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In this paper, the vibration control philosophy and optimal design of passive tuned mass
dampers (PTMDs) for a multi-degree-of-freedom (m.d.o.f.) structure are presented. In order
to prove the e!ectiveness of PTMD, the modal properties of a m.d.o.f. building with an
optimal PTMD are identi"ed using a speci"ed system identi"cation procedure. The
di!erence in the modal properties between a structure with and without PTMD determines
the PTMD vibration control performance. An extended random decrement method, which
considers the measurement correlation, was "rst employed to reduce the measured dynamic
responses of the building. The Ibrahim time domain technique was then applied to calculate
the modal frequencies, damping ratios, and mode shapes based on only a few #oor response
measurements. To obtain the complete mode shapes, an interpolation method was
developed to estimate the mode shape values for the locations without measurements. The
seismic responses at #oors with and without measurements were also calculated. Numerical
results throughout a "ve-storey building under ambient random excitations demonstrated
that the proposed system identi"cation techniques are able to identify the dominant modal
parameters of the system accurately, even with high closed-space frequencies and noise
contamination. In addition, PTMD was proved to be a useful control device.
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1. INTRODUCTION

Due to recent intensive analytical and experimental research, vibration control in structures
using passive tuned mass dampers (PTMDs) is gaining more acceptance not only in the
design of new structures and components but also in the retro"t of existing structures to
enhance their reliability against winds, earthquakes and human activities [1}5]. PTMDs
can be incorporated into an existing structure with less interference compared with other
passive energy dissipation devices. Since 1971, lots of PTMDs have been successfully
installed in high-rise buildings and towers such as the Citicorp Center in New York City
and John Hancock Tower in Boston, USA, and Crystal Tower and the Higashiyama Sky
Tower, Chiba Port Tower and Fukuoka Tower in Japan. All these retro"ts were reported to
be able to signi"cantly reduce structural dynamic response.

Basically, a PTMD is a device consisting of a mass connected to structures using a spring
and a viscous damper, as shown in Figure 1. The determination of PTMD system
parameters is the main issue in the study of PTMD. Several optimization procedures have
been proposed by many researchers in the past decades. In conventional mathematical
derivations, the equations of motion of entire system of PTMD-structure were separated
into those for PTMD and the primary structure. Through modal analysis, according to the
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Figure 1. System model of multi-storey building structure with single PTMD.
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modal parameters of the primary structure, the optimum PTMD parameters can be carried
out by optimizing a prescribed e!ectiveness index in the frequency domain [6}10]. In recent
years, di!erent approaches for the PTMD optimal design have been proposed. Tsai [11]
and Fujino and Abe [12] calculated the parameters of PTMD based on perturbation
techniques. Sadek et al. [13] extended the work of Villaverde [14] to "nd the tuning
parameters by making the "rst two modal damping ratios of the PTMD-structure
system equal. Hadi and Ar"adi [15] utilized the active-control concepts to establish the
optimization criteria. The H

2
norm of the transfer function from the external disturbance to

a certain regulated output was taken as a performance measure of the optimization
criterion. Then, the genetic algorithm, which has been successfully applied in many
applications, is used to "nd the optimum PTMD parameter value. More recently, an
innovative work was presented by Carott and Turci [16], who used a well-established
mathematical idiom, rotating vectors in the Argand}Gauss plane, to design the PTMD
parameters. This approach attained the same result as the classical theory, but with the
advantage of providing a succinct description of the phase and magnitude relationships
between the primary structure and the PTMD.

Although the previous studies on PTMD were abundant, its vibration control
e!ectiveness is still controversial, especially for seismic applications [17]. For example, Xu
and Kwok [18] found that the e$cacy of PTMD was not as good as expected based on
a wind tunnel test of a tall building subjected to along, cross and torque wind excitations.
Villaverde [19] investigated the PTMD e!ectiveness through three di!erent structures
subjected to nine actual earthquake records. He found that PTMD had good performance
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VIBRATION CONTROL IDENTIFICATION 89
in some cases, but some had little or even no e!ect. However, Sadek et al. [13] did the same
study for 30 single-degree-of-freedom (s.d.o.f.) structures with periods between 0)1 and 3)0 s
under 52 real earthquakes. The comparisons of mean structural responses with and without
PTMD indicate that PTMD is e!ective. Above inconsistency mainly resulted from using
di!erent dynamic characteristics of structure and external excitation, and di!erent
performance measures to determine the PTMD e!ectiveness. The idealization of external
force in PTMD design stage is a problem which needs further study.

The PTMD damping e!ect depends upon the fact that the PTMD response delays the
main structural response by a phase angle of 903, so that the elastic force transmitted by the
PTMD acts like a viscous force on the main structure. This condition will not occur unless
the PTMD frequency is tuned to the frequency of the main structure and the excitation has
this frequency content. Therefore, the structural property information is very essential for
the optimum design of a PTMD. Meanwhile, the PTMD detuning e!ect should be seriously
investigated. Tsai [11] derived the explicit forms of modal parameters and the envelope of
Green function of transient response for structures with a slightly detuned PTMD. Based
on the perturbation techniques, he considered the PTMD detuning parameters directly and
found that the envelope ratio of transient response has a smaller rate when the frequency
di!erence between PTMD and main structure increases. Rana and Soong [20] assumed
that the structural properties were known and examined the detuning e!ect on PTMD
system parameters. They claimed that the detuning e!ect of the PTMD frequency ratio is
more pronounced than that of the damping ratio. With the increase in structural damping
ratio and the PTMD mass ratio, the detuning e!ect becomes less severe.

