ are large. As expected, 1 is

TaBLE 1

Variation of frequency parameter . with & f and W' for d = d,/d, = 1-0

x B W' (deg)
0-5 1-0 1-5 2:0
0-0 0-0 97-41 97-41 97-41 97-41
10 97-42 97-43 97-46 97-51
10-0 97-47 97-65 97-95 98-37
100-0 98-01 99-80 102:75 106-81
1000-0 103-34 120-14 145-26 175-41
01 00 101-32 101-32 101-32 101-32
1-0 101-33 101-34 101-37 101-41
100 101-38 101-56 101-85 10226
100-0 101-91 103-67 106-56 110-55
1000-0 107-14 123-63 14831 17798
1-0 0-0 133-45 133-45 133-45 133-45
10 13345 133-47 13349 133-53
10-0 133-50 133-65 133-90 134-24
100-0 13395 135-44 13790 141-29
1000-0 138:39 152-46 173-68 199-45
10-0 0-0 298-24 298-24 298-24 298-24
1-0 298-24 298-24 29825 298-26
100 29825 298:30 298:38 29848
100-0 298-39 298-85 299-62 300-68

1000-0 29977 304-24 311-26 32029
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TABLE 2
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x B Wi (deg)
0-5 1-0 1-5 2:0
0-0 0-0 111-35 111-35 111-35 111-35
1-0 111-35 111-37 111-40 111-44
10-0 111-41 111-58 111-87 112-28
100-0 111-93 113-67 116-54 120-48
10000 11710 13347 15807 18781
01 0-0 115-14 115-14 115-14 115-14
1-0 11515 11517 11520 11524
10-0 11520 115-37 115-66 116:06
100-0 11572 117-42 120-24 124-12
1000-0 120-80 136-88 161-07 190-36
1-0 0-0 146-48 146-48 146-48 146-48
1-0 146-49 146-50 146-53 146-56
10-0 146-53 146-68 146-92 147-27
100-0 14697 148-43 150-85 154-18
10000 15133 16516 18610 21169
10-0 0-0 311-51 311:51 31151 311-51
1-0 311-52 311-52 311-53 311-54
10-0 311-53 311-58 311-66 31177
100-0 311:67 312:15 31293 314-02
1000-0 313-09 317-67 324-88 33418
TABLE 3
Variation of frequency parameter i with &, B and W'y for d = d,/dy = 1-2
a B W' (deg)
0-5 1-0 1-5 2:0

0-0 0-0 12577 12577 12577 12577
1-0 125-77 125-79 125-82 125-86
10-0 125-83 126-00 126-28 126-68
100-0 126-34 128-03 130-82 134-67
10000 131-38 147-36 171-531 200-89
0-1 0-0 129-47 129-47 129-47 129-47
1-0 129-47 129-49 129-52 129-56
10-0 129-52 129-69 129-97 130-36
100-0 130-03 131-69 134-44 138-22
1000-0 134-98 150-70 174-47 20342
1-0 0-0 160-12 160-12 160-12 160-12
1-0 160-12 160-14 160-16 160-19
10-0 160-17 160-31 160-55 160-89
100-0 160-60 162-03 164-40 167-68
1000-0 164-88 178-49 199-20 224-64
10-0 0-0 32545 32545 32545 32545
1-0 32545 32546 32546 32548
10-0 325-47 32551 325-60 32571
100-0 32561 32610 32690 32801
10000 327-06 33175 33915 34870
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TaBLE 4

Variation of frequency parameter . with &  and W' for d = d,/dy = 1-3

7 B W' (deg)
0-5 10 1-5 20
00 00 140-65 140-65 140-65 140-65
10 140-66 140-67 140-70 140-74
10-0 140-71 140-87 141-15 141-54
100-0 141-21 142-86 145-59 149-35
1000-0 146-13 161-78 185-52 214-59
01 00 144-26 144-26 144-26 144-26
10 144-27 144-29 144-31 144-35
100 144-32 144-48 144-76 145-14
100-0 144-81 146-44 149-12 152-83
1000-0 149-65 165-06 188-44 217-10
1-0 00 174-31 174-31 174-31 174-31
1-0 174-31 174-33 174-35 174-38
100 174-36 174-50 17473 175-06
100-0 174-78 176-19 178-53 181-75
1000-0 17899 192-42 21291 23822
10-0 00 339-99 339-99 339:99 339-99
1-0 339-99 339:99 340-00 34001
100 340-00 340-05 340-14 340-25
100-0 340-15 340-65 34147 34261
1000-0 341-63 346-43 354-00 363-81
TABLE 5
Variation of frequency parameter A with &, § and W' for d = d,/d, = 1-4
o B W' (deg)
0-5 1-0 1-5 20

