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A methodology is presented for detection of the location of simple translational spring
supports in elastic structures by non-destructive and non-intrusive means, based on
measured natural frequencies of the structure. A gradient-based "nite element (FE) model
updating technique has been used for such detection. Measured modal data along with an
initially correlated FE model are used. The present study is a new application of an existing
FE model updating technique. The proposed method involves the detection of spring
support locations by updating the position parameters of the support in the FE model
through the optimization of an error criterion based on the di!erence between measured and
computed natural frequencies of the structural system. The location of the support appears
explicitly as an updating parameter in the formulation of the problem. Three di!erent
numerical schemes for computation of the gradient of the eigenvalue derivative with respect
to the support location have been evaluated. The results and various limitations observed
while developing the current method have been presented through numerical examples and
a simple experimental example.
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1. INTRODUCTION

Many #exible mechanical systems such as fuel pins, heat exchanger tubes, control rods and
various instrumented and shrouded tubes used in nuclear power plants and other
engineering industries are beam-like components with a number of intermediate supports
along their length. In many cases, these intermediate supports are "rmly "xed. However, in
some cases they may be loosely coupled and may move from their original locations during
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operation say, for example, because of #ow-induced vibration. The movement of supports
may or may not a!ect the support sti!nesses depending upon the structural con"guration.
Undetected, such dislocated supports may deteriorate the system function and
consequently jeopardize the safety of the structure vis-à-vis the plant safety. Visual
inspection of such support locations in the structural system may not be always possible if
the structural con"guration is complex. Other feasible inspection methods could be
exorbitant and time consuming and may lead to extended shutdown of the system via-à-vis
the plant. One such typical example consists of a number of assemblies of two horizontal
coaxial #exible tubes with loosely held spacers to maintain the annular gap between the
coaxial tubes, which are generally used in nuclear reactors. These assemblies are required
for carrying hot #uid inside the inner tube with an insulating gas-"lled annulus between the
outer and inner tubes to reduce heat losses. It has been observed over a period of plant
operation that the loosely held spacers generally move from their design locations. Locating
these spacers appropriately is important for maintaining coaxiality and preventing contact
between inner and outer tubes due to bending creep of the inner tube. The conventional
method of inspection is expensive and time consuming. Hence, a non-intrusive and
non-destructive method for the detection of support locations in the structural system in
a quicker but reliable manner is important. A possible method for such a detection could be
based on the identi"cation of the spring location using experimental data such as measured
natural frequencies and mode shapes of the structural system.

Such an identi"cation of spring locations is similar to the problem of identi"cation of
location and extent of damage in structures. Many studies on crack identi"cation have been
reported in literature. A review of the research on the damage identi"cation in structures is
given by Doebling et al. [1]. Most of the methods proposed to detect the location and the
size of the damage use change in measured vibration response for the identi"cation. Such an
identi"cation requires a mathematical model (e.g., a "nite element (FE) model) and
experimental modal parameters of the structure. These identi"cation methods are
predominantely based on the change in natural frequencies [2}10] or the change in mode
shapes [11}19] or dynamically measured #exibility [20}26]. Salawu [27] gives the review of
research work on crack identi"cation based on the change in natural frequencies. Another
class of damage identi"cation methods, also based on the change in modal parameters,
uses a di!erent identi"cation approach which is based on the modi"cation of structural
model matrices (such as mass, sti!ness and damping matrices) using FE model updating
methods [1].

Friswell and Mottershead [28], Imregun and Visser [29] and Mottershead and Friswell
[30] give excellent reviews of the model updating methods. The prime purpose of the
updating methods is to "ne tune the FE model of structures using experimental modal
parameters. The FE models require the material properties and physical dimensions of the
structural system under consideration. In practice, the construction of the FE models is
usually based on a number of simplifying assumptions. Often, such an FE model may not be
fully reliable because of the various idealizations made that generally depend upon the
understanding and the engineering judgement of individuals involved in the modelling.
Thus, any parametric and/or modelling errors or deviations may lead to a model which may
not be the true re#ection of the &&as-built'' structure, unless some level of validation is carried
out by making use of the measured modal data from experimental tests. The model
updating process generally minimizes the uncertainties in the FE model to the extent
possible by adjusting/updating the parameters of the model to produce matching test
behaviour. The model updating could be done either by direct methods or by sensitivity
methods. Using these updating concepts, many studies on the crack identi"cation in
structural systems have also been reported [1].



DETECTION OF SPRING SUPPORT LOCATIONS 501
The methods used for crack identi"cation are based either on direct methods or on
iterative methods using gradient-based sensitivity information. Direct methods of model
updating generally use a closed-form solution by minimizing the modal force error with
symmetry of structural matrices as constraints to update the model to produce results
matching the experimental modal data. This concept is utilized to compute the model
matrices of the damaged structure. Doebling et al. [1] give the review of study on crack
identi"cation using di!erent direct methods of model updating. These direct methods
generally produce exact results matching the experimental modal data. However, the
resulting updated FE model may lose physical meaning. Hence, these have not been
generally used in practice.