To solve the PTMD detuning e!ect, one of the promising methods is the application of
multiple tuned mass dampers (MTMDs) with distributed masses and natural frequencies.
Structural vibration control using MTMDs was "rst proposed by Clark [21] and then
intensively studied by other researchers [22}24]. They showed that MTMDs had better
control performance than single PTMD, particularly while the detuning e!ect exists. In
most previous studies, a PTMD or MTMD was designed to control the fundamental modal
vibration for a m.d.o.f. primary structure under wind or earthquake loading. Parametric
studies in references [25}27] showed that while there were signi"cant reductions in
responses for the particular vibration mode being controlled, the higher modes may become
the dominant modes of vibration for certain external excitations. In order to solve this
problem, the application of several PTMDs tuned to di!erent modes of the primary
structure might require [20]. However, this would result in a modal contamination
problem. PTMDs tuned to higher modes will deteriorate the "rst modal response
reduction.

From the above discussions, it is clear that the PTMD control philosophy and the
accurate estimation of primary structural parameters to reduce the detuning problem are
two essential subjects. Unlike the previous studies, this paper investigated the change of the
displacement and acceleration response spectra for structures with and without PTMD
under various earthquake excitations. The overall PTMD e!ect on structural responses is
clearly demonstrated. Moreover, it is generally recognized that the design of an optimal
PTMD requires a prior knowledge of the modal parameters of the controlled structure to
avoid the PTMD detuning e!ect. The vibration control veri"cation of a PTMD is also
needed through system identi"cation after its implementation. Thus, it is important that
system identi"cation be carried out in conjunction with structural control. Traditional
system identi"cation techniques require the full measurement of excitation and its
corresponding responses. However, the input excitation is generally di$cult to de"ne and
measure accurately. Moreover, a real structure, such as a tall building, usually possesses
a large number of degrees of freedom. It is impossible and impractical to acquire full
JSVI=20003188=VVC=Ravi



90 C.-C. LIN E¹ A¸.
measurements because of the limited number of sensors. Thus, system identi"cation based
only on response measurements at a few degrees-of-freedom become necessary from
a practical point of view. In this paper, the theoretical background to determine PTMD
optimal parameters is introduced. The extended random decrement method combined with
the Ibrahim time domain technique [28] is employed to identify the modal frequencies,
damping ratio and mode shapes of a m.d.o.f. building-PTMD system based on a few #oor
response measurements. The di!erence in identi"ed modal parameters between a structure
with and without PTMDs indicates the vibration control e!ectiveness of PTMDs.
Numerical results using a "ve-storey building-PTMD system show that the proposed
system identi"cation technique is favorable for actual implementation and that the PTMD
is a useful control device.

2. OPTIMAL PASSIVE TUNED MASS DAMPERS

The concept of the PTMD dates back to 1909 [29]. Since then, much research has been
carried out to examine its e!ectiveness for di!erent dynamic load applications. The success
of such a system in reducing wind-excited structural responses is now well established.
However, because of the complex characteristics of earthquake excitations, there still has
not been a general agreement on the e!ectiveness of PTMD systems to suppress seismic
responses. In general, earthquake excitation is a random process whose frequency content,
appearance, amplitude, and duration, etc., are all unpredictable. Most of the researchers
assumed the excitation to be a white-noise random process in the design stage, and then
veri"ed the e!ectiveness of PTMD by applying real earthquake excitation. These case
studies were limited to speci"ed structures subjected to a single earthquake. No overall
design philosophy of such a control device was investigated. Thus, general conclusions
could not be drawn from the previous researches.

2.1. THE DESIGN PHILOSOPHY AND SEISMIC EFFECTIVENESS OF PTMD

Figure 2 shows the typical transfer function of the speci"ed mode of a structure with and
without PTMD which is designed based on the optimization procedure by Lin et al. [4]. It
Figure 2. Typical transfer function of a structure with and without optimal PTMD: - - - - - - -, w/o PTMD;**,
with PTMD.
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Figure 3. Fourier amplitude spectrum of 1995 Kobe earthquake and the operating range of PTMD for
structures A and B.

Figure 4. Relative displacement time history of structures A and B with and without PTMD under 1995 Kobe
earthquake: - - - - - - -, w/o PTMD; **, with PTMD.
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is seen that these two curves intersect at points P and Q. It is known that the positions of
P and Q vary with the PTMD's natural frequency, u

s
, and their elevations are independent

of the PTMD's damping ratio, m
s
. It is also seen that the transfer function of a structure with

PTMD decreases in the frequencies between P and Q (operating range), but is unavailing
and even ampli"es in the other frequencies. Thus, it is expected that the PTMD will not
produce vibration reduction unless the frequency content of an earthquake is within the
JSVI=20003188=VVC=Ravi
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operating range. Otherwise, the PTMD will be ine!ective. This phenomenon can be veri"ed
in the time domain using two s.d.o.f. structures A (u

p
"1)5 Hz, m

p
"2%) and

B(u
p
"3)4 Hz, m

p
"2%) subjected to the 1995 Kobe horizontal earthquake acceleration.

