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Complex envelope displacement analysis seems to be a promising approach to analyze
high-frequency structural problems and is expected to be useful to study structural-acoustic
coupled problems. However, in the original derivation of the method it was shown the
presence of a troublesome spurious solution consisting of a high wavenumber component
that would make the envelope approach ine$cient. The elimination of this term is quite
simple for one-dimensional systems but, in view of more complex developments,
the problem deserves a serious investigation to explain the origin of this contribution
and to introduce a simple and general approach to cancel this term in more general
applications. In the present paper both these aspects are carefully considered and
successfully developed.
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1. INTRODUCTION

In reference [1] a complex envelope displacement analysis (CEDA) was developed, able to
predict an envelope solution for high-frequency structural problems with a low
computational burden, typical of low-frequency dynamics, so that it appears to be quite
promising for further extensions in studying structural}acoustic coupled problems.
However, a pitfall of CEDA relies in the presence of a spurious solution [1]. Actually, this is
not a problem for one-dimensional structures because it can be simply eliminated, but it
represents real trouble for two- and three-dimensional systems. In fact, while the envelope
solution is a low-frequency response that can be determined by using a coarse discretization
mesh*it is a quasi-static response*the spurious solution has a high-frequency content
that, if not eliminated, make unsuccessful the whole envelope approach.

In reference [2] Verbeek et al. developed a speci"c "nite element code for CEDA of
longitudinal rods, that provides very good results even for damped structures. The very
interesting point of this paper is that the authors stress that, during their developments and
computations, they never found any spurious solution.

Solicited by their results, we reanalysed the whole problem of the spurious solution:
carefully we considered the reason of their origin and "nally obtained few though
convincing conclusions indicating how it can be eliminated.
0022-460X/01/070293#10 $35.00/0 ( 2001 Academic Press
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2. THE CEDA FORMULATION: BOUNDARY CONDITIONS AND SPURIOUS SOLUTION

The basic steps leading to the complex envelope displacement formulation are "rst
presented, focusing the attention on the problem of the boundary conditions that are
strongly related to the presence of the spurious solution.

The equation of motion of a longitudinal rod subjected to a harmonic load is given by

wA#k2
0
w"f (x)"

F
0

EA
d (x!a)"P

0
d(x!a), (1)

in which F
0

is the external point load applied in x"a and k
0
"u

0
/c is the carrier

wavenumber corresponding to the harmonic frequency of excitation u
0
.

The same second order equation holds for a #exural beam provided that Langley's
approximation [3] is introduced, with the forcing term given by f"!F

0
d(x!a)/2EIk2

0
.

By applying the Hilbert transform to any term of equation (1), one obtains

wJ A#k2
0
wJ "fI . (2)

By multiplying equation (2) by the imaginary unit j and summing it to the equation of
motion, one obtains

(w#jwJ )A#k2
0
(w#jwJ )"f#j fI ,

where wJ is the Hilbert transform of the physical displacement w.
The last equation can be written in more compact form by introducing the analytic

displacement wL "[w#jwJ ].s

wL A#k2
0
wL " f ). (3)

The complex envelope is de"ned in reference [1] as

wm (x)"wL (x) e!jk
0
x (4)

and admits the inverse relationship

w(x)"ReMwm (x) ejk
0
xN. (5)

The remarkable property of wm is that its wavenumber spectrum is mostly concentrated
around the origin of the wavenumber axis. In fact, the Fourier transform in the
wavenumber domain of the physical response to a harmonic point load P

0
d (x!a) is

P
0
e+ka/(k2

0
!k2). While the wavenumber content of the point load extends over the

complete wavenumber range, the denominator tends to concentrate the energy of the whole
signal around $k

0
, as shown in Figure 1. Since the Fourier transform of the analytic signal

is =K (k)"=(k)#sign(k)=(k), the wavenumber spectrum of the analytic response is
one-sided, i.e., the spectrum on the negative wavenumbers is cancelled. Finally, when
performing the operation wm "wL e!jk

0
x, the high wavenumber spectrum is shifted toward the

wavenumber's origin. Therefore, the envelope solution presents low wavenumber
oscillations in space, and it can be used conveniently as a "eld descriptor in the context of
a high frequency analysis. Moreover a one-to-one correspondence exists between the
physical signal and the envelope, so that, if needed, the physical variable can be
reconstructed from the envelope one.
sAn analytic signal is a complex signal where the imaginary part is the Hilber transform of the real part.



Figure 1. Fourier transforms: (a) physical displacement; (b) analytical displacement; (c) complex envelope
displacement.
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Because of the link wL "wm ejk
0
x between the analytic and complex envelope displacement,

it is possible to derive the complex envelope equation. The subsequent derivatives of the
analytic displacement are

wL "wm ejk
0
x, wL @"(wm @#jk

0
wm ) ejk

0
x, wL A"(wm A#2jk

0
wm @#k2

0
wm ) e jk

0
x.