00 00 15598 15598 15598 15598
1-0 15599 156-00 156-03 156-07
10-0 156-:04 156-20 156-47 156-85
100- 156:52 158-14 160-81 164-50
1000-0 161-34 176-70 200-08 228-86
01 00 159-52 159-52 159-52 159-52
10 159-52 159-54 159-57 159-60
10-0 159-57 159-73 160-00 160-37
100- 160-05 161-64 164-28 16791
1000-0 164-80 179-92 202-97 231-36
1-0 00 189-02 189-02 189-02 189-02
10 189-03 189-04 189-06 189-10
100 189-07 189-21 189-44 189-77
100- 189-49 190-88 193-18 196:36
1000-0 193-64 206-89 22720 252-40
10-0 00 355-08 355-08 355-08 355-08
1-0 355-08 35509 35510 35511
100 35510 35515 35523 35535
100- 35525 35576 356-59 35775
1000-0 356-76 361-66 369-40 37945
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TABLE 6

Variation of frequency parameter . with &  and W' for d = d,/dq = 1-5

o B W (deg)
0-5 1-0 1-5 2:0
0-0 0-0 171-74 171-74 171-74 171-74
1-0 171-75 171-76 171-79 171-83
10-0 171-79 171-95 172-22 172-59
1000 17227 17386 17648 18010
10000 177-00 19209 215-16 243-68
0-1 0-0 17521 17521 17521 17521
1-0 17521 17523 175-26 175-29
10-0 175-26 175-42 175-68 176-05
100-0 17573 177-30 179-88 183-45
10000 180-39 195-26 21801 246:16
1-0 0-0 204-23 204-23 204-23 204-23
1-0 204-24 204-25 204-28 204-31
10-0 204-28 204-42 204-65 20497
100-0 204-69 20607 208-34 211-47
10000 208-79 221-89 242-03 26713
10-0 0-0 370-70 370-70 370-70 370-70
1-0 370-70 370-71 370-71 370-73
10-0 37072 37077 370-85 37097
100-0 370-87 371-38 372-24 373-42
10000 372:41 377-40 38531 395-58
TABLE 7

Variation of frequency parameter i and W' with oy, By, 6z, B2, and W' for d = d,/d, = 1'5

oy B W ) B, A W
(deg) (deg)
01 10 2:0 01 10 17529 2:0
01 1-0 20 01 100 17532 1998
01 1-0 2:0 1-0 100 189-42 1-801
01 100 2:0 01 10 17532 2:010
01 100 2:0 01 100 176:05 2:0
01 100 2:0 10 100 189-82 1-806
1-0 100 2:0 01 10 189-44 2:238
1-0 100 20 01 100 18993 2:229
1-0 100 2:0 1-0 100 20497 2:0

found to increase with increase in depth parameter. For smaller values of &, A increases with
increasing d and the increase is about 10-14% with each 0-1 step increase of d, whereas for
higher values of &, 4 increases by about 4.4%. The percentage increase is more (14%) when
d values are small (1-0-1-1, 1-1-1-2) and is about 10% when d values are large (1-4-1-5).
For unsymmetrical configuration, i.e., the two end rotational springs having different
spring constants, the full beam is idealized into 20 equal finite elements (full beam is
considered due to unsymmetric restraints) and an iterative solution scheme, explained in the
previous section is followed. Input to this case is &y, B, W', &, and f3,. The value of /. and W’
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of the tapered beam for a depth ratio of 1-5 are given in Table 7. The results converged to
a specified accuracy of 10~ in two iterations. As a check on the iterative scheme some
typical cases, when &, = &, and f; = f, with W’ have been solved and the solution, as
expected converged in one iteration with the value of W', obtained coinciding with W' and
the 4 value coinciding with the value given in Table 6. It can be seen from Table 7 that for
a given W, the value of W is either greater or less than W depending upon whether the
equivalent spring stiffness at the end B is smaller or larger than that at the end A.
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APPENDIX A: NOMENCLATURE

Ao area of cross-section at the ends of the beam
A area of cross-section at any section of the beam
b breadth of the beam

do depth at the ends of the beam

dy depth at the centre of the beam

d dy/do

E Young’s modulus

I moment of inertia at any section of the beam
[K] elastic stiffness matrix

L length of the beam

[M] mass matrix

M, Mg moments at the ends of the beam

[N:] shape functions

w displacement

w w/L

X axial co-ordinate

X x/L

oy, Oy spring stiffness coefficients

oy = oy L/(EI)

O_Cz = szL/(EI)

B1, B2 spring stiffness coefficients

B, = B L/(EI)

B> = B, L/EI)

P mass density

n energy functional

A frequency parameter (pAow? L*)/(El,)

Superscripts

, differentiation with respect to x
T transpose
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