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Longitudinal impact analysis for slender rods has fascinated many famous scientists for
hundreds of years. For a rod with uniform cross-sectional area along its length, analytical
results about the longitudinal wave propagation of the rod impacting a rigid wall or
impacted by a rigid body are well known. However, for a rod with variable cross-sectional
area, there exist only a few analytical results in the literature. Since the study of conical rods
has recently attracted some interest in various "elds, the impact analysis for a conical rod
falling against the rigid ground is discussed in this paper in detail and some symbolical
results computed by computer algebra are presented. These analytical results are exact and
may be used to validate the numerical programs using the "nite element method or the
boundary element method, too. It is also shown that in contrast to rigid-body collision
theory, the geometrical shape of rods plays an important role in impact dynamic.

( 2001 Academic Press
1. INTRODUCTION

Longitudinal impact analysis has fascinated many famous scientists for hundreds of years
and the research results for cylindrical rods or rods with uniform cross-sectional area along
their length were reviewed by Goldsmith [1], Gra! [2] and Al-Mousawi [3]. In contrast to
cylindrical rods, however, only a few investigations were performed for conical rods (see the
books by Kolsky [4] and Gra! [2]). One reason for this fact is that the wave equations
governing conical rods are partial di!erential equations with variable coe$cients due to
variable cross-sections of the rods. However, due to the limitation in computing in former
times it was not possible to derive analytical solutions, and, e.g., Kolsky's book [4] from
1963 had to stop with the statement of the di!erential equations for in"nitely long rods
without wave re#ections. Today, people are able to further move the frontier of knowledge
using state-of-the-art computer algebra systems and a whole new "eld of research opens up
extending and improving old theories and developing new ones by using these modern
computer-aided tools. Recently, it was pointed out that an analysis of conical rods is
important, e.g., to the study of foundations, see references [5}7], and to the study of
composite structures subjected to high-velocity impact [8]. While we explicitly do not want
to focus this paper on these applications (which may be well treatable by FEM), interesting
ideas may be found in these areas of research concerning the wave propagation (see, e.g.,
references [9, 10] ). E!ects like friction or material damage should not be considered in this
paper which is focussed on the wave propagation. In both of the mentioned applications,
the dynamic response of a half-plane to a surface load can be determined using a cone
model. Hence, vibration of a conical rod was analytically investigated by Abrate [11] and
0022-460X/01/060041#17 $35.00/0 ( 2001 Academic Press



42 B. HU E¹ A¸.
Kumar and Sujith [12]. Based on their investigations about the vibration, the wave
propagation in a conical rod due to longitudinal impacts is further discussed in this paper.

The wave propagation in a conical rod was to our knowledge "rst investigated by
Landon and Quinney [13]. They studied the problem analytically for an in"nite cone of
small angle by solving the one-dimensional wave equation for a pulse moving away from
the apex. For a "nite conical rod where the wave re#ection must also be considered, there
exist to our knowledge no analytical results for the wave propagation. An experimental
investigation for stress wave propagation in a cylindrical bar with a conical end hitting
a rigid wall was presented by Suh [14]. For simulation of wave propagation in a cylindrical
rod hitting the rigid ground, Shi [15] presented analytical iterated formula where
succeeding impacts were also considered. However, the calculation of the supremum in the
formula is time-consuming.

In this paper, "rst the wave equation for a conical rod falling against the rigid ground is
described. It is shown that the wave propagation in the conical rod can be described by two
one-dimensional functions representing the waves moving forward and backward in the
rod. Then, some ordinary di!erential equations with time delay are derived to determine
these two complicated functions, which are then solved with the computer algebra system
MAPLE. The re#ections of the waves are fully considered and the contact/separation states
are treated correctly. Further, a numerical example is used to show the strong in#uence of
the geometrical shape of the rods on the impact behavior. Finally, some conclusions are
drawn.

