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At high frequencies, one is interested in both the energy distribution and the energy #ow of
connected vibrating structures. The prediction of time- and space-integrated energy quantity
has been usually performed by the statistical energy analysis (SEA), whereas the vibration
conduction analysis (VCA) was suggested for calculating the time-averaged spatial energy
distribution in structures. However, the VCA has not been useful due to inaccuracies in
predicting the energy distribution and estimating the vibration transmission through
structural joints. In this article, the ray tracing method (RTM) for high-frequency plate
#exural vibration is suggested for solving the foregoing problems. The ray tube concept is
adopted for describing the emanating circular wave and the governing relationships are
derived for incident, re#ected, and transmitted ray tubes at the coupled boundaries. The
proposed RTM is applied to the prediction of the time-averaged vibration distribution in
a single square panel and two line-coupled square plates. In addition, a four-panel array is
investigated for the performance of the proposed RTM in analyzing the vibration
transmission characteristics by panel joints. The results reveal that an improved prediction
of spatial energy distribution can be obtained compared with SEA and VCA. It is also noted
that the performance of the RTM is very similar to that of the wave intensity analysis (WIA)
although RTM results seems to be slightly better.
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1. INTRODUCTION

The calculation e$ciency of modal methods will become lower or the calculation itself is
often obsolete at the mid- or high-frequency bands in which the involved wavelength is
comparatively much smaller than the characteristic size of the structure. Additionally, those
methods have limited frequency range for reliable results due to the uncertainties involved
in the structure. Statistical energy analysis (SEA) [1] has been used for the high-frequency
vibro-acoustic analysis although the results are expressed only by time-averaged and
spatially integrated energies.

In order to enable the calculation of the spatial distribution of vibration energy, many
works have been done. Nefske and Sung [2] suggested the so-called power -ow analysis or
energy -ow ,nite element method by using the vibration conduction equation derived for
one-dimensional vibrating structures. Wohlever and Bernhard [3] reexamined the
vibration conduction relationship for the rod and beam structures. Bouthier and Bernhard
[4}6] showed that the vibration analogy with heat conduction is valid for the
0022-460X/01/070263#30 $35.00/0 ( 2001 Academic Press
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two-dimensional vibration "eld composed of plane wave components. However,
Langley [7, 8] pointed out that there is a discrepancy between the solution of the
vibration conduction analysis (VCA) and the exact solution for the in"nite two-dimensional
structure. Kim et al. [9] suggested a modi"ed vibration conduction equation in
the cylindrical co-ordinate and then the far-"eld energy became the same with the
exact value. Langley [8] also showed that the two-dimensional vibration conduction
equation would be valid only for the structure having a relatively small damping
factor or highly reverberant wave "eld. If this is true, this method is not much fascinating
compared with SEA except the possibility of using any commercial package for solving
heat conduction problems in the structural vibration analysis. There will be a little variation
distribution in each subsystem due to the high level of reverberations and the resulting
vibration "eld will have noting but a uniform energy distribution that can be handled easily
by the SEA.

Carcaterra and Sestieri [10] derived the power balance equation for one- and
two-dimensional vibrating structures through some operations on the Navier equation.
They also suggested an envelope energy model by utilizing the Hilbert transform for #exural
beams and showed that this envelope energy model yielded close result to the exact solution
near the excitation point and the boundaries [11]. Later, they re"ned the envelope energy
model for the analysis of complex envelope displacement by which spatial #uctuations of
the displacement could be predicted [12]. However, this technique looks rather complex to
be applicable to the complex structures.

Smith [13] had suggested a hybrid energy method for the single-plate problem in which
the total vibration "eld is divided into a direct "eld and a reverberant "eld. By applying this
concept to a point-excited single plate, he could obtain the energy distribution over the
plate that was very close to the result by exact analysis irrespective of the damping strength.
Le Bot [14, 15] also pointed out that the assumption of plane wave "eld might fail for
largely non-di!use "elds and suggested di!erential equations for each of plane, cylindrical,
and spherical wave "elds. By using the Huygens principle and the solutions from di!erential
equations for cylindrical and spherical waves, he derived a vibroacoustic model for the
two-dimensional structure and the three-dimensional acoustic enclosure. The result for
a cavity was very similar to that by the acoustic ray tracing.

One of the limitations of SEA is that the method sometimes yields unreliable prediction
of the vibration transmission for coupled structures. In applying SEA technique to
two-dimensional structures such as #at plates, the coupling loss factors are generally
derived under the di!use "eld assumption. However, this di!use "eld assumption is far from
the reality in many coupled structures. Wave intensity analysis (WIA) technique suggested
by Langley [16, 17] is an extension of SEA in which the di!use "eld assumption
was removed. In this method, the incident wave energy upon structural junction
between plates is assumed being variable with respect to the incident angle and the variation
of transmission coe$cient can be included in the power balance equations between
the directional wave energies. Due to these favorable characteristics, WIA can deal with
the wave "ltering phenomena at the coupled boundaries and can give more
enhanced prediction in comparison with the conventional SEA. Contrastingly, in
the vibration conduction analysis (VCA) and Smith's hybrid energy method, the
directional wave energy has not been considered but the total reverberant energy was
considered. Consequently, it is doubtful that the VCA can deal with the wave "ltering
phenomena for two-dimensional coupled structures or three-dimensional coupled
acoustical volumes.