By substituting wL A and wL into equation (3) and applying the envelope operator to the
external force fK, one has

(wm A#2jk
0

wm @!k2
0
wm )#k2

0
wm "fm , (6)

i.e., the "nal form of the complex envelope equation is determined as

wm A#2jk
0
wm @"fm"P

0
dm (x!a). (7)

dm is the complex envelope of the Dirac function, i.e.,

dm (x!a)"[d (x!a)#jd3 (x!a)] e!jk
0
x
"Cd (x!a)#j

1

n (x!a)D e!jk
0
x .

Note that the point force is transformed by the envelope operator into a distributed force.
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The general solution of equation (7) is

wm "P
0
gm
f
#A#B e!2jk

0
x , (8)

where A and B are complex constants that must be determined through the boundary
conditions and gm

f
(Green function) is the complex envelope response of an in"nite beam to

the forcing envelope load dm , i.e.,

gm
f
"F~1 G!

F [P
0
dm ]

k2#2kk
0
H ,

where F denotes the Fourier transform (wavenumber domain) and F~1 the inverse
Fourier transform. Since A and B are complex constants, four real conditions are necessary
to solve the problem. However, the physical problem (1) provides only two physical
boundary conditions. For "xed ends, for example, they are w D

(0, L)
"0. If one wishes to

solve the envelope equation (7) by these physical conditions, one must use the relationship
between wm and w, i.e., equation (4), that leads, for the above physical conditions, to the
relationships

w D
0,L

"Re Mwm ejk
0
xN

(0,L)
"0.

It is easy to realize that the two available physical (real) conditions are not su$cient to
determine the complex constants A and B, but the two missing conditions are not speci"ed.
If these missing conditions are not chosen appropriately, the general solution contains the
terms A and B e!2jk

0
x. The term A is not a problem but the presence of the second term is

really troublesome in this context, because it would make useless the whole CEDA
approach, in that a very fast oscillating solution (wavenumber 2k

0
doubling the physical

wavenumber k
0
) is present. Therefore, the term B e!2jk

0
x in equation (8) must be eliminated.

In reference [1] this term was called spurious to mean that it is certainly unwelcome and, in
some way, unexpected.

Let us analyse more deeply this point.
Focussing on the procedure to determine the CEDA equation, the two basic elements are

(i) the physical equation of motion (1) and (ii) the same equation after the Hilbert transform
is applied, i.e., equation (2). By performing a linear combination of these two equations,
equation (3) is obtained from which the CEDA equation is derived once the substitution
wL "wm ejk

0
x is performed.

The spurious solution appears slyly into the problem. The real and imaginary parts of the
complex equation (3) are equations (1) and (2), respectively, i.e., they appear to be
independent. Now, the physical boundary conditions su$ce equation (1) to be solved, but
nothing is prescribed about equation (2). However, one is easily convinced that the related
constraints cannot be assigned arbitrarily.

In fact, the physical solution of equation (1) is

w"w
p
#a e jk

0
x
#a* e!jk

0
x , (9)

where * denotes complex conjugate. The constant a is determined by the physical boundary
conditions and w

p
is a particular solution.

On the other hand, the solution to equation (2) is

wJ "wJ
p
#b ejk

0
x
#b* e!jk

0
x ,

but no information is explicitly available for b.
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By Hilbert transforming the solution of equation (1), i.e., equation (9), one obtains

wJ
p
!j aejk

0
x
#j a* e!jk

0
x.

Thus, the solution of equation (2) does not provide, in general, the Hilbert transform of the
physical solution. This happens only if b"ja, i.e., by imposing an additional complex
condition that introduces the missing information to solve the complex CEDA equation. If
this condition is not suitably imposed, equation (2) does not provide the Hilbert transform
of the physical displacement w: consequently, the solution of equation (3) is not an analytic
signal; i.e., its imaginary part is not the Hilbert transform of the real part. Finally, the
solution of the CEDA equation is not a complex envelope and contains the spurious high
wavenumber term B e!2jk

0
x.

In conclusion, the requirement B"0 is equivalent to the requirement that b"!ja.
This note, hopefully, explains how the spurious term arises, why it must be cancelled and

how its elimination provides the closure condition to solve the CEDA equation.

3. POSSIBLE APPROACHES TO AVOID THE SPURIOUS SOLUTION

Di!erent procedures to eliminate the spurious solution are presented.

3.1. THE COMPLEX CONSTANT TECHNIQUE

In the original developments of the envelope method [1], the problems of the boundary
conditions and the spurious solution were solved separately, by using a "rst order
formulation of the CEDA equation. Those developments are hereby resumed.