Figure 3 shows the Fourier amplitude spectrum of the Kobe earthquake and the operating
ranges of structures A and B. It is clearly seen that structure A falls in the major
frequency-content range of the Kobe earthquake, whereas structure B does not. Their
displacement time histories are illustrated in Figures 4(a) and 4(b) which show that the
performance of PTMD is obviously excellent for structure A, but is not good for structure
B, as expected in the frequency domain. This result implies that the seismic e!ectiveness of
PTMD is highly frequency dependent. It operates e$ciently only under resonant
conditions. In previous research, PTMD was intuitively thought to be ine!ective because of
this phenomenon. However, although PTMD is less useful outside the resonant conditions,
the structural response is small in this situation. Therefore, the PTMD is a useful control
device in reducing the &&excessive'' seismic responses, which occurs during the resonant
conditions.

In order to further understand the seismic e!ectiveness of PTMD, the relative
displacement and absolute acceleration response spectra for s.d.o.f. structures (m

p
"2%)

with and without PTMD and PTMD under the 1985 Mexico and 1995 Kobe earthquakes,
Figure 5. Response spectra of a structure (m
p
"2%) with and without PTMD under 1995 Mexico earthquake:

(a) displacement response spectrum; (b) acceleration response spectrum; (c) PTMD stroke and (d) Fourier
amplitude spectrum of Mexico earthquake: - - - - - - -, w/o PTMD; **, with PTMD.
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Figure 6. Response spectra of a structure (m
p
"2%) with and without PTMD under 1995 Kobe earthquake:

(a) displacement response spectrum; (b) acceleration response spectrum; (c) PTMD stroke and (d) Fourier
amplitude spectrum of 1995 Kobe earthquake: - - - - - - -, w/o PTMD; **, with PTMD.
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are depicted in Figures 5 and 6. The dominant period ranges for each earthquake were less
than 5 s, so were the maximal structural absolute acceleration and relative displacement
responses. For structures with periods away from the dominant periods, no excessive
responses will occur. Thus, PTMD application was not necessary. In Figures 5 and 6, it is
seen that the maximum responses of structures with PTMD (solid line) are smaller than
those without PTMD (dash line). Meanwhile, the maximal peak responses of structures
with PTMD also occur near the same period for each case. As discussed earlier, the most
e!ective cases for PTMD in reducing absolute acceleration (68% and 33% respectively)
occurred under the worst resonant conditions. The PTMD strokes are also shown in
Figures 5(c) and 6(c). It is clearly observed that the structural period, in which the maximal
PTMD stroke occurs, was coincident with that of the optimum e!ectiveness of PTMD. To
produce a comprehensive survey, after PTMD has been installed in a structure, the
spectrum envelope for all cases is below those of the situations where the structure does not
have PTMD. Although the peak responses are indeed ampli"ed for structures with PTMD
within some speci"ed periods, these conditions are few and not always encountered at the
worst situation. Meanwhile, the amount of ampli"cation is limited. Therefore, they could
not be used to conclude that PTMD is ine!ective in a seismic application.
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94 C.-C. LIN E¹ A¸.
2.2. OPTIMAL PTMD SYSTEM PARAMETERS FOR MDOF BUILDING

The equations of motion for a s.d.o.f. PTMD mounted at the ith #oor of an n-d.o.f.
building structure under earthquake excitation, as show in Figure 1, can be written as

MxK (t)#Cx5 (t)#Kx(t)"!M1x( g (t), (1)

in which
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(t) denote the displacements of primary structure and

PTMD relative to the base. 1 is a vector with each element of 1. x( g (t) represents the
earthquake ground acceleration. Vector uT"[0,2 , 0,!1(i), 0,2 , 0, 1(n`1)] indicates the
location of the PTMD and the superscript T denotes the matrix transpose.
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), the PTMD displacement relative to the ith #oor, as the PTMD's

stroke. The equations of motion for the controlled structure and PTMD are given,
respectively, as
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tuned to the jth mode of the controlled structure and only the jth modal response is
considered, the equations of motion for the jth mode and PTMD are expressed in the
matrix form as
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where g
j
, m

j
and u

j
are the jth modal displacement, damping ratio and frequency of the

controlled structure, /
ij

is the ith value of the jth mode shape, /
ij
; and u
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s
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) is the jth generalized modal mass
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j
is the jth modal participation factor.

In the case of a s.d.o.f. structure with PTMD, /
ij
"C

j
"1, k

j
represents the mass ratio of

the PTMD to the structure and equation (4) is reduced to that of the conventional two-d.o.f.
structure-PTMD system.

According to Lin et al. [4], the optimal PTMD's parameters are determined by
minimizing the mean-square displacement response ratio of the "rst mode, R

dE,1
, between

the structure with and without the PTMD installation under earthquake excitation. The
value of R

dE,1
smaller than unity represents the attenuation of the structural response due to
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the presence of PTMDs. It is found [4] that PTMDs are more appropriate for a structure in
which the fundamental frequency is less than that of the earthquake excitation, which is real
for high-rise buildings or towers located on "rm ground. In this case, the earthquake
excitation can be simulated using white noise and R

dE,1
takes the form as

R
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In equation (5), r
f
"u

s
/u

1
is de"ned as the ratio of PTMD's frequency to the fundamental

frequency of the controlled structure. It is seen that R
dE,1

is a function of m
1
, /

i1
(structural

parameters); k
1
, m

s
, and r

f
(PTMD's parameters) and is independent of u

1
. For the given

values of m
i

and /
i1

, the optimal PTMD's design parameters can be obtained by
di!erentiating R

dE,1
with respect to r

f
, m

s
and k

1
, and equating to zero, respectively, to

minimize R
dE,1

. Their values may be found by solving the following equations
simultaneously:
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Lk
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Figure 7. Optimal r
f
, m

s
and R

dE,1
for "ve-storey uniform shear building with m

1
"2%:*s*, r

f
; *r*, m

s
;