2. MATHEMATICAL MODEL

A conical rod under consideration is homogeneous and linearly elastic. It has Young's
modulus E and density o. Its length is ¸ and the radius of the cross-section of the conical
rod is variable (see Figure 1). The radius at distance x from the lower end of the rod is
denoted by r (x) and one can use the abbreviations

r
1
"r(0), r

2
"r(¸), a"tan/"(r

2
!r

1
)/¸. (1)

Then, the radius of the conical rod at distance x is

r (x)"r
1
#ax (2)
Figure 1. Geometric description of a conical rod.
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and the cross-sectional area of the conical rod at distance x is given by

A(x)"nr2(x)"n (r
1
#ax)2. (3)

The axial displacement and stress in a conical rod at position x and time t are denoted by
u(x, t) and p(x, t) respectively. The following relations are used for the velocity:

v (x, t)"uR (x, t)"
Lu(x, t)

Lt
(4)

and the strain

e (x, t)"
Lu (x, t)

Lx
. (5)

The material is described by Hooke's law for linear elasticity:

p (x, t)"Ee(x, t). (6)

It is assumed that the rod is slender so that its transverse motions can be neglected. The
struck ground is rigid and remains at rest during the impact. The contact surface is
supposed to be perfectly planar so that St. Venant's contact theory can be used. The
resistant force of the air acting on the rod is neglected. According to these assumptions, the
governing equation for the longitudinal wave of the rod is an inhomogeneous partial
di!erential equation with varying coe$cients,

oA (x)
L2u (x, t)

Lt2
"

L(A(x)p (x, t))

Lx
!oA(x)g, (7)

where g is the gravitational acceleration. Using equation (3) yields the wave equation for the
conical rod,

L2u(x, t)

Lt2
"c2

L2u(x, t)

Lx2
#

2ac2

r (x)

Lu (x, t)

Lx
!g, (8)

where the material parameter c"JE/o is the wave propagation velocity. At the beginning
of the impact, which is denoted by the time t"0, the rod has uniform velocity along its
length and the displacement is zero, i.e.,

u (x, 0)"0, v(x, 0)"!v
0
. (9)

Since the upper end of the rod is free, the stress at x"¸ always vanishes and one obtains
the boundary condition for the upper end of the rod:

Lu (¸, t)

Lx
"0. (10)

For the lower end of the rod, one gets di!erent boundary conditions during the impact and
during the free #ight. During the impact, the displacement and the velocity at the lower end
remain zero:

u(0, t)"0, v (0, t)"0. (11)
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On the contrary, during the free #ight, the stress at the lower end remains zero,

Lu(0, t)

Lx
"0. (12)

Now the wave equation (8), the initial conditions (9) and the boundary conditions (10) and
(11) or (12) are available. Therefore, the mathematical model for the impact problem of
a conical rod striking the rigid ground is completely stated.

The wave equation (8) is a non-homogeneous linear partial di!erential equation with
variable coe$cients. Multiplying equation (8) by r (x), one can rewrite this equation in the
form

L2(r(x)u (x, t))

Lt2
"c2

L2(r(x)u (x, t))

Lx2
!gr(x) (13)

as shown by Abrate [11]. In order to make all quantities dimensionless, the variables

q:"
ct

¸

and m :"
x

¸

(14)

are introduced. They denote the dimensionless time and position respectively. Moreover,
the dimensionless displacement

; (m, q) :"
1

¸

u (x, t) (15)

and the dimensionless radius of the rod

r*(m) :"
1

¸

r(x)"
r
1
#ax

¸

"

r
1
¸

#am (16)

are de"ned. This yields the strain and velocity

Lu(x, t)

Lx
"

L;(m, q)
Lm

and
Lu(x, t)

Lt
"c

L;(m, q)
Lq

. (17)

Furthermore, the abbreviation

u*(m, q) :"r*(m);(m, q) (18)

is introduced. Then, the wave equation (13) turns into

L2u*(m, q)
Lq2

"

L2u*(m, q)
Lm2

!br*(m) , (19)

where the constant b is given by

b :"
g¸

c2
. (20)
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Di!erentiating equation (18) with respect to m yields

Lu*(m, q)
Lm

"r*(m)
L;(m, q)

Lm
#a;(m, q). (21)

From equations (10), (17) and (21), the boundary condition for the upper end of the rod
follows:

Lu*(1, q)
Lm

"a;(1, q)"bu*(1, q) with b :"
a¸
r
2

. (22)

Similarly, one can rewrite the boundary condition for the lower end of the rod during the
impact as

u*(0, q)"0,
Lu*(0, q)

Lq
"0 (23)

and during the free #ight as

Lu*(0, q)
Lm

"a;(0, q)"au*(0, q) with a :"
a¸
r
1

. (24)

Using equation (9) yields the initial conditions for the wave equation (19):

u*(m, 0)"0 and
Lu*(m, 0)

Lq
"!

v
0
c

r*(m) for 0)m)1. (25)