The ray tracing method (RTM) is one of the geometrical acoustics techniques and has
been widely applied to the room acoustics areas to predict the acoustic impulse response
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and the acoustic "eld distribution at high frequencies. The impulse response of a room is
build up by transient sound signals, which comes from the propagation of acoustic waves
with time. Schroeder [18, 19] tested the primitive idea in calculating the impulse response in
rooms. Krokstad et al. [20] used a mathematical model of a hall, which is excited by
a sound pulse emitted from a "xed point source. Energy is carried by rays equally
distributed over the whole or over a selected part of the solid angle. The life history of each
ray is calculated by assuming geometrical re#ection at all surfaces, until the ray strikes the
audience area where it is assumed to be totally absorbed. Kulowski [21] reported on an
algorithm for the sound ray tracing in a three-dimensional space in the viewpoint of
economizing both the calculation time and the computer memory space. However, the
characteristics of omni-directional source by a sound pulse cannot be guaranteed by tracing
the omni-directionally generated rays represented by lines. Maercke and Martin [22]
proposed a &&conical beam model'' in order to model an omni-directional radiation pattern
from a source, in which each ray is modelled as a conical beam shape. Lewer [23] suggested
a &&triangular beam method'' in which each ray is modelled as a triangular beam. The
echogram can be obtained by collecting the contributions from all rays on the receiver
position.

RTM has been used mainly for the prediction of transient sound pressure levels in rooms
by summing the acoustic energy traces for the receiver position. The prediction of steady
state response such as frequency response function by using RTM has been a pending
question until recently. VorlaK nder [24] proposed a method for predicting the frequency
response function from high-accuracy energy impulse response by using a &&combined ray
tracing/image-source algorithm''. Image-source algorithm is another method of geometrical
acoustics that should use the Fourier transform, but has very similar characteristics with
RTM.

Recently, several attempts on the frequency response prediction by using the ray
tracing concept were carried out. Geest and Patzold [25] used the &&phased ray tracing
algorithm'' in which, when calculating the contributions of the various re#ections, a
varying phase with a ray propagation was included. They reported a good agreement of
the predicted frequency response function with that by boundary element method for an
acoustic enclosure with specular re#ective walls. Shin and Ih [26] also studied the
characteristics of such technique for several geometric acoustic models and con"rmed its
applicability and limitation in the mid-frequency range above the Schroeder cut-o!
frequency.

In structural acoustics "eld, Cremer et al. [27] and Skudrzyk [28] has applied the ray
tracing concept to the wave summation in the vibrating simple rod. Gunda et al. [29]
analyzed a simple square plate by using the image source method. Parot and Thirard [30]
used RTM to the vibration analysis of a truss structure and a coupled plate. Recently,
Hugin [31] has extended the wave summation method of Cremer et al. [27] into the
vibration analysis of coupled beam structures. They showed that the proposed ray tracing
method was valid in the middle- and high-frequency ranges in the vibration of the coupled
one-dimensional structure.

In this paper, the ray tracing method for high-frequency structural vibration is studied for
the analysis of #exural vibration of #at thin-plate structures. A ray tube model is suggested
which satis"es the high-frequency assumptions at the source point and the coupling
boundaries. A single square plate and two coupled plates are analyzed by the proposed
RTM and the results are compared with those by SEA, VCA and analytical calculation. In
order to test the proposed RTM in calculating the vibration transmission characteristics,
a four panel array used by Langley [16] is also analyzed and comparisons are made with
SEA, VCA, WIA and analytical calculation.
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2. RAY TRACING METHOD FOR FLEXURAL VIBRATION OF THIN PLATE

2.1. ENERGY DENSITY AND INTENSITY VECTOR IN A THIN PLATE

The #exural displacement of a thin, transversely vibrating plate excited by time harmonic
force Fe+ut at a point, oscillating with a circular frequency u, is governed by

D+ 4w(x, y)!ohu2w(x, y)"Fd(x!x
f
, y!y

f
), (1)

where w (x, y) is the #exural displacement, D is the complex bending sti!ness as D
0
(1#jg),
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is the bending sti!ness and g is the loss factor, o is the material density, h is the
plate thickness, F is the magnitude of time harmonic force, and (x
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) is the excitation

position. For stationary time harmonic response, the time-averaged kinetic energy ¹ (x, y)
and potential energy density ;(x, y) is given by [6].
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Here, * denotes the complex conjugate and k is the Poisson ratio. The time-averaged
#exural wave intensity in the x and y direction can be expressed as [32]
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Because the near-"eld wave components are acting only at the near excitation points or
discontinuities such as supporting boundaries or coupled boundaries, the displacement
w at a position which is su$ciently remote from discontinuities or excitations can be
approximately expressed with the directional plane waves as follows [8, 33]:

w (x, y; u)+P
2n

0

wL (h) e~+k (x #04 h`y 4*/ h) dh. (6)

For g@1, the complex wavenumber k is given by

k"k
0
!ja/2, (7)

where k
0

is the wavenumber in the absence of damping, a is the damping coe$cient that is

equivalent to ug/cg , and cg is the group velocity that is given by 2Ju 4JD
0
/oh .
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If there is only one plane wave along a direction, the displacement can be assumed
as w"wL e~+k (cos hx#sin hy), the vibration energy density can be derived from equations (2)
and (3) as

e(x, y; u)"¹(x, y;u)#; (x, y; u)"1
2

ohu2 Dw; D2 exp [!a (x cos h#y sin h)]. (8)

From equations (4) and (5), the vibration intensity distribution by this wave is given by
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where i
x

and i
y
are unit vectors in the x and y directions respectively.

If there are a number of directional plane waves as in equation (6), the energy density can
be obtained by substituting equation (6) into equations (2) and (3). Thus, the kinetic energy
can be expressed as
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If all wave components were considered to be statistically independent, i.e., a random wave
"eld, the interference between the waves propagating in di!erent directions can be neglected.