*h*, R
dE,1

.
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Figure 8. Optimal modal mass ratio for "ve-storey uniform shear building with various m
1
.
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In practice, (k
1
)
opt

is rarely used due to economic considerations. Hence, we may "rst "nd
out (m

s
)
opt

and (r
f
)
opt

for various values of m
1

and k
1
, and then search for (k

1
)
opt

. For
a uniform "ve-storey shear building with equal mass and sti!ness at each #oor and
a PTMD installed at the top #oor, the optimal values of m

s
, r

f
and their corresponding

R
dE,1

for various values of m
1

and k
1

are illustrated in Figure 7. It is found that r
f

decreases
as k

1
and m

1
increase. m

s
increases gradually as k

1
increases but is generally independent on

m
1
, and R

dE,1
decreases signi"cantly as k

1
increases. Moreover, an optimal k

1
exists to

make R
dE,1

minimum. It is a function of m
1

and /
i1

and decreases as m
1

increases, as seen in
Figure 8. It has been shown that with the installation of optimal PTMDs, the equivalent
"rst modal damping ratio is always greater than the original damping ratio.

2.3. THE INFLUENCE OF SITE EFFECT ON PTMD'S OPTIMAL PARAMETERS

In the previous section, the earthquake excitation is regarded as a white noise in the
evaluation of PTMD's optimal parameters. Such obtained parameters may not be really
optimal because the excitation frequency dependency is not taken into account. In the real
situation, the soil properties of a speci"ed site will signi"cantly alter the dynamic properties
of the excitations generated from any source. To include the site e!ect, the earthquake
excitation is generally modelled as the Kanai}Tajimi spectrum and takes the form as

Sx( g (u)"
4m2g u2g u2#u4g

(u2g!u2)2#4m2g u2g u2
S
0
, (7)

where ug and mg represent the dominant frequency and damping ratio of the site
respectively. Again, considering the "ve-storey uniform shear building installed with
a PTMD of k

1
"5%, the PTMD's optimal m

s
and r

f
and the mean-squared response ratio,

R
dE,1

are shown in Figure 9 (solid lines) for various excitation to structure frequency ratios,
ug/u1

, and compared with those determined from white noise excitation (dash lines). It is
clearly seen that the site e!ect can be ignored as ug/u1

is greater than 1)0 for primary
structures built on hard site. On the other hand, the PTMD's optimal parameters slightly
change as ug/u1

is less than 1)0, especially for r
f
. This is due to the fact that the dominant
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Figure 9. Optimal r
f
, m

s
and R

dE,1
for "ve-storey uniform shear building with PTMD designed by white noise

or Kanai}Tajimi spectrum (m
g
"32%): - - - - - - - - -, white noise; ***, Kanai}Tajimi spectrum.

Figure 10. Mean-square responses of "ve-storey uniform shear building without and with PTMD (m
g
"32%):

- - - - - - - - -, without PTMD; - - -v- - -, with PTMD (designed by Kanai}Tajimi);***, with PTMD (designed by
white noise).
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frequency of excitations tends to excite the left resonant peak of the structure-PTMD
system, which is out of the operating range as shown in Figure 2. Hence, the PTMD's
optimization criterion lowers r

f
to reduce the value of left peak (point P in Figure 2) to

avoid signi"cant ampli"cation. However, this will cause the ampli"cation of right peak
(point Q in Figure 2) as r

f
becomes small. To take a balance between two peaks and their

corresponding frequency contents of the excitation and to maintain the tuning condition of
PTMD to primary structure, the change of r

f
will be limited within a small range. However,

it is noted that the mean-squared response ratios, R
dE,1

, by using the PTMD's optimal
parameters designed with and without the consideration of the site e!ect are nearly
identical. Furthermore, since the site e!ect for earthquake excitation is uncertain and is not
easy to predict accurately, it is recommended that the PTMD's optimal parameters be
evaluated using the procedure mentioned in the previous section. A phenomenon is also
observed that when ug/ul

is smaller than 0)5, R
dE,1

is large. It seems that the PTMD is not
useful. Actually, for those situations, the mean-squared structural responses are really small,
as shown in Figure 10. Any vibration control device is not necessary.
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Figure 11. R
dE,1

varies with m
1

and /
i1

for uniform shear building: - - -j- - -, m
1
"2%; *n*, m

1
"5%.
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2.4. OPTIMAL PTMD LOCATION

As mentioned above, most of the previous researches assumed the controlled structure as
a s.d.o.f. system with fundamental modal properties. No optimum location for PTMD was
investigated. According to equation (5), we know that R

dE,1
depends on /

i1
, the mode shape

value of the #oor on which the PTMD is installed. This implies that an optimum PTMD
location may exist such that R

dE,1
has a minimum given value for each m

1
and k

1
. Figure 11

illustrates the relationship between R
dE,1

and the two parameters of m
1

and /
i1

for
k
1
"5%. It is shown that R

dE,1
decreases as /

i1
increases for any speci"ed damping ratio

m
1
. Thus, the position with the largest value in the controlled mode shape is the optimum

location for the PTMD.
It is noted that the determination of the optimum location described above was