The new wave equation (19) is still a non-homogeneous linear partial di!erential equation
but now with constant coe$cients. According to linear system theory, the solution of the
wave equation u*(m, q) can be expressed as a sum of a general homogeneous solution u*

g
(m, q)

and a particular solution u*
p
(m, q),

u*(m, q)"u*
g
(m, q)#u*

p
(m, q). (26)

The general homogeneous solution u*
g

satis"es the homogeneous equation

L2u*
g
(m, q)

Lq2
"

L2u*
g
(m, q)

Lm2
, (27)

and, due to D'Alembert, can be expressed by using two one-dimensional real functions
f
1

and f
2
:

u*
g
(m, q)"f

1
(q!m)#f

2
(q#m). (28)

The function f
1
(q!m) represents the wave moving forward and the function f

2
(q#m)

represents the wave moving backward. The particular solution u*
p

can be chosen arbitrarily,
however, it must satisfy the wave equation (19). The particular solution

u*
p
(m, q)"!1

2
br*(m)q2 (29)

is chosen. Using equations (26), (28) and (29) yields

u*(m, q)"f
1
(q!m)#f

2
(q#m)!1

2
br*(m)q2. (30)
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Now, the two functions f
1

and f
2
must be determined according to the initial conditions and

the boundary conditions of the rod. Di!erentiating equation (30) with respect to the time
q yields

Lu*(m, q)
Lq

"f @
1
(q!m)#f @

2
(q#m)!br*(m)q, (31)

where f @
1

and f @
2

denote the derivatives of f
1

and f
2

with respect to their arguments. Using the
initial conditions (25), i.e., q"0, equation (31) yields

f @
1
(!m)#f @

2
(m)"!

v
0
c

r*(m) for 0)m)1. (32)

Integrating this equation yields

!f
1
(!m)#f

2
(m)"!lAa1m#

a
2

m2B#C
1
, (33)

where the abbreviations l and a
1

denote

l"
v
0
c

and a
1
"

r
1
¸

. (34)

Moreover, from equations (25) and (30) it follows that

f
1
(!m)#f

2
(m)"0. (35)

From the sum and the di!erence of equations (33) and (35), one obtains for 0)m)1

f
1
(!m)"

l
2 Aa1m#

a
2

m2B!
C

1
2

, (36)

f
2
(m)"!

l
2 Aa1m#

a
2

m2B#
C

1
2

. (37)

The constant C
1

can be set to any value since it has no in#uence on the displacement
u*(m, q). For simplicity, C

1
can be set to zero. Moreover, for the two one-dimensional

functions f
1

and f
2
, one can arbitrarily choose their argument variables, for instance, the

function f
1
(z)"sin z for 0)z)1 and the function f

1
(y)"siny for 0)y)1 are the same

function even though they have di!erent arguments z and y; the important point is only the
mapping &&sinus'' for the interval [0, 1]. Since the quantities m and q have a well-de"ned
physical meaning and the arguments of the functions f

1
and f

2
depend on both quantities

m and q, a neutral variable y as the argument of the both functions f
1

and f
2

is preferable.
Equations (36) and (37) can be rewritten in the form

f
1
(y)"

l
2 A!a

1
y#

a
2

y2B for !1)y(0, (38)

f
2
(y)"!

l
2 Aa1y#

a
2

y2B for 0)y(1. (39)
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The function f
1
(y) is de"ned now in the interval !1)y)0 and f

2
(y) for 0)y)1 due to

the initial conditions of the rod. Furthermore, these functions in other intervals will be
determined also by using the boundary conditions. The boundary condition (22) at the
upper end of the rod and equation (30) results in the di!erential equation

!f @
1
(q!1)#f @

2
(q#1)"b ( f

1
(q!1)#f

2
(q#1)). (40)

Upon replacing (q!1) by y in equation (40), an ordinary di!erential equation with time
delay

f @
2
(y#2)!f @

1
(y)!b( f

2
(y#2)!f

1
(y))"2bf

1
(y) (41)

is obtained to determine f
2
(y#2) from f

1
(y). If the function f

1
in the interval [!1, y] is

known, then the function f
2

in the interval [1, y#2] can also be computed by solving
equation (41). Now the function f

1
needs to be determined. Using the boundary condition

(23) at the lower end of the rod during the impact and equation (30) yields

f
1
(q)#f

2
(q)!1

2
a
1
bq2"0. (42)