Then, approximately equation (10) can be written as
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Similarly, the potential energy can be approximately written as
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Therefore, the energy density can be approximated as [16]
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or it can be derived from the directional integration of wave energy e(x, y;u, h) as follows [16]:
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In the vibration "eld at high frequencies, the wavelength becomes considerably smaller
than the characteristic size of the structure. There will be a number of vibration modes and
the strong modal overlap between them, that the exact vibration displacement or phase
distributions are losing their importance. In the viewpoint of vibration intensity, the local
vortex phenomenon due to the vibration modes becomes less important. On the contrary,
the approximated energies and the overall power #ow paths are more important in
analyzing the vibration and the associated noise problem. Therefore, the frequency band
analysis in terms of the vibration energy and intensity is the most appropriate method in the
high-frequency range. The band-integrated kinetic energy can be written as
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where u
1

and u
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are the lower and upper band limit respectively. Because the interference
components between the di!erent directional plane waves have #uctuating characteristics
with the frequency variation, these components would be smeared out by the band
integration. Then, if the band width Du
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The same procedure can be applied to the band-integrated potential energy;
b
(x, y) and the

band-integrated energy density can be approximately given by
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Equation (17) or equation (18) is derived only with the assumption that interference terms
are to be cancelled out by the band-integration process. Equation (18) can also be directly
derived from equation (14) with the band-integration. The neglect of the interferences
between directional waves can be justi"ed when the directional waves are incoherent or of
frequency-averaging process.

The band-integrated energy density e
b
(x, y) is the result of the superposition of the

directional energy densities e
b
(x, y; h) in which h is the propagation direction:
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In SEA in which the di!usive wave "eld is assumed, the directional wave energy density is
simply given by
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where S is the area of the two-dimensional vibration "eld and the symbol ST represents the
spatial integration. That is, SEA cannot deal with the directional wave energy and spatial
variation of energy density. The directional wave energy in WIA is assumed non-uniform
with respect to the heading direction of the wave and uniform over the space. In this case,
e
b
(x, y; h) can be represented as

e
b
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Here, Se
b
(h)T is the space-integrated directional energy at each position that is denoted as

E(h) in WIA [16]. This reveals that WIA cannot deal with the spatial distribution of energy
density, although WIA can deal with the directional wave energy.
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Through the same procedure applied on the band-integrated energy density, the
band-integrated vibration intensity vector I

b
(x, y) at a position can be approximately

written as
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The foregoing summarized expressions for energy density and intensity vector will be
applied in the development of RTM in the next section.

2.2. BASICS OF RTM

The frequency response function H (x, x
f
;u) under the steady state excitation could be

resolved by the Fourier transform of the impulse response as follows:
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When the structural connections exist between the di!erent structural elements, the
transmitted signal can be regarded as a kind of re#ected signals. The impulse response
function h
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Substituting equation (25) into equation (23) results in
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The "rst term represents the direct "eld and the second term represents the re#ected "eld,
which means that the total "eld is the summation of the direct "eld, w
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Therefore, the vibration "eld in the frequency domain can be expressed with the free
space Green function, H

=
(x, x

f
;u), and its re#ections from the boundaries. If the involved
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waves have propagating wave characteristics, the impulse response functions would be
build up by h

=
(x,x

f
; t) and its successive re#ections as follows:
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where w
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; u) denotes the wave "eld formed from the nth re#ection. Equation (31) is

equivalent to the wave train theory discussed by Cremer et al. [27] or Hugin [31].
The quadratic spectral displacement response can be obtained from equation (31) as
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The last two terms on the right-hand side of equation (32) mean the interferences between
the direct "eld and the nth re#ected "eld or interferences between the nth and the mth
re#ected "eld. Although the re#ected waves actually originate from direct wave, they have
phases which di!er from each other in general. By applying band integration on equation
(32) and by assuming the presence of multiple modes within each band, the response
#uctuation due to the interference terms could be #attened out:
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Because every trace on the right-hand side of equation (33) at the observation position
x means the freely propagating plane waves, the band-integrated energy density can be
approximately obtained from equation (17) as
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If a number of point excitations drive the system, equation (32) can be expanded as
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where p denotes the index of each point excitation. If the excitations are incoherent from
each other and the band integration is performed, the following equation is valid for the
multi-excitation condition:
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2.3. IMPLEMENTATION OF RTM FOR FLEXURAL VIBRATION OF THIN PLATES

2.3.1. Basic strategy of cylindrical wave tube tracing

The application of wave train theory to the analysis of the two-dimensional wave "eld
could be thought of just like for the one-dimensional case [27, 28, 31]. However, due to the
mathematical complexity in describing the initial and re#ected two-dimensional waves, it is
quite di$cult to calculate exactly the re#ected wave "eld [29, 34, 35]. However, a numerical
calculation of the re#ected wave "eld would be possible that would yield acceptable
predictions at high frequencies although the exact value could not be obtained.

The direct bending wave "eld for a point-excited thin plate can be expressed by the wave
propagation in an in"nite plate [27] and the following approximate displacement response
wL
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(r) can be derived for DkrDA1:
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equation (38) has a circularly diverging characteristic centered at the excitation point and is
invalid near the excitation point. In order to obtain the "nite maximum value of wL
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Equation (39) is identical to the initial radius formula proposed by Smith [13]. For
undamped case, kr

0
"n/2"0)6366 and, the greater the damping factor, the smaller kr

0
becomes. One can "nd that w
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(r) approximates to w
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(0) inside r
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.

The approximate solution wL
dir

(r) implies a circularly propagating wave from the source
position. By discretizing this circular wave into many circularly spreading wave tubes as
depicted in Figure 1, one can calculate the direct wave "eld approximately. If the whole
angle of 2n is divided into a number of discrete angle region, the response inside the ray tube
area can be estimated for each ray tube. Di!raction, scattering and refraction as well as the
specular re#ection in#uence the re#ected wave "eld generated from the incident plane wave.
If the boundaries are shaped in straight lines and the re#ective condition is assumed to be
homogeneous along the lines, the re#ected "eld can be approximately calculated only by the



Figure 1. A bundle of ray tubes which is discretized from a circulatory propagating wave. The solid line
represents the propagation of a ray tube in the structural wave "eld con"ned between two straight boundaries.
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specularly re#ected ray tubes. The investigation by Gunda et al. [29, 34, 35] showed that the
di!raction a!ects only the area near the boundaries in plate vibration.