The elimination of the spurious solution is "rst considered.
The integral of the "rst order envelope equation derived from equation (5): i.e.,

wm @#2 jk
0
wm "P fm dx

can be formally expressed by

wm "!

1

2n P
=

~=

Fm (k)

k (k#2k
0
)
ejkx dk#B e!2jk

0
x ,

where Fm (k) is the Fourier transform in the wavenumber domain of the envelope load fn (x).
The requirement B"0 can be achieved by imposing, for x"0,

wm (0)"!

1

2n P
=

~=

Fm (k)

k (k#2k
0
)
dk.

Actually, the last expression can be replaced by wm (0)"0 because the right-hand side is
a small quantity when point loads are considered. The "rst order CEDA equation is then
solved by using only this simple end condition, and its solution is free from the spurious
term. This solution, say wm

0
, does not satisfy the physical boundary condition. However, this

necessary result is simply obtained (see reference [1] for more details) by adding a complex
constant c to wm

0
, i.e., one obtains

w (x)"Re M(wm
0
#c) ejk

0
xN.

where c is determined by imposing the physical boundary conditions on w (x).
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By this procedure the solution wm
0

of the CEDA equation and the "tting of the physical
boundary conditions are obtained in separate phases. In some way, the satisfaction of the
end constraint becomes a simple post-processing of the numerical solution.

Even if this procedure is quite simple, on the other hand, a limitation exists in extending
the method to damped as well as to higher-dimensional problems, especially when a "nite
element approach must be used. Therefore, the proposed strategy is not of practical interest
and must be revisited.

3.2. THE EXTENDED FIELD APPROACH

In reference [2] Verbeek et al., in proposing a "nite element formulation for the complex
envelope displacement of a rod, developed a particular approach to deal with the boundary
problem of CEDA. They wrote both the physical and the CEDA equations by introducing
the constraint forces at the rod's ends on the right-hand side, i.e.,

wA#2 k2
0
w" f#f

0
d (x)#f

L
d(x!¸)

and

wm A#2jk
0
wm " fm#f

0
dm (x)#f

L
dm (x!¸),

where f
0

and f
L

are the (physical) unknown constraint forces. Due to the e!ect of the dm 's the
authors stressed that the constraint forces spread over inside and outside the waveguide. To
account for this, they extended the physical domain of analysis. In particular, if the
waveguide is de"ned in the interval [0, ¸], two new domain are added, say [!¸

E
, 0] and

[¸, ¸#¸
E
]. In this way the constraint forces are included in the new domain x3[!¸

E
,

¸#¸
E
] as external forces. By this formulation the problem to be solved needs six real

conditions (two complex constants for the equation plus other two, real, to determine the
unknown forces at the constraints). Two conditions are provided, as usual, by the physical
end constraints. The remaining four conditions are not yet explicitly established.

In the "nite element formulation of CEDA presented in reference [2], the complex
envelope of the normal force along the waveguide (N"EAw@), i.e., Nm "(N#jNI ) ejk

0
x
"

EA (w@#jwJ @) ejk
0
x, is determined from the following steps:

wm "(w#j wJ ) e!jk
0
x
Nwm @"(w@#jwJ @) e!jk

0
x
!jk

0
(w#jwJ ) e!jk

0
x ,

(w@#jwJ @) e!jk
0
x
"wm @#jk

0
wm N Nm "EA (w@#jwJ @) e!jk

0
x
"EA (wm @#jk

0
wm ).

Although the authors introduced some arguments to establish that Nm must vanish in
x"!̧

E
and x"¸#¸

E
, if ¸

E
is long enough, and used this result as a trivial asymptotic

simpli"cation, they actually imposed the conditions Nm (x"!¸
E
)"0 and Nm (x"¸#¸

E
)"0.

These conditions represent silently their boundary conditions and the obtained results
are not a!ected by the spurious solution. Although it is not easy to show why this technique
allows to avoid the spurious solution, it has been proven numerically that they have just
the e!ect of reducing the high wavenumber contribution to a negligible disturbance.
However, at present, this way of managing the boundary problem seems redundant. In fact,
it is not necessary to perform the analysis on the extended domain to solve the CEDA
solution e!ectively. Moreover, the extension of the domain introduces some numerical
troubles. It will be now discussed how a simpler approach can be used to avoid the spurious
solution.
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3.3. A SIMPLER APPROACH TO AVOID THE SPURIOUS SOLUTION

Consider the second order CEDA equation, i.e.

wm A#2 jk
0

wm "fm .

Irrespective of the boundary conditions of the physical problem, it was shown that the term
responsible for the spurious solution is B e!2jk

0
x. To eliminate this unwanted term, it can be

easily veri"ed that it is su$cient either to impose at the end x"0 the (complex) condition
wm @"0 or to impose at each end (x"0 and x"¸) the conditions Re Mwm @N"0. In fact, the
general solution of the CEDA problem is

wm "!