Replacing q in equation (42) by y, one obtains

f
1
(y)"!f

2
(y)#1

2
a
1
by2 (43)

during the impact. Since the function f
1
(y) is already de"ned in the interval [!1, 0] by

equation (38) and f
2
(y) in the interval [0, 1] by equation (39), using equation (43), one can

compute the function f
1
(y) in the interval (0, 1) and using equation (41), one can obtain the

function f
2
(y) in the succeeding interval y3 (1, 2). Then, using equation (43) once more, one

can further calculate the function f
1
(y) in the interval (1, 2). Repeating this process, one can

get the functions f
2
(y) and f

1
(y) in the succeeding intervals with length 1 as long as the rod

and the ground remain in contact.
One remaining problem now is to determine the duration of contact t

c
. Due to equations

(5), (6), (7) and (21), the stress is described by the dimensionless time q and position m given
by

p (m, q)"E
L; (m, q)

Lm
"

E

r*(m) C
Lu*(m, q)

Lm
!a;(m, q)D. (44)

Due to equations (11) and (30), during the impact the stress at the lower end is

p (0, q)"
E

r
1

Lu*(0, q)
Lm

"

E

a
1

[!f @
1
(q)#f @

2
(q)!1

2
baq2]. (45)

Using equations (38), (39) and (45), yields for 0)q(1

p(0, q)"!

E

a
1

[l (a
1
#aq)#a

1
bq#1

2
baq2](0, (46)

which means that the duration of contact t
c
must be greater then ¹ :"¸/c, i.e., the time

taken by a wave to travel once the length of the rod. Therefore, before the wave moving
forward is re#ected at the upper end of the rod, the lower end of the rod surely remains in
contact with the ground. As the stress p (0, q) at the lower end of the rod is equal to zero at
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the instance q"q
c
and for q'q

c
the stress becomes tensile, the contact ends. The duration

of contact corresponding to the dimensionless time q
c
is

t
c
"q

c

¸

c
"q

c
¹. (47)

During the free #ight, the boundary condition (23) at the lower end of the rod is no longer
valid. Instead, the boundary condition (24) should be used. The wave equation (19) and the
boundary condition (22) at the upper end of the rod, however, remain true. The
displacement u*(m, q) still is as given in equation (30) and the function f

1
(y) is already

available for !1)y)q
c
and f

2
(y) is available for 0)y)q

c
#1, but for q'q

c
equation

(43) is no longer valid.
Using equation (30) and the boundary condition (24) at the lower end of the rod yields the

di!erential equation

!f @
1
(q)#f @

2
(q)"a[ f

1
(q)#f

2
(q)] (48)

during the free #ight. During the impact, equation (43) is used to determine the function
f
1
(y) from f

2
(y). During the free #ight, equation (48) must be used instead of equation (43).

The recursive process for computing the two functions f
1
(y) and f

2
(y) is similar to the

process during the impact.
As the displacement u (0, t) at the lower end of the rod is equal to zero again, the impact

begins once more. In the same way, the succeeding impacts and the following motions in the
air may be computed.

3. SYMBOLICAL COMPUTATION

The wave propagation in the conical rods resulting from the impact of its lower end
hitting the rigid ground can be solved symbolically by using a computer algebra
system such as MAPLE [16]. From the above mathematical description of the problem,
it can be seen that the main task remaining for the wave propagation analysis is to get
the two functions f

1
(y) and f

2
(y). For their computation, two points should be emphasized.

The "rst point is that due to the impact at the instant t"0 and the succeeding wave
re#ections, the functions f @

1
(y) and f @

2
(y) at points y"0, 1, 2,2 are not continuous while the

functions f
1
(y) and f

2
(y) at these points are still continuous. The other point is that the

duration of contact is unknown. As the lower end of the rod has di!erent boundary
conditions during the impact and during the free #ight, the duration of contact q

c
must be

determined.
Since the functions f @

1
(y) and f @

2
(y) at y"0, 1, 2,2 are not continuous, they must be

computed piecewisely. The univariant variable y can be decomposed into a couple (n, z)
with

n"[y]3N and z"y![y]3 (0, 1), (49)

where [y] means the maximal integer not greater than y and N is the set of all integers. The
variable z is the decimal part of y and is always non-negative. The mapping between y and
the couple (n, z) is a one-to-one mapping. Then, the functions f