2.3.2. Calculation of direct ,eld

As discussed in the previous section, the vibration "eld of a thin plate is composed of
direct and re#ected wave "eld. Energy response can be also approximately calculated by
two energy "elds as follows:

e(x)"e
dir

(x)#e
ref

(x). (40)

Here, e
dir

(x) ad e
ref

(x) represent direct energy "eld and re#ected energy "eld, respectively,
and the direct energy component can be evaluated from the direct wave "eld as

e
dir

(x)"
oh D ju )w

dir
(x) D2

2
. (41)

Direct energy density distribution can be further simpli"ed as follows:

e
dir

(x)"
oh

2

DFD2
DZ

=
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,e

0
for r)r

0
, (42)
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dir
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DFD2
DZ

=
D2

r
0
r

e~a(r~r0)"
e
0
r
0

r
e~a(r~r0) for r'r

0
. (43)

Here, e
0

is de"ned as the initial energy density at the initial radius r
0

and Z
=

("8JDoh) is
the driving point impedance of an in"nite plate.

Direct energy density can also be estimated by using the relation between the observation
points and each of the discretized circular ray tubes. Consider a number of ray tubes as
shown in Figure 2, which emanated from the source position with an in"nitesimal angle Dh.
If the receiver point is within the ray tube, the energy density and intensity can be



Figure 2. A ray tube model starting with an in"nitesimally small angle Dh. The points A and B are positioned
within ray tube sections at r

0
and r

c
from the origin respectively.
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approximately determined by the value at the centerline of the ray tube as follows:

e
dir

(x)+
e
0
r
0

r
c

e~a(r
c
!r

0
), (44)

I
dir

(x)+
cg e
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r
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e!a(r
c
!r

0
) (cos hi

x
#sin hi

y
). (45)

Here, r
c
is the distance of the wave front center from the origin. The foregoing estimation

scheme will hold, provided that the distance between the receiver point and the centerline of
ray tube, where r

c
is estimated, is shorter than the wavelength j, i.e., rDh/2@j.

2.3.3. Calculation of re-ected ,eld

When a ray tube is incident on a boundary, it is equivalent with a plane wave incidence if
the width of the incident ray tube is narrow enough compared to the wavelength, i.e.,
rDh@j. Figure 3 shows a plane wave that is incident on a joint between two coupled plates
with an incident angle /

i
and being re#ected and transmitted. The transmission angle /

j
is

determined by the Snell's law of sin /
i
/c

i
"sin /

j
/c

j
, where c

i
and c

j
denote the phase speed

of the vibration were at each plate. Because the guidelines of a ray tube are incident on the
boundary and transmitted according to the Snell's law, there is a de"nite relation between
the incident and transmitted ray tubes in their width angles Dh

i
and Dh

j
. The latter can be

obtained from the di!erence between two transmission angles of guidelines. Namely, the
transmission angle /

j,h
of the upper guideline is determined from sin (/

i
#(Dh

i
/2))/c

i
"

sin (/
j,h

)/c
j

and the transmission angle /
j,l

of the lower guideline is determined from
sin (/

i
!(Dh

i
/2))/c

i
"sin (/

j,l
)/c

j
: "nally, one can get Dh

j
"/

j,h
!/

j,l
. As depicted in

Figure 3, the position of the origin of ray tube is changed due to the transmitted guidelines.
The propagation distance r

i
of the incident ray tube will be changed to a new propagation

distance r
j
, where they should follow the geometrical relation r

i
Dh

i
cos /

j
"r

j
Dh

j
cos/

i
.

The power transmission coe$cient q
ij
(/

i
) at the coupled boundary is de"ned as the ratio

between the transmitted power and the incident power normal to the coupled boundary line
[27]. Applying this coe$cient to the relation between the carrying powers of the incident
and the transmitted ray tube, the following relation has to be satis"ed between the incident
ray tube and the transmitted ray tube:

q
ij
(/

i
) cg,i

ei
i
¸ cos/

i
+cg,j

et
j
¸ cos /

j
. (46)

Here, cg,i
and cg,j

denote the group speed of the vibration wave at each plate respectively.
Therefore, the vibration energy density of the transmitted and re#ected ray tubes at the



Figure 3. Geometrical schematic and notations of rays involved at the coupled boundary.
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coupling boundary can be written as

et
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i
) (cg,i
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) (cos/

i
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j
) ei

i
and er

i
"(1!q

ij
(/

i
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(47)

respectively. For a newly generated re#ected or transmitted energy tube, the contribution
by this ray tube on energy density and intensity at an observation point within the ray tube
area can be evaluated as

De
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), (48)
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) , (49)

where e
1

and r
1

are the energy density and the propagation distance, respectively, of the ray
tube at the starting boundary position as shown in Figure 4. The "nal energy density and
intensity distribution is the summation of the direct and the re#ected energy densities, and
intensities respectively. In the foregoing derivations, the transmitted energy "eld in the
connected plate was considered as the re#ected energy "eld.