investigated in the modal space. In order to demonstrate this "nding in a more physical
way, a PTMD with mass ratio to the total mass of primary structure, k"2)85%, for
a "ve-storey building, whose properties are given in Table 1, was examined. The
optimization procedure was performed as the PTMD was placed at di!erent #oors. The sets
of optimal frequency ratio and damping ratio (r

f
, m

s
)
opt

and increment of "rst modal
damping ratio [4] are calculated and illustrated in Figure 12. It is clearly seen that the
higher the PTMD is located, the greater the damping ratio and less the PTMD sti!ness are
required and greater the modal damping ratio is obtained. The installation of PTMD at the
"fth #oor results in an additional "rst modal-damping ratio of 5)49%. The R

dE
and R

aE
of

each #oor when PTMD (k"2)85%) is installed at di!erent #oors is depicted in Figure 13.
As expected, both R

dE
and R

aE
are minimum when PTMD is located on the "fth #oor (i.e.,

the top #oor) where the "rst mode shape value is the largest compared with that of the other
#oors. The reduction in upper #oor responses is larger than the responses for the lower
#oors. This proves the vibration control e!ectiveness of PTMDs.

3. MODAL PARAMETER IDENTIFICATION

As seen in the preceding sections, to determine the PTMD's optimal parameters requires
a prior knowledge of u

1
, m

1
and /

1
. For a controlled structure with unknown parameters,

a system identi"cation technique should be used to identify these parameters. In this study,
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Figure 12. Optimal-damping and -frequency ratios for PTMD installed at di!erent #oor of "ve-storey building,
and the corresponding increment of equivalent "rst modal-damping ratio: *s*, r

f
; *r*, m

s
; *h*, *m

e,1
.

Figure 13. R
dE

and R
aE

of each #oor when PTMD is installed at di!erent #oors of "ve-storey building
(k"2)85%): *r*, 5F; - - -j- - -, 4F; - - -s- - -, 3F; - - -h- - -, 2F; *n*, 1F.
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the extended random decrement method was employed "rst to extract the free vibration
responses at measured locations. Then, the Ibrahim time domain technique was applied to
calculate the structural modal frequencies, damping ratios, and mode shapes. The proposed
JSVI=20003188=VVC=Ravi
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methods have great advantages when only response data, not the input excitation, are
available.

3.1. EXTENDED RANDOM DECREMENT METHOD

Let u (t) be a response measurement (with or without noise) at a certain location in
a structure, as shown in Figure 14(a), induced by zero-mean, stationary random excitations.
This time history is divided into short segments with duration t

d
, which is several times the

structural fundamental period. The random decrement method consists of the following
steps of analysis to obtain a free decay response: (1) calculate an amplitude u

s
, which is

usually the root-mean-square value of u (t); (2) select the starting time t
i
for each segment

such that

u(t
i
)"u

s
i"1, 2, 3,2,

u(t
i
)*0 i"1, 3, 5,2,

u(t
i
))0 i"2, 4, 6,2,

(3) average N
s

segments of the response measurement to yield a time function, d(q), i.e.,

d (q)"
1

N
s

Ns

+
i/1

u (t
i
#q), 0(q(t

d
(8)

called random decrement signature as shown in Figure 14(b).
Figure 14. (a) Response measurement and crossing times; (b) Extraction of free decay signature from response
measurement.
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For a linear structure, its dynamic response can be decomposed into three parts including
response due to the initial displacement, initial velocity, and external loading respectively.
Following step (2) of the random decrement analysis procedure, the response due to initial
velocity cancels out because parts with positive and negative initial slopes are random. In
addition, since the external excitation is assumed to be a stationary random process with
zero mean, the response due to external loading also vanishes. Hence, d (q) represents a free
decay response due to initial displacement. Furthermore, the unique form of random
decrement signature and the lack of requirement to input excitation measurements make
the random decrement method very attractive to use for system parameter identi"cation
and damage detection.

Basically, the original random decrement method was developed to process a single
measurement. For multiple measurements taken from a real building, their correlations will
be lost if the above analysis procedure is applied to each individual measurement
independently. To overcome this problem, in this study, the crossing times t

i
in step (2) were

determined from one designated measurement. All measurements were then processed
following step (3), simultaneously, to obtain their respective free decay signatures. For
building structures, it is suggested that the lower #oor measurement be used to determine
the crossing times because it contains greater weight for the higher modes. Therefore, we
can get enough number of segments to superimpose in equation (8) in a shorter record
length. This proposal was proved successful in the following numerical example.

3.2. IBRAHIM TIME DOMAIN TECHNIQUE

The free decay response at measured station l and time t
j
obtained from equation (8) can

be expressed as the summation of m structural modes as

d
l
(t
j
)"x

l,j
"

2m
+
k/1

u
lk
ejk tj , (9)

where j
k

and u
lk

represent the kth complex eigenvalue and mode shape value at location
l respectively. The modal frequency u

k
and damping ratio m

k
are then calculated using

u
k
"Dj

k
D, m

k
"!