1
(y) and f

2
(y) can be

expressed with the two variables n and z:

f
1
(y)"f *

1
(n, z) and f

2
(y)"f *

2
(n, z). (50)
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To determine the functions f *
1

(n, z) and f *
2

(n, z), the recurrence relations for integer n3N
are needed. Solving the di!erential equation (41) with the initial condition at y"n yields

f
2
(y#2)"f

1
(y)#[ f

2
(n#2)!f

1
(n)] eb(y~n)#2bebyP

y

n

e~by f
1
(y) dy. (51)

Using the functions f *
1

and f *
2

, turns it into

f *
2

(n#2, z)"f *
1

(n, z)#[ f *
2

(n#2, 0)!f *
1

(n, 0)]ebz#2bebzP
z

0

e~bzf *
1

(n, z) dz. (52)

Due to the continuity of the function f
2
(y), it holds true that

f *
2

(n#2, 0)"f *
2

(n#1, 1). (53)

Therefore, a recurrence relation from the function f *
1

(n, z) and the available quantity
f *
2

(n#1, 1) is obtained to determine the next function f *
2

(n#2, z). It yields that

f *
2

(n#2, z)"f *
1

(n, z)#[ f *
2

(n#1, 1)!f *
1

(n, 0)]ebz#2bebzP
z

0

e~bzf *
1

(n, z) dz. (54)

During the impact, from equation (43) there follows another recurrence relation to
determine f *

1
(n, z) from f *

2
(n, z):

f *
1

(n, z)"!f *
2

(n, z)#1
2
a
1
b (n#z)2. (55)

Using equations (38) and (39) yields the functions f *
1

(!1, z) and f *
2

(0, z) for the start of the
recursion:

f *
1

(!1, z)"
l
2 A!a

1
(!1#z)#

a
2

(!1#z)2B, (56)

f *
2

(0, z)"!

l
2 Aa1z#

a
2

z2B . (57)

By means of the start of the recursion relations (56) and (57) and the recurrence relations (54)
and (55), all unknown functions f *

1
(n, z) and f *

2
(n, z) during the impact can be determined.

Furthermore, it is stated that the functions f *
1

(n, z) and f *
2

(n, z) during the impact can be
expressed in a polynomial form

f *
1

(n, z)"Pf1
0

(n, z)#ebzPf1
1

(n, z), (58)

f *
2

(n, z)"Pf2
0

(n, z)#ebzPf2
1

(n, z), (59)

where Pf1
0

(n, z), Pf1
1

(n, z), Pf2
0

(n, z) and Pf2
1

(n, z) are polynomials of variable z with order
depending on the integer n. The reason for this is that the functions f *

1
(!1, z) and f *

2
(0, z)

look like

Pf1
0

(!1, z)"
l
2 C!a

1
(!1#z)#

a
2

(!1#z)2D, Pf1
1

(!1, z)"0, (60)

Pf2
0

(0, z)"!

l
2 Aa1z#

a
2

z2B, Pf2
1

(0, z)"0. (61)
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The integral :z
0
P (z) dz of a polynomial P (z) is also a polynomial and the integration

:z
0
e~bzP (z) dz can be expressed in the form P

1
(z)#e~bzP

2
(z) where P

1
(z) and P

2
(z) are two

polynomials. Therefore, it can be proved by means of the mathematical induction, and using
equations (54) and (55), that the functions f *

1
(n, z) and f *

2
(n, z) have the form given in

equations (58) and (59) for all non-negative integers n. Moreover, due to equation (55), the
polynomials Pf1

0
(n, z) and Pf1

0
(n, z) can be computed from the polynomials Pf2

0
(n, z) and

Pf2
0

(n, z):

Pf1
0

(n, z)"!Pf2
0

(n, z)#
1

2
ab (n#z)2, (62)

Pf1
1

(n, z)"!Pf2
1

(n, z). (63)

Therefore, during the impact only the polynomials Pf2
0

(n, z) and Pf2
1

(n, z) are needed. With
the help of a computer algebra system, they can be recursively determined for all integers n.
For example, some symbolical results for small n are listed here:

Pf2
0

(1, z)"!

la
1

2
#

la
1
z

2
!

la
4
#

laz

2
!

laz2

4
#

la
1

b
#

la
b
!

laz

b
!

la
b2

, (64)

Pf2
1

(1, z)"
l (a

1
b#ab!a)

b2
, (65)

Pf2
0

(2, z)"!

la
1
z

2
!