2.3.4. Calculation of space-integrated energy

If energies are calculated at a number of receiver points, the vibration energy distribution
can be calculated. In order to obtain the total vibration energy of the plate, the energy traces
at the receiver points should be summed. However, this routine requires a long computation
time, because the energies at all receiver points within the ray tube should be estimated for
every ray tube propagation from a boundary to another. When a ray tube propagates from
a boundary to another, its contribution to the total energy of the plate can be simpli"ed as
depicted in Figure 4. The amount of contribution by a ray tube to the total energy SeT

i
of

the ith plate is given by

DSeT
i
+P

r2

r1

e(r)Dhrdr"e(r
1
)r

1
Dh(1!e!a(r

2
!r

1
) )/a, (50)



Figure 4. A ray tube propagating from a panel boundary to another.
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where r
1

is the propagated distance of the ray tube at the starting boundary from the origin
and r

2
at the newly encountered boundary. The band-integrated energy Se

b
T
i

can be
approximately written as Se

b
T
i
"Du

c
Se(u

c
)T

i
. Similarly, the contribution by this ray tube

to the total directional wave energy Se(h)T
i
of the ith plate can be determined for the range

of (h
0
!Dh/2)(h((h

0
#Dh/2) as

DSe(h)T
i
+DSeT

i
/Dh. (51)

2.3.5. Convergence condition

The convergence of RTM prediction should be viewed with respect to the area-integrated
value of the energy density response and the minimum propagation distance for
convergence. For a point excited single plate with fully re#ective boundary conditions, the
space-integrated vibration response can be approximately calculated for the propagated
distance r as follows:

SeT+e
0
nr2

0
#P

r

r0

e(r) 2nrdr"e
0
nr2

0
#e

0
r
0
2n(1!e~a(r!r

0))/a. (52)

Therefore, in a reverberant condition, the spatially integrated quadratic value reaches 99%
of the "nal result when e!a(r!r

0
)
"0)01. Therefore, in the single-plate problem, one can

obtain a 99% converged prediction with the propagated distance r
lim

is limited to

r
lim

"!log
e
(0)01)/a. (53)

When a plate is under the non-reverberant condition, i.e., if the direct "eld is very strong
compared to the re#ected "eld, the limiting propagation distance have to be longer than at
least the typical size of the plate in question.

When n@1 and propagated radius r goes to in"nity, r~1
0

is nearly equal to nk/2 and
equation (53) becomes
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D
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DFD2
2ugDZ
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D
, (54)

which is the same form with the usual SEA result for a single plate.

2.4. CHARACTERISTICS OF RTM

2.4.1. Computation e.ciency of R¹M

A very long calculation time is required for using the ray tracing method in the following
involved computations: "rst, the generation of ray tubes is needed and, second, the
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propagation, re#ection, transmission of each ray tube should be calculated. Finally, the
generated ray tubes should be stored for each structure and later fetched again in order to
continue the computation for the propagation of each tube in structures. In addition,
a number of ray tubes should be employed for ensuring the calculation for the convergence.
For a single plate, the computational e$ciency of RTM can be described by r

lim
. Because

r
lim

J1/gJu , in fact, computation time becomes longer with small g and low u values. In
order to ensure the width of the ray tube to be smaller than the wavelength until the end of
calculation for convergence, the condition of Dh@j/r

lim
has to be imposed on and the initial

angle division should be carried out under this condition.
The wave intensity analysis (WIA) method assumes that the plane wave for each direction

can be expanded into Fourier series of circular functions. These series will be substituted
into the power balance equation for the directional plane waves and the Galerkin procedure
is required to get the coe$cients of the circular functions. Somewhat complicated
integration is involved during this process and a number of Fourier functions are needed for
improving the convergence of calculated result [16]. Whenever the analyzed structure is
changed, every time in using WIA, one should carry out a new integration at line
boundaries, whereas the RTM requires only simple data because the calculation routine is
prepared already. In terms of the calculation time, SEA o!ers the fastest estimation of the
structural behavior in vibration. Therefore, it is thought that the computational e$ciency
should not be evaluated only by the required time.

2.4.2. Comparison of R¹M with other high-frequency methods

When all the wave actions in the structure are known well, one can obtain the energy and
intensity distribution over the whole structure, in principle. However, WIA, SEA and VCA
are based upon the simpli"ed energy models such as the power balance equation or the
vibration conduction equation. SEA is on the grounds of the reverberant di!use "eld, WIA
is based on the reverberant "eld built up by the uncorrelated, independently behaving
directional waves, the VCA assumes the wave "eld made up of plane waves. In contrast, the
suggested RTM is based upon the approximately evaluated wave "eld within the structure
by tracing the circular wave tubes. The suggested RTM is not based on the simpli"ed energy
model but tries to "nd out all the e!ective wave motions within the plate. If the assumed
conditions are ful"lled and the assumed behavior of each ray tube is in good accuracy,
predictions by RTM would be close to the real things happening in the plate. Because of
their theoretical foundation, SEA and VCA cannot deal with the directional wave energy
and WIA cannot yield spatial distribution of energy "eld, but RTM is able to deal with the
directional wave energy and can yield the spatial distribution of dynamic properties.
Although VCA can calculate the spatial distribution of energy density, VCA, that is based
on the plane wave assumption, cannot exactly describe the direct "eld formed by circularly
diverging waves; however, the suggested RTM can take into account the direct "eld very
precisely. Additionally, owing to the fact that RTM can deal with the directional wave
information, the result is expected to include the wave "ltering e!ect [16] across the
structural line junctions of the plate, whereas SEA and VCA results cannot include this
e!ect because they are based on the angle-averaged transmission coe$cients [16].

3. APPLICATION TO THIN PLATES

3.1. SINGLE PLATE

A square plate with an edge length of 2 m is excited at the center with a normal point
force of 1 N. All edges are simply supported. Material properties of the steel plate are



Figure 5. Predicted results for a single panel excited at the center point (g"0)01, f
c
"1 kHz in 1

3
-octave band).