Re(j
k
)

u
k

. (10)

In equation (10), Re(j
k
) denotes the real part of j

k
. Suppose that the responses at n di!erent

stations are measured and m modal properties are to be identi"ed, we may use any
m measurements for s instants (when n*m) or repeat the available measurements (when
n(m) to construct the response matrix X using time shifting schemes [30] such that

X"WK, (11)

where

X"

x
1,1

x
1,2

) ) x
1,s

x
2,1

x
2,2

) ) x
2,s

) ) ) ) )

) ) ) ) )

x
2m,1

x
2m,2

) ) x
2m,s

, W"

u
1,1

u
1,2

) ) u
1,2m

u
2,1

u
2,2

) ) u
2,2m

) ) ) ) )

) ) ) ) )

u
2m,1

u
2m,2

) ) u
2m,2m

, (12a, 12b)
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K"

ej1 t1 ej1 t2 ) ) ej1 ts

ej2 t1 ej2 t2 ) ) ej2 ts

) ) ) ) )

) ) ) ) )

ej2m t1 e2mt2 ) ) ej2mts

. (12c)

Similarly, the response matrix X< corresponding to the same measured stations and *t
later in time than those in equation (11) can be expressed as

X<"W< K. (13)

In equation (13), the entries of matrices X< and W< are related using

x(
l,j
"

2m
+
k/1

u(
lk
ejk tj , u(

lk
"u

lk
ejk

Dt. (14)

The elimination of K from equations (11) and (13) gives

X<"W< W~1X"AX (15)

and

AW"Wa, (16)

where A is de"ned as the (2m]2m) system matrix. Equation (15) is generally an
over-determined system of simultaneous linear equations. The solution to obtain matrix
A is not unique. Several approaches such as the least-square method and singular value
decomposition can be used. Moreover, equation (16) is a standard eigenvalue equation
which can be solved using any conventional method. The matrix a is a diagonal matrix with

entries a
k
"ejk

Dt. Let a
k
"b

k
#ic

k
and j

k
"a

k
#ib

k
, (i"J!1), then a

k
and b

k
are

related to b
k

and c
k

as

a
k
"

1

2Dt
ln (b2

k
#c2

k
), (17)

b
k
"

1

Dt
tan~1A

c
k

b
k
B . (18)

Once the eigenvalue j
k

is obtained, the kth modal frequency and damping ratio are
calculated from equation (10). Based on the above derivations, it is also found that the
eigenvectors W of matrix A are the desired complex mode shapes of the structure.

3.3. MODE-SHAPE INTERPOLATION

Based on the Ibrahim time domain technique, all desired modal frequencies and damping
ratios are found using equations (10), (14)} (16). Because of partial response measurements,
only the mode shape values at the instrumental d.o.f.s can be identi"ed. To obtain the
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TABLE 1

Physical and modal parameters of ,ve-storey building

Mass matrix, M (N s2/cm) 19)57 0 0 0 0

0 19)57 0 0 0

0 0 19)57 0 0

0 0 0 19)57 0

0 0 0 0 19)57

Damping matrix, C (N s/cm) 47)19 !13)67 !0)79 0)30 0)06

37)46 !15)61 !1)04 0)46

36)22 !16)46 0)11

sym. 34)26 !14)28

15)93

Sti!ness matrix, K (N/cm) 77108 !36564 4549 1612 !211

58596 !35825 5481 1169

58344 !36587 7463

sym. 52688 !22962

14621

Modal natural frequencies, u
j

(Hz) 0)91

3)37

7)11

10)66

12)73

Modal damping ratio, m
j

(%) 2)00

2)00

2)00

2)00

2)00

Mode shape matrix, U 1)00 1)00 1)00 1)00 1)00

3)02 2)12 0)92 !0)33 !1)21

5)27 1)89 !0)64 !0)63 1)12

7)31 0)18 !0)96 0)88 !0)70

8)96 !2)09 0)74 !0)35 0)21
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complete mode shapes, we developed an interpolation method to calculate the mode shape
values for the locations without measurement. It was assumed that the building mode
shapes are linearly superimposed by the shear modes, u

i
( j"1,2, n), of a corresponding

building with the same mass distribution and uniform sti!ness. Then, we can form a set of
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functions (u
1
!u

2
), (u

1
!u

3
), (u

1
!u

4
), etc., as basic ingredients for mode shape

interpolation. For instance, if three-#oor translations are measured, the "rst three mode
shapes are expressed as

/
1
"u

1
#a

11
(u

1
!u

2
)#a

12
(u

1
!u

3
) (19a)

/
2
"u

2
#a

21
(u

1
!u

2
)#a

22
(u

1
!u

3
)#a

23
(u

1
!u

4
) (19b)

/
3
"u

3
#a

31
(u

1
!u

2
)#a

32
(u

1
!u

3
)#a

33
(u

1
!u

4
)#a

34
(u

1
!u

5
) (19c)

where a
11

, a
12

,2, are constant coe$cients to be determined using the identi"ed mode
shape values and orthogonality conditions between modes. For a high-rise building, it is
suggested that at least three sensors be installed at low, medium and top #oors. The more
#oors that are instrumented, the more accurate the mode shapes obtained.

4. NUMERICAL VERIFICATIONS

A "ve-storey (n"5) building with an optimal PTMD at the top #oor is presented to
verify the e$ciency of the proposed identi"cation methods and the vibration control
e!ectiveness of the PTMDs. The structural and PTMD system parameters determined
using equation (6) are given in Tables 1 and 2. Structural damping of 2% is assumed for all
modes. First of all, we pretended that the structural properties were unknown. Full or
partial (1F, 3F, and 5F) #oors were instrumented to measure their translations due to
random ambient vibrations. Two cases with noise-free and noise-to-signal ratio (NSR)
equal to 20% were studied to investigate the in#uence of the measurement noise level. First,
the extended random decrement method was performed to extract the free vibration, also
called the random decrement signatures of #oors from the measurements. In the case of
NSR"20%, the relative displacement measurements and random decrement signatures
for all #oors are illustrated in Figure 15. Then, based on the extracted signatures, the
Ibrahim time domain method was used to identify the modal properties of the system.
Table 3 shows the identi"ed structural frequencies and damping ratios, whereas Figure 16
depicts the mode shapes based on the proposed identi"cation methods and mode shape
interpolation scheme. For full measurement without noise, the identi"ed parameters should
be very close to the true parameters. The estimation error increases for partial
measurements as well as high noise levels. The identi"cation accuracy of the damping ratio
is not as good as that for modal frequency and mode shape, but is still adequate for accurate
PTMD parameter design because m