laz2

4
!

a
1
2

bz2

!

la
1

b
!

laz

b
!

la
b2

!2
a
1
bz

b
!2

a
1
b

b2
, (66)

Pf2
1

(2, z)"
2la

1
b!leba

1
b!lebab#leba#2a

1
b

b2
, (67)

Pf2
0

(3, z)"!

la
1

2
!

la
4
!a

1
bz!

a
1
b

2
#

la
1
z

2
#

laz

2

!

laz2

4
!

a
1
bz2

2
!2

a
1
b

b2
!2

a
1
b

b

#2
la

1
b

!4
la
b2

!2
laz

b
#2

la
b
!2

a
1
bz

b
, (68)

Pf2
1

(3, z)"
2leba

1
b!2lazb!le2ba

1
b!le2bab#le2ba#2eba

1
b

b2

#

2lazb2!3la
1
b!3lab#3la#2la

1
zb2

b2
. (69)

However, the duration of contact q
c
must be computed numerically since q

c
is determined by

a transcendental function, for which it is impossible to get an analytical solution.
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During the free #ight, equation (43) is no longer true and equation (48) should be used
instead. By using the mapping given in equation (49), the dimensionless duration of contact
q
c
is decomposed into an integer n

c
and a decimal part z

c
as well with

n
c
"[q

c
] and z

c
"q

c
![q

c
]. (70)

For the function f *
1

(n
c
, z) equation (52) remains true only for z)z

c
. For z

c
(z(1 the

boundary condition at the lower end of the rod is changed and another relation must be
used. Therefore, two di!erent analytical functions f *

11
(n

c
, z) for 0)z(z

c
and f *

12
(n

c
, z) for

z
c
)z(1 must be used to describe the function f

1
(n

c
, z) in the symbolical computation. The

piecewise analytical function f *
1

(n
c
, z) leads to the fact that after the impact both functions

f *
1

(n, z) and f *
2

(n, z) are only piecewise analytic for z in the interval (0, 1). Two di!erent
functions f *

11
(n, z) and f *

12
(n, z) are needed to describe f *

1
(n, z) for n*n

c
:

f *
1

(n, z)"G
f *
11

(n, z) for 0)z(z
c

f *
12

(n, z) for z
c
)z(1

(71)

and two di!erent functions f *
21

(n, z) and f *
22

(n, z) to describe f *
2

(n, z) for n*n
c
#1

f *
2

(n, z)"G
f *
21

(n, z) for 0)z(z
c

f *
22

(n, z) for z
c
)z(1

. (72)

For the wave propagation analysis of a conical rod during the free #ight after the impact,
these four functions f *

11
(n, z), f *

12
(n, z), f *

21
(n, z) and f *

22
(n, z) can be recursively determined.

Using the boundary condition at the upper end, from equation (54) yields

f *
21

(n#2, z)"f *
11

(n, z)#[ f *
22

(n#1, 1)!f *
11

(n, 0)]ebz

#2bebzP
z

0

e~bz f *
11

(n, z) dz, (73)

and solving equation (41) with the initial condition at y"n#z
c
yields

f
2
(y#2)"f

1
(y)#[ f

2
(n#2#z

c
)!f

1
(n#z

c
)]eb(y~n~zc)

#2bebyP
y

n`zc

e~by f
1
(y) dy, (74)

which leads to

f *
22

(n#2, z)"f *
12

(n, z)#[ f *
21

(n#2, z
c
)!f *

11
(n, z

c
)]eb(z~zc)

#2bebzP
z

zc

e~bz f *
12

(n, z) dz. (75)

From the boundary condition at the lower end and solving equation (48) with the initial
condition at y"n, it follows that

f
1
(y)"f

2
(y)#[ f

1
(n)!f

2
(n)]e~a(y~n)!2ae~ayP

y

n

eayf
2
(y) dy. (76)
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Similarly, solving equation (48) with the initial condition at y"n#z
c
yields

f
1
(y)"f

2
(y)#[ f

1
(n#z

c
)!f

2
(n#z

c
)]e~a(y~n~zc)

! 2ae~ayP
y

n`zc

eay f
2
(y) dy. (77)

Due to equations (50), (71) and (72) and the continuity of the functions f
1
and f