(a), (c), (d) Predicted distribution of vibration levels (dB re 1e-8 m/s); (b) intensity vectors. (a), (b) RTM; (c) mode
summation method; (d) VCA. SEA result for this case is 130)6 dB.
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speci"ed as follows and the same physical and geometrical data will be used throughout this
paper except the case speci"ed otherwise: density o"7800 kg/m3; Young's modulus
>"2]1011 N/m2; Poisson ratio k"0)3; loss factor is either g"0)01 or 0)1; thickness
h"1)5 mm. At 1 kHz in 1

3
-octave band, the modal density of the plate is 0)867 (modes/Hz)

and the modal overlap factors are 8)7 and 86)7 for g"0)01 and 0)1 respectively. Statistically,
about 200 modes exist within the 1

3
-octave band centered at 1 kHz. The value of a is 0)2614

(for g"0)01) or 2)614 (for g"0)1) at 1 kHz in 1
3
-octave band. From equation (50), the

energy density integrated over r
0
)r)1 is approximately 22)8% (for g"0)01) and 92)4%

(for (g"0)1), respectively, as compared with that for r
0
)r)R (range). Therefore, the

latter case of g"0)1 can be considered as a highly damped case.
For the truncated analytical values, by using the modal summation technique, as many as

100]100 normal modes in sine functions were adopted. The band integration was
performed for the third-octave band at the center frequency of 1 kHz after the frequency
sweeping of nearly 1 Hz resolution. In applying RTM to the single plate, a total of 7204 ray
tubes were employed and repeated calculations were carried out for each ray tube until



Figure 6. Predicted results for a single panel excited at the center point (g"0)1, f
c
"1 kHz in 1

3
-octave band).

(a), (c), (d) Predicted distribution of vibration levels (dB re 1e-8 m/s); (b) intensity vectors. (a), (b) RTM; (c) mode
summation method; (d) VCA. SEA result for this case is 120)6 dB.
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reaching the propagation distance r"!log
e
(10~3)/a (m) for g"0)01 case and r"!log

e
(10~5)/a (m) for g"0)1 case. SEA calculations were obtained by multiplying the last term in
equation (54) by Du

c
, and VCA calculations were performed as in reference [6].

Figures 5 and 6 show the calculated vibration distributions when g"0)01 and 0)1 and
Figure 7 represents those along y"1 m. In Figure 5, compared with VCA result, RTM
prediction for g"0)01 is seen to be more closer to the analytic result by using the modal
summation method. VCA predicts nearly uniform level distribution of about 130 dB over
the whole plate, while the analytical result near the excitation position is 139 dB or more. In
addition, the level distribution by modal summation method has a decaying trend from the
excitation point to boundaries and the vibration level becomes down to 127 dB near the
boundary. Compared with the analytical result, the prediction by the proposed RTM shows
a similar level distribution near the driving point and the level becomes nearly 129 dB by
approaching the boundaries. Note that SEA result for this case is 130)6 dB. When g"0)1,
the plate is now highly damped and the RTM prediction is very close to the analytic one
nearly in the entire plate as illustrated in Figure 6. In contrast, VCA underestimates the



Figure 7. Comparison of predicted vibration levels along y"1 m line: (a) g"0)01; (b) g"0)1:*#*, analytic;
) ) ) ) ) ) ), VCA; *s*, RTM; + + -, SEA; **, in"nite plate.
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vibration level near the source position and overestimates near the boundaries. Note that
SEA result for this case is 120)6 dB. The aforementioned features of prediction precision of
RTM and VCA are illustrated more clearly in Figure 7. Again, one can con"rm that RTM is
superior to VCA in the estimation of the excitation level and the overall distribution of the
vibration level, in particular for the highly damped panel. In Figure 7, an abrupt change of
the predicted curves by RTM can be observed near the boundary and this is due to the
limitation in the computing algorithm used here. Two small shaded regions near the
boundaries can be seen in Figure 4, at which the propagation distance of each
corresponding observation point is shorter than the starting distance r

1
or longer than the

ending distance r
2
. For simplicity, the calculations at the observation points within these

regions were omitted and this is the cause of the abrupt changes in the predicted curve.
Figure 8 shows the comparisons of the predicted vibration levels with a frequency at an

observation position. For the case of g"0)01, RTM shows little di!erence with SEA and
VCA, and all methods are in good agreement with the analytic data, which shows
a diminishing #uctuations with the frequency increase. However, when g"0)1, with
increased frequency and compared with the spectral mean analytic results, predictions of
SEA shows a large deviation and VCA overpredicts, but the prediction by RTM is in good



Figure 8. Comparison of predicted vibration levels with 1
3
-octave band analysis at (x, y)"(1)21, 1)83) position:

(a) g"0)01; (b) g"0)1: *#*, analytic; ) ) ) ) ) ) ), VCA; *s*, RTM; + + -, SEA; **, in"nite plate.
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agreement. One can observe that RTM predictions are closing with the solution of in"nite
plate with an increased frequency and increased damping. The di!erence between RTM and
the solution of in"nite plate can be explained by the strength of the reverberant wave "eld.
Comparisons of predicted total plate energy Se

b
T with varying frequency are plotted in

Figure 9. Predicted curves by all methods are nearly the same and in good agreement with
the mean value of analytic results. As shown in Figure 9(b), it is interesting that SEA and
VCA predict the analytic total plate energy very well although the plate is not in the
non-reverberant condition.

3.2. TWO LINE-COUPLED PLATES

A structure composed of two identical square plates is chosen as a test model for the
coupled structure. Two plated are joined at one common boundary and the material



Figure 9. Comparison of predicted total energy of the plate with 1
3
-octave band analysis: (a) g"0)01; (b) g"0)1:

*#*, analytic; *s*, RTM; } } } } , SEA, VCA.
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properties and dimensions of each plate are the same as in the previous section. All
boundaries of each plate are simply supported including the coupling boundary as shown in
Figure 10. Plate 1 is driven by an excitation force 1N at the center point.