1

2n P
=

~=

Fm (k)

k (k#2k
0
)
e jk

0
x dk#A#B e!2jk

0
x
"wm

p
#A#B e!2jk

0
x .

When imposing wm @"0 at the origin, one obtains

wm @ (0)"wm @
p
(0)!2 jk

0
B"0.

The particular solution wm
p

is a complex envelope. It is rather #at (both the real and
imaginary parts) all along the guide, except that in correspondence to the external force,
when a sudden jump is observed. Therefore, its derivative is almost zero everywhere except
nearby the point force, where a spike arises. Therefore, the previous written condition
simply leads to B:0 thus almost eliminating the spurious solution and providing the
required smooth result.

Instead of imposing wm @"0 at x"0 only, one can reach the same result, i.e. elimination of
the spurious solution, by imposing Re Mwm @N at the two ends x"0 and x"¸.

In fact, if the condition Re Mwm @N is imposed at both ends x"0 and x"¸, one has

Re Mwm N"Re Mwm
p
N#A

R
#B

R
cos 2k

0
x!B

I
sin 2k

0
x.

Thus,

Re Mwm @ (0)N"Re Mwm
p
N@ (0)!B

I
"0 N B

I
"0

and

Re Mwm @ (¸)N"Re Mwm
p
N@ (¸)!B

R
sin 2k

0
¸"0 N B

R
"0,

so that, in conclusion one has, as wished, B"0. This procedure was implemented in a "nite
element code [4], following the lines presented in reference [2], and the results were very
satisfactory.

4. NUMERICAL RESULTS

Some numerical results related to a steel longitudinal rod of dimensions 1]0)1]0)1 m,
are presented. The force has frequency 3]105 rad/s and amplitude 1000 N. The "rst case is
for clamped ends and the force location at x"0)7 m. The envelope solution obtained by the
extended "eld technique and the physical solution obtained by a classical approach are
shown in Figure 2. The solution domain is x3[!0)2, 1)2]. The same case is presented in
Figure 3, but the envelope solution is determined by the simpler technique proposed in this



Figure 2. Comparison between the physical and envelope solution, obtained by the extended "eld technique
[2], for a clamped}clamped rod (excitation located at x"0)7).

Figure 3. Comparison between the physical and envelope solution, obtained by the method presented in this
paper, for a clamped}clamped rod (excitation located at x"0)7).
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paper. In both cases the results are very satisfactory. It is important to notice that once the
complex envelope is known, not only the envelope but even the complete physical
oscillating solution can be recovered.

In Figure 4 the case with clamped-free ends is presented, where the external force is
located at x"0)2 m. The translation of the boundary conditions in terms of CEDA
constraints are

G
w (0)"0

w@(¸)"0HN G
Re Mwm (0)N"0

Im Mwm (¸)N cos k
0
¸#Re Mwm (¸)N sin k

0
¸"0H.

In addition, the condition wm @ (0)"0 is used to eliminate the spurious solution.



Figure 4. Comparison between the physical and envelope solution, obtained by the method presented in this
paper, for a clamped-free rod (excitation located at x"0)2).

Figure 5. Comparison between the physical and envelope solution, obtained by the method presented in this
paper, for a rod clamped at one end and a spring on the opposite side (excitation located at x"0)2).
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The last case has a clamped end and a spring of constant k
end

at the opposite side. The
complete set of additional conditions are in this case:

G
w (0)"0

N(¸)"EAw@ (¸)"k
end

w (¸)
wm @ (0)"0 H

q

G
Re Mwm (0)N"0

[EAk
0
sin k

0
¸#k

end
cos k

0
¸] Re Mwm (¸)N"[!EAk

0
cos k

0
¸#k

end
sin k

0
¸] Im Mwm (¸)N

wm @"0 H
The comparison shown in Figure 5 is quite good even in this case.



302 A. SESTIERI AND A. CARCATERRA
5. CONCLUDING REMARKS

A complete explanation of the origin of the spurious solution encountered in formulating
the complex envelope displacement analysis is provided. This was a serious drawback of
this promising approach.

It is shown that the envelope formulation can originate the spurious solution depending
on whether the analytic equation (6), associated to the physical one to provide the envelope
equation, generates either analytic or non-analytic solutions. In order to avoid the spurious
solution two suitable boundary conditions must be added, besides the physical ones. To this
aim, an extended "eld technique was originally proposed in reference [2], in the framework
of a "nite element formulation. In the present paper a di!erent procedure is proposed to
rationalize the elimination of the spurious solution.

The results are very satisfactory so that the envelope approach can be thought with much
more con"dence for the solution of complex systems.
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