2
at y"n and

y"n#z
c
, equations (76) and (77) turn into

f *
11

(n, z)"f *
21

(n, z)#[ f *
12

(n!1, 1)!f *
22

(n!1, 1)]e~az

!2ae~azP
z

0

eaz f *
21

(n, z) dz, (78)

f *
12

(n, z)"f *
22

(n, z)#[ f *
11

(n, z
c
)!f *

21
(n, z

c
)]e~a(z~zc)

!2ae~azP
z

zc

eaz f *
22

(n, z) dz. (79)

Now four recurrence relations (73), (75), (78) and (79) to determine four functions
f *
11

(n, z), f *
12

(n, z), f *
21

(n, z) and f *
22

(n, z) have been obtained. For the start of the recursion, the
initial functions

f *
11

(n
c
, z)"f *

1
(n

c
, z), f *

12
(n

c
!1, z)"f *

1
(n

c
!1, z), (80)

f *
21

(n
c
#1, z)"f *

2
(n

c
#1, z), f *

22
(n

c
, z)"f *

2
(n

c
, z) (81)

are used. Therefore, during the free #ight, those unknown functions describing the wave
propagation can also be recursively determined. The algorithm for the computation of the
functions f

1
and f

2
is graphically shown in Figure 2. Furthermore, upon de"ning

a functional set

P :"M f : f"p
0
(z)#ebzp

1
(z)#e~azp

2
(z)N (82)

where p
0
(z), p

1
(z) and p

2
(z) are polynomials of z, it can be stated that all functions

f *
11

(n, z), f *
12

(n, z), f *
21

(n, z) and f *
22

(n, z) are elements of the set P: that is, these functions can
be expressed in the analytical form

f *
ij

(n, z)"Pfij
*

0
(n, z)#Pfij

*

1
(n, z)ebz#Pfij

*

2
(n, z)e~az for i, j"1, 2, (83)
Figure 2. Algorithm for the computation of the functions f
1

and f
2
: 22, initial condition; &&", boundary

conditions at the upper end; ---------', boundary condition at the lower end: during impact; -------', free #ight.
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where Pfij
*

k
(n, z) for i, j"1, 2 and k"0, 1, 2 are polynomials of z with order depending on

n. The reason is that the initial functions f *
11

(n
c
, z), f *

12
(n

c
!1, z), f *

21
(n

c
#1, z) and f *

22
(n

c
, z)

are elements of the set and from f3P

e~azP
z

0

eaz fdz3P and ebzP
z

0

e~bz f dz3P (84)

follows. According to the recurrence relations (73), (75), (78) and (79), it turns out that the
functions f *

11
(n, z), f *

12
(n, z), f *

21
(n, z) and f *

22
(n, z) have the form as given in equation (83).

With these expressions, the symbolical computations can be more e$ciently carried out.

4. NUMERICAL EXAMPLES

For conical rods impacting the rigid ground, analytical results for the wave propagation
in the rods during the impact can easily be computed symbolically. However, the duration
of contact must be computed numerically. For a given duration of contact, analytical results
for the wave propagation during the free #ight can also be computed symbolically. Since the
computer algebra system MAPLE has both symbolical and numerical capabilities, it can be
used to deal with the wave propagations in the rods. As an example, three steel rods with the
same material E"206 GPa, o"7900 kg/m3 , same length ¸"1m and same mass are
considered. Two conical rods with a"$0)02 are investigated and compared with
a cylindrical rod with a"0 (see Figure 3). The initial impacting velocity v

0
is set to 1 m/s.

The duration of contact for the cylindrical rod is t
c
"2¹, while for the conical rod with

a"0)02, it is greater (t
c
"3)4¹), and for the conical rod with a"!0)02, it is smaller

(t
c
"1)46¹). Figure 4 shows the contact forces for the three rods. Among the three rods, the
Figure 3. Three di!erent rods for comparison.

Figure 4. Contact forces P(t) for the three rods: **, a"0; }} } }, a"!0)02; } ) } ) }, a"0)02.



Figure 5. Velocity v (¸/2, t) at the center of mass of the rods: **, a"0; } } }, a"!0)02; } ) } )}, a"0)02.

Figure 6. Displacement waves in the three rods.
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Figure 7. Stress waves in the three rods.
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rod with a"!0)02 has the largest impact force and the shortest duration of contact.
Figure 5 shows the velocities at the lower end, in the middle and at the upper end of the rods
respectively. It is shown that the conical rod with a"!0)02 vibrates with the largest
amplitude during the free #ight. A three-dimensional visualization of the displacement
waves and the stress waves in the three rods is shown in Figures 6 and 7 respectively. From
these "gures, it can be seen that the conical rods have a much more complicated impact
behavior than the cylindrical rod.