Power transmission coe$cient, q(/)"q
0
cos2 /, was taken from reference [27], where q

0
denotes the power transmission coe$cient for normal incident plane waves. In this case,
q
0
"0)5 was used. Analytical data were obtained by using the modal summation method

that has taken 500]500 modes into account for each plate by adopting sine functions in
x and y directions [36]. Then, the band integration was performed with 1 Hz resolution in
a frequency sweeping. VCA solutions for two line-coupled square plates were obtained
using the procedure described in Appendix A. In applying RTM to the coupled plates, the
same number of ray tubes with the single-plate case in the previous section was employed.
Calculations were continued for each ray tube until reaching the propagation distance
r"!log

e
(10~3)/a

1
for g"0)01 case and r"!log

e
(10~5)/a

1
for g"0)1 case, where



Figure 10. Schematic of the coupled square plates sharing a common line boundary.
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a
1

equals the factor a in plate 1. SEA calculation were carried out with simple power
balance equations [1, 16] with g

ij
"cg,i

l
y

Sq
ij
(/)T/unS

i
, in which g

ij
is the coupling loss

factor from the ith to jth plate, l
y
is the coupling length, S

i
is the area of the ith plate, and

Sq
ij
(/)T is the angle-averaged power transmission coe$cient from the ith to the jth plate.

Here, 2q(0)/3 was adopted as Sq
ij
(/)T [27].

When the system is not very heavily damped (g"0)01), the velocity level distribution in
plate 1 predicted by RTM is very close to the modal solution than that by VCA as can be
seen in Figure 11. The whole predicted shape and condition are very similar to those of the
single plate in the previous section. SEA result for this case is 129)9 dB. In Figure 12(a),
except the data scatter within $1 dB, very good agreement can be observed between
analytical and RTM results and the peaks and troughs are due to the strong modal
behavior. In plate 2, VCA predicts nearly uniform level distribution along y"1 m line
while RTM result shows at least a slight decreasing trend. The di!erences between RTM or
VCA and analytic calculation along this centreline could be ascribed to the local
undulations in modal responses. This is due to the lack of damping and most of the areas in
panel 2 have very similar levels to RTM or VCA result except local peaks. SEA result for
this case is 122)2 dB. The integrated value of analytic results on plate 2 is 123)2 dB and both
results of VCA and RTM are consistent with analytic values. However, compared with
VCA result, the decreasing trend of RTM estimation is more alike with that of the analytic
result near the joint and at the central region on plate 2 as can be seen in Figure 11(d). These
features can be illustrated more clearly when the vibration levels are plotted along
y"0)7 m line as shown in Figure 12(b).

Under the heavily damped condition of g"0)1, the overall characteristics obtained by
various methods for plate 1 are almost identical to those of the single plate excitation in the
previous section. That is, the RTM prediction closely approximates the analytic one nearly
all over the plate as illustrated in Figure 13. In contrast, VCA underestimates the vibration
level near the loading position and overestimates near the boundaries. Note that SEA result
for this case is 120)5 dB. The aforementioned features of prediction precision of RTM and
VCA are illustrated more clearly in Figure 14. In plate 2, one can "nd that both RTM and
VCA yield very similar results to the analytic one, but the trend of RTM looks more closer
to the analytically obtained vibration distribution. SEA result for this case is 103)5 dB.

As an additional example, two line-coupled plates with di!erent lengths and thicknesses
were considered. Plates 1 and 2 had a common length, l

y
, of 1 m, and had length of

x directional lengths 0)7 m (l
x,1

) and 1)2 m (l
x,2

) respectively. Their thickness were 3 and
4 mm respectively. Other material properties were the same with previous test plates. An
angle-dependent power transmission coe$cients were adopted from references [16, 27] and



Figure 11. Predicted vibration level distribution for two coupled panels excited at the center point of panel
1 (g"0)01, f

c
"1 kHz in 1

3
-octave band). (a), (b) RTM; (c), (d) mode summation; (e), (f ) VCA. (a), (c), (e) Plate 1;

(b), (d), (f ) plate 2. Predicted result by SEA is 129)9 dB for plate 1 and 122)2 dB for plate 2.
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Figure 12. Comparison of predicted vibration levels for g"0)01; (a) plate 1 along y"1 m; (b) plate 2 along
y"0)7 m: *#*, analytic; ) ) ) ) ) ) ), VCA; *s*, RTM; } } } , SEA.
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their angle-averaged values were used in applying SEA and VCA. Similar results but clearly
showing the superiority of RTM were observed as illustrated in Figure 15.

3.3. A CONNECTED PANEL ARRAY

The vibration transmission characteristics were investigated for a four-panel array [16]
as depicted in Figure 16. Four rectangular panels are connected in series and eight points of
panel 1 are excited simultaneously. The longitudinal edges of the row are simply supported
while the extreme transverse edges are "xed. All panels have the same loss factor g"0)01.

The same eight point-load locations were used as in reference [16] and the predicted
values of exact analysis and WIA were also excerpted from there. It was said that the exact
result, i.e., the result of the truncated modal summation, was given by the averages taken
over the eight point-load locations. In calculating the VCA result, the same method as in the
previous section was used. At the coupled boundaries, the power transmission coe$cients
function suggested in references [16, 27] were used in implementing the proposed RTM.



Figure 13. Predicted vibration level distribution for the two coupled panels excited at the center point of panel
1 (g"0)1, f

c
"1 kHz in 1/3-octave band). (a), (b) RTM; (c), (d) mode summation; (e), (f ) VCA. (a), (c), (e) Plate 1;

(b), (d), (f ) plate 2. Predicted result by SEA is 120)5 dB for plate 1 and 103)5 dB for plate 2.
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Figure 14. Comparison of predicted vibration levels for g"0)1: (a) plate 1 along y"1 m; (b) plate 2 along
y"0)7 m: *#*, analytic; ) ) ) ) ) ) ), VCA; *s*, RTM; } } } , SEA.
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Additionally, in applying RTM to this panel array, the same calculation procedure was used
as in the preceding section.