s
and r

f
are not sensitive to the variation of structural

modal dampings.
TABLE 2

Physical and modal parameters of P¹MD

Modal parameters Modal mass ratio, k
1

(mass ratio, k) 5% (2)85%)
Frequency ratio, r

f
0)92

Damping ratio, m
s

12)6%

Physical parameters Mass, m
s
(Ns2/m) 2)79

Damping coe$cient, c
s

(Ns/m) 77)8
Sti!ness coe$cient, k

s
(N/m) 3)72
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Figure 15. Response measurements and random decrement signature of "ve-storey building (NSR"20%).
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In addition, the modal frequencies, damping ratios, and the "rst four mode shapes of the
"ve-storey building-PTMD system, whose full ambient vibration measurements and
random decrement signatures for the case of NSR"20%, shown in Figure 17, are also
identi"ed and presented in Table 4 and Figure 18. It is seen that for partial measurements
JSVI=20003188=VVC=Ravi



TABLE 3

Identi,ed modal frequencies and damping ratios for a ,ve-storey building

Natural frequency (Hz) Damping ratio (%)

NSR"0% NSR"20% NSR"0% NSR"20%

Mode True Full Partial Full Partial True Full Partial Full Partial

1 0)915 0)910 0)912 0)901 0)898 2)000 2)166 1)685 1)607 1)647
(!0)6%) (!0)3%) (!1)5) (!1)9%) (#8%) (!16%) (!21%) (!18%)

2 3)371 3)360 3)356 3)360 3)358 2)000 1)556 1)637 1)569 1)662
(!0)3%) (!0)4%) (!0)3%) (!0)4%) (!22%) (!18%) (!22%) (!17%)

3 7)107 7)138 7)124 7)143 7)130 2)000 1)448 1)481 1)509 1)464
(#0)4%) (#0)2%) (#0)5%) (#0)3%) (!28%) (!26%) (!25%) (!27%)

4 10)657 10)616 10)621 10)627 10)647 2)000 2)278 2)106 1)940 1)947
(!0)4%) (!0)3%) (!0)3%) (!0)1%) (#14%) (#5%) (!3%) (!3%)

5 12)728 12)292 12)281 12)240 12)087 2)000 2)190 2)024 2)233 2)036
(!3)4%) (!3)5%) (!3)8%) (!5)0%) (#10%) (#1%) (#12%) (#2%)
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Figure 16. Calculated versus true mode shapes of "ve-storey building:***, true;* )*, full measurements;
- - - - - - - - -, 1, 3, 5F measurements.
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with NSR"20%, the proposed method is still able to identify most of the dominant modal
parameters accurately even with very close modes (the "rst and second modes). These
identi"cation results are generally adequate for structural response prediction and PTMD
performance evaluation because the total responses are dominated by the "rst few modes.
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Figure 17. Response measurements and random decrement signature of "ve-storey building-PTMD system
(NSR"20%).
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The "rst two modal dampings increase to about 7% due to the presence of PTMD, and
thus, the dynamic responses due to El Centro (S00E) earthquake are reduced, as shown in
Figure 19 and Table 5. The predicted relative displacement and absolute acceleration at the
fourth #oor (unmeasured location) and "fth #oor (measured location) of the building with
JSVI=20003188=VVC=Ravi



TABLE 4

Identi,ed modal frequencies and damping ratios for ,ve-storey building-P¹MD system

Natural frequency (Hz) Damping ratio (%)

NSR"0% NSR"20% NSR"0% NSR"20%

Mode True Full Partial Full Partial True Full Partial Full Partial

1 0)778 0)778 0)731 0)774 0)745 7)663 8)204 8)963 6)779 6)734
(0)0%) (!6)0%) (!0)6%) (!4)2%) (#7%) (#17%) (!12%) (!12%)

2 0)987 0)970 0)931 0)990 0)955 7)198 6)244 3)900 7)263 5)598
(!1)7%) (!5)7%) (#0)3%) (!3)2%) (!13%) (!46%) (!1%) (!22%)

3 3)376 3)351 3)358 3)359 3)361 2)162 1)686 1)796 1)866 2)051
(0)5%) (!0)5%) (!0)5%) (!0)4%) (!22%) (!17%) (!14%) (!5%)

4 7)108 7)118 7)132 7)122 7)136 2)032 1)493 1)496 1)573 1)686
(#0)1%) (0)3%) (#0)2%) (#0)4%) (!27%) (!26%) (!23%) (!17%)

5 10)657 10)690 * * * 2)007 1)983 * * *

(!0)3%) (!1%)
6 12)728 12)215 * * * 2)001 1)980 * * *

(!4)0%) (!1%)
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Figure 18. Calculated versus true mode shapes of "ve-storey building-PTMD system:***, true;* )*, full
measurements; - - - - - - - - -, 1, 3, 5F, PTMD measurements.