Often, it is advantageous to use a numerical}symbolical combination to express the
responses. For the wave propagation analysis of the conical rods, the most important
functions are f *

1
(n, z) and f *

2
(n, z). If numerical values of the system parameters are used,

these functions can be recursively determined more easily. For example, the functions
f *
1

(n, z) and f *
2

(n, z) for a"0)02 are listed in Table 1 in detail so that these results may be
used to verify some numerical programs using the "nite element method or the boundary
element method.



TABLE 1

Numerical-symbolical expressions of f *
1

(n, z) and f *
2

(n, z) for a"0)02

f *
1

(!1, z) 1)8749]10~6!2)8541]10~6z#9)7915]10~7z2
f *
2

(0, z) !8)9578]10~7z!9)7915]10~7z2
f *
1

(0, z) 8)9578]10~6z#9)8087]10~7z2
f *
2

(1, z) !1)8749]10~6!2)8541]10~6z!9)7915]10~7z2
f *
1

(1, z) 1)8767]10~6#2)8575]10~6z#9)8087]10~7z2
f *
2

(2, z) !1)0945]10~5!6)6140]10~6z!9)8087]10~6z2
#5)2368]10~6e0>68614z

f *
1

(2, z) 1)0952]10~5#6)6209]10~6z#9)8259]10~6 z2
!5)2368]10~6e0>68614z

f *
2

(3, z) !1)8540]10~5!8)5757]10~6z!9)8087]10~7z2
#1)0400]10~5e0>68614z

f *
11

(3, z) 1)8555]10~5#8)5861]10~6z#9)8259]10~7z2
!1)0400]10~5e0>68614z

f *
12

(3, z) 1)1515]10~5#6)7810]10~6z#9)8087]10~7z2
!5)4314]10~6e0>68614z#2)9349]10~6e~2>1861z

f *
21

(4, z)"f *
22

(4, z) !3)8599]10~5!1)2349]10~6z!9)8259]10~7z2
#e0>68614z(3)1158]10~5!7)1863]10~6z)

f *
11

(4, z)"f *
12

(4, z) 2)8124]10~5#1)0551]10~5z#9)8259]10~7z2
#e0>68614z(!2)0080]10~5#3)7529]10~6z)#7)7635]10~7e~2>1861z

f *
21

(5, z) !5)1931]10~5!1)4314]10~5z!9)8259]10~7z2
#e0>68614z(4)7609]10~5!1)4272]10~6z)

f *
22

(5, z) !3)9615]10~5!1)2499]10~5z!9)8087]10~7z2
#e0>68614z(3)4484]10~5!7)4535]10~6z)#1)5327]10~6e~2>1861z

f *
11

(5, z) 3)9658]10~5#1)2516]10~5z#9)8259]10~7z2
#e0>68614z(!3)2427]10~5#7)4535]10~6z)#8)7223]10~8e~2>1861z

f *
12

(5, z) 5)1974]10~5#1)4431]10~5z#9)8431]10~7z2
#e0>68614z(!4)5552]10~5#1)4272]10~5z)#1)6199]10~6e~2>1861z

f *
21

(6, z)"f *
22

(6, z) !6)7228]10~5!1)6279]10~6z!9)8259]10~7z2
#e0>68614z(6)7583]10~5!2)3803]10~5z#2)5750]10~6z2)
#4)0544]10~7e~2>1861z
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5. CONCLUSIONS

In this paper, St. Venant's contact theory has been used to describe the longitudinal wave
motion in conical rods. By means of suitable variable transformations, the wave equation
for a conical rod may be rewritten into a linear partial equation with constant coe$cients.
A side e!ect of these variable transformations is that the boundary conditions become more
complicated. By solving this simpli"ed wave equation with the dynamical boundary
conditions, analytical results for the wave propagation in conical rods are obtained, where
complicated algebraic computations were performed by a computer algebra system. Since
the given impact responses are exact and detailed, they may be used to validate numerical
programs using "nite element methods or boundary element methods. It is shown that
among the three compared rods with same mass and same length, the conical rod with
larger end impacting the ground has the largest maximum impact force and the shortest
duration of contact and vibrates with the largest amplitudes during the free #ight, while the
conical rod with its smaller end impacting the ground has the largest maximum stress.
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