Results for the four-panel array are plotted in Figure 17. By comparing the energy ratio of
plate 2 to plate 1, one can "nd that SEA over-predicts the vibration energy transmission by
2}4 dB and a similar result is obtained by VCA. In contrast, both WIA and RTM yield
a similar trend of energy ratio spectrum to the analytic prediction, although the analytical
result is scattered around WIA or RTM values. For energy ratio of plate 3 to plate 1, both
SEA and VCA results again look slightly underestimating the vibration transmission and
their slopes in spectra are di!erent from the analytical one. They predict the lower vibration
transmission at high frequencies than the analytical result. In contrast, RTM result is very
consistent with the mean trend of the analytic one, whereas WIA slightly overpredicts the
vibration transmission, in particular at low-frequency bands. A similar spectral slope can be
observed for SEA and VCA. In Figure 17(c), the accuracy of various calculation methods is
compared with the viewpoint of the energy transmission to the farthest panel from the
driving panel. One can easily observe that the energy ratio of plate 4 to plate 1 is very much



Figure 15. Comparison of predicted vibration levels for g"0)1 at 2 kHz 1
3
-octave band with a point force acting

at (0)32, 0)43) of (a) plate 1 along y"0)4 m; (b) plate 2 along y"0)4 m:*#*, analytic; ) ) ) ) ) ) ), VCA;*s*, RTM;
}} } , SEA.

Figure 16. A four-panel array connected in series and excited at panel 1 at multiple points. The longitudinal
edges of the row are simply supported while the extreme transverse edges (width"1 m) are "xed. Thickness of
plates 1, 2, 3, 4 are 4, 3, 4, 3 mm in their successive order respectively.
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underestimated by SEA. However, results by both WIA and RTM agree reasonably with
analytic energy ratio although the spectral shape of the energy ratio is di!erent from each
other. It is observed that the slope of the WIA result with the increasing frequency which is
slightly steeper than that of the RTM.



Figure 17. Comparison of calculated vibration energy vibration energy transmission for a four-panel array
when the panel 1 is excited (g"0)01 for all panels). (a) Se
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4. CONCLUDING REMARKS

In the paper, it has been shown that the proposed ray tracing method could be very useful
in predicting the spatial distribution of vibration energy or velocity level of thin plates in
good accuracy. The method is based on the concept of vibration "eld prediction taking into
account of both direct and reverberant "elds. Circular wave propagation diverging from the
exciting position is considered and the direct "eld due to this is superposed with many ray
tubes stemming from the multiple re#ections from the boundaries. This feature permits the
present method a capability to deal with the directional wave energy. Therefore, a quite
re"ned accuracy in predicting the vibration energy can be attained for single or coupled thin
plates at high frequencies compared with SEA or VCA techniques. Furthermore, RTM has
superior features that the boundary shape can be taken into account and the wave "ltering
through the coupled boundary can also be analyzed. The present method has very similar
characteristics to WIA in dealing with the directional wave energies. However, one can note
that the proposed method can yield more improved result than WIA in predicting the
spatial energy distribution, especially for the highly damped structure. It seems that the
present method can deal with the inhomogeneous joint properties such as non-uniform
re#ection or transmission coe$cient in the coupling boundaries. The specular re#ections
from the boundaries are only considered in this paper, but the scattering and di!raction
e!ects may be included in the further study. Even though simple models such as the single
plate and array plate were analyzed by the proposed RTM and the bending waves are only
included in this article, box-like plate structures would be tackled with taking both bending
and in-plane waves into account. Therefore, it is thought that the proposed ray tracing
method can be one of the potentially useful tools in the power #ow analysis of the vibrating
structures at high frequencies.
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APPENDIX A: A SOLUTION OF VIBRATION CONDUCTION EQUATION FOR
TWO LINE-COUPLED SQUARE PLATES

Consider two square thin plates that are excited at points (x
1,f

, y
1,f

) and (x
2,f

, y
2,f

),
respectively, and joined at an edge forming a line coupling as depicted in Figure 10. The
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governing equations for vibration conduction analysis are given by [8]
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From the conservation of net power #ux [8], the boundary conditions for energy densities
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Here, n
i
denotes the normal vector pointing outward from the ith boundary of the plate.

The following assumed solutions could be used by employing the eigenfunctions in the
y direction that satis"es the boundary conditions of equations (A2a, b):
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Substituting these assumed solutions into equations (A1) and using the orthogonality
property of eigenfunctions, the governing equations can be transformed into the following
equations with index m:
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Here, the coe$cients have the following meaning:

b2
m,i

"Agiu#

c2g,i
g
i
uA

mn
l
y
B
2

BNA
c2g,i
g
i
uB (i"1, 2), C

m
"P

ly

0

cos2 (mny/ l
y
) dy. (A5a, A5b)

Similarly, substituting the assumed solutions of equations (A3) into the boundary
conditions of equations (A2c}f ) and utilizing the orthogonality of eigenfunctions again, the
boundary conditions can be transformed into the following equations with index m:
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Provided that the plate 1 is driven at a point, solutions of equations (A4) can be assumed as
follows:
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When the conditions of source boundary, energy continuity and power injection are
introduced into equations (A7), one can obtain
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Consequently, six unknown factors of A
m,1~

, B
m,1~

, A
m,1`

, B
m,1`

, A
m,2

, and B
m,2

can be
determined with the foregoing six boundary conditions. Equations (A7) can be obtained for
each index m and, "nally, the energy density at each plate can be calculated by substituting
the obtained solutions into equations (A3).
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