110 C.-C. LIN E¹ A¸.
PTMD are given in Figure 20. The results show both responses at measured and
unmeasured locations were predicted accurately. Since the contribution of higher mode
response for acceleration is important and the system identi"cation error in higher modal
parameters is larger than that of fundamental mode, the predicted relative displacements
are more precise than those for absolute accelerations. Also, the optimal PTMD is e!ective
in reducing peak and root-mean-square (rms) responses, as expected.
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TABLE 5

Response estimation under El Centro Earthquake with and without P¹MD

Peak response rms response

With PTMD With PTMD
Without Without

Case of response PTMD True NSR"20% PTMD True NSR"20%

4F relative 16)47 10)84 11)14 4)29 2)05 2)09
displacement (cm) (!34)1%) (!32)4%) (!52)2%) (!51)3%)

5F relative 20)49 13)69 14)04 5)27 2)52 2)61
displacement (cm) (!33)2%) (!31)5%) (!52)2%) (!50)5%)

4F absolute 0)73 0)51 0)60 0)150 0)079 0)092
acceleration (g) (!30)1%) (!17)8%) (!47)3%) (!38)7%)

5F absolute 0)96 0)79 0)85 0)198 0)120 0)134
acceleration (g) (!17)71%) (!11)5%) (!39)4%) (!32)3%)

Figure 19. Calculated #oor displacement and acceleration of "ve-storey building with and without PTMD
under 1940 El Centro earthquake: - - - - - - -, w/o PTMD; **, with PTMD.

VIBRATION CONTROL IDENTIFICATION 111

JSVI=20003188=VVC=Ravi



Figure 20. Predicted #oor displacement and acceleration response of "ve-storey building-PTMD system under
1940 El Centro earthquake: - - - - - - - - -, true; ***, NSR"20%.
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5. CONCLUSIONS

In this paper, the extended random decrement method combined with the Ibrahim time
domain identi"cation technique was used to identify the modal properties for buildings with
and without PTMDs based on only a few #oor response measurements. An interpolation
method was developed to estimate the mode shape values for the locations without
measurement. Structural seismic responses were also predicted. Numerical simulation
results using a "ve-storey building with optimal PTMD demonstrated that the proposed
system identi"cation techniques can identify system dominant modal parameters accurately
even with high closed-space frequencies and noise contamination. A small number of
response measurements, no requirement for input excitation measurements and simple
on-line calculation make the proposed system identi"cation techniques favorable to real
implementation. In addition, the PTMD vibration control philosophy was introduced and
the e!ectiveness of PTMD on real-ground motion was investigated to indicate the overall
performance of this control device. It was proved that PTMD is useful because system
damping increases after its implementation.
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APPENDIX A: NOMENCLATURE

1 vector with each element of 1
A Ibrahim system matrix
C damping matrix of the primary structure-PTMD system
C

p
damping matrix of the primary structure

c
s

PTMD's damping coe$cient
E[g2

1
]
PTMD

mean-square displacement response of the "rst mode of the primary structure with
PTMD

E[g2
1
]
NOPTMD

mean-square displacement response of the "rst mode of the primary structure
without PTMD

f
TMD

loading vector acting on the primary structure by PTMD
DHg1x( g

(u)D
PTMD

magnitude of the "rst mode transfer function of primary structure with PTMD
DHg1x( g

(u)D
NOPTMD

magnitude of the "rst mode transfer function of primary structure without PTMD
K sti!ness matrix of the primary structure-PTMD system
K

p
sti!ness matrix of the primary structure

k
s

PTMD's sti!ness coe$cient
M mass matrix of the primary structure-PTMD system
M

p
mass matrix of the primary structure

m*
j

jth generalized modal mass of the primary structure
m

s
PTMD's mass

N
s

superposition times of random decrement method process
R

aE
mean-square acceleration response ratio of primary structure

R
dE

mean-square displacement response ratio of primary structure
R

dE,1
mean-square displacement response ratio of the "rst mode of the primary structure

(r
f
)
opt

optimal PTMD frequency ratio
Sx( g

(u) power spectrum of earthquake ground acceleration
t
d

duration of random decrement signature
u location vector of PTMD
u(t) response measurement
u
s

trigger level of the random decrement method process
v PTMD's stroke
X, X< Ibrahim response matrices
x(t) displacement vector of the primary structure-PTMD system
x
i

displacement of the ith #oor of the primary structure
x( g(t) earthquake ground acceleration
x
p
(t) displacement vector of the primary structure relative to base

x
s
(t) displacement of PTMD relative to base

C
j

jth modal participation factor
d(q) random decrement signature
JSVI=20003188=VVC=Ravi
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g
j

jth modal displacement of the primary structure
K Ibrahim exponential function matrix
j
k

kth complex eigenvalue
k mass ratio of PTMD to the total mass of primary structure
(k

1
)
opt

optimal PTMD mass ratio
m
g

site damping ratio
m
j

jth modal damping ratio of primary structure
m
p

damping ratio of primary structure
m
s

PTMD's damping ratio
(m

s
)
opt

optimal PTMD damping ratio
u

g
site dominant frequency

u
j

jth modal frequency of primary structure
u

p
natural frequency of primary structure

u
s

PTMD's natural frequency
/
ij

ith value of the jth mode shape of the primary structure
/
j

jth mode shape vector of primary structure
u
lk

kth complex mode shape at location l
W, W< Ibrahim complex mode shape matrices
JSVI=20003188=VVC=Ravi
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