However, the sensitivity methods overcome the limitations of the direct methods but
require iterative solution. In the gradient-based sensitivity methods of model updating an
important aspect is to de"ne an error function between the computed and the test data. The
error could be de"ned in the modal domain in terms of the di!erence in measured and
computed natural frequencies or both natural frequencies and mode shapes or in frequency
domain [28]. Such an error function is usually a highly non-linear function with respect to
the updating parameters. The solution for the updating parameters is generally obtained by
minimization of the error function through optimization techniques. The iterative solution
of the non-linear optimization problem by a gradient search technique requires the
formulation and computation of the sensitivity matrix of the error function with respect to
the updating parameters. Usually, a local linearization is carried out using a Taylor series
expansion by retaining the "rst order terms to compute the "rst order sensitivity matrix. In
de"ning the error function as well as in the construction of the sensitivity matrix, the correct
pairing up of computed modal data (natural frequencies or both natural frequencies and
mode shapes) with the experimental modal data is essential. This is important because the
pairing up of computed and test data, based on the sequential order of mode numbers, may
not be always correct. This correlation between the computed and the test data is generally
established using the modal assurance criterion (MAC) [31]. Another important task in
model updating is the selection of the parameters to be updated. The parameters should be
chosen with the aim of correcting the recognized uncertainty in the model. Moreover, the
computed eigenvalues, eigenvectors, etc., of the FE model should be sensitive to the
updating parameters. A number of such sensitivity methods have been discussed by Friswell
and Mottershead [28]. Using these methods, many research studies on the crack
identi"cation are also reported using residual modal force as an updating parameter. A few
examples are the research studies by Chen et al. [32], Haug et al. [33], Ricles et al. [34],
Farhat et al. [35] and Hemez et al. [36].

In this paper, the technique proposed for the detection of support locations is also based
on a parameter identi"cation method using gradient-based FE model updating. The
application of the updating method is somewhat di!erent in the present study compared to
earlier works on damage identi"cation. In many studies on crack identi"cation the concept
is based on the use of residual modal dynamics vectors as updating parameters for the
estimation of sensitivity matrix and the subsequent updating of system sti!ness and mass
matrices using modal parameters of the cracked structure to identify the crack. However,
explicit use of position vector as an updating parameter for the identi"cation of crack
location in the structure is not reported. The problem of detection of support locations is
formulated and solved in this paper on the basis of such a concept.

A few studies are also reported on the estimation of optimal support location in
mechanical structures to maximize the fundamental frequency. Pitarresi and Kunz [37]
have used non-linear least-squares "t of natural frequencies versus support location data in
a vibrating plate to optimize the point support locations. Son and Kwak [38] have used
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a gradient-based optimization method for such a requirement in their study. These concepts
are useful for design requirement. However, the objective of the present study is di!erent.
The present method explores the possibility of detection of support locations in the existing
mechanical structural system based on the change in the "rst few natural frequencies due to
support movement.

In this paper, a problem of two beams with a number of intermediate massless spring
supports is considered for simplicity and for the assessment of the proposed technique. It is
also assumed that the sti!ness of each spring support is an appropriately "xed value that
does not change with the location. The solution of this problem has been attempted by
updating the position parameters of the support in the FE model using a sensitivity-based
model updating method. The location of the support appears explicitly as an updating
parameter in the formulation of the problem. The FE model updating method requires an
FE model of the structural system for the computation of modal data (i.e., natural
frequencies and mode shapes) for given support locations in the structural system. An FE
model truly representative of the system with support locations in the design condition is
taken as the base-line model. For o!-design locations, the proposed technique involves
updating the position parameters of the support in the FE model through the optimization
of an error function which is de"ned based on the di!erence between measured and
computed natural frequencies of the structural system. The penalty function method is used
for the minimization of the error function.

The theoretical concept, the complete computational implementation used and the
various limitations observed during the development of this technique have been presented
in this paper. Three di!erent numerical schemes for the computation of the gradient of the
eigenvalue derivative with respect to the support location have also been evaluated. The
results are presented to validate and assess the current method through a few numerically
simulated examples and a simple experimental example.

2. THEORETICAL FORMULATION

As mentioned earlier, a problem of two simple beams with a number of massless
intermediate spring supports is used in this study. A schematic diagram of this
con"guration is shown in Figure 1. It is also assumed that the support springs are shifting
along the beam length and this movement does not change their own sti!nesses. The
technique proposed in this paper is based on one of the gradient-based model updating
methods, i.e., penalty function method [28]. The complete formulation used for the speci"c
application of support location is brought out in this section. The error function for this
application has been de"ned by involving natural frequencies only.

Let
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Figure 1. Schematic of two beams with interconnected intermediate supports: (k
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"Sti!nesses of 1st to lth supports.
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The error vector is a function of the spring support locations vector, i.e. MhN. Taking a "rst
order truncated Taylor series expansion of the error function with respect to the updating
parameter vector, the linearized approximation of the error function can be written as

e"dZ!S dh, (1)

where dh is the vector of perturbation in the support locations, dZ"MZ
e
N!MZ

c
N is the

eigenvalue error (natural frequency error), and S"[LZ/dh] is the sensitivity matrix which
is the "rst derivative of eigenvalues with respect to the support location,
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The penalty function (J) is formed as [28]

J
k
(dh)"eT We e, (3)

where &&We'' is the positive diagonal weighting matrix which re#ects the con"dence level in
the frequency measurements. It is generally taken as the reciprocal of the variance (i.e., the
squares of the standard deviation) of the corresponding measurements [28].

The vector of desired support locations can be obtained by minimizing &J' with respect to
&dh' which involves the di!erentiation of &J' with respect to each element of &dh' and setting
the result equal to zero. The solution so obtained at each step is, in fact, a weighted
non-linear (iterative) least-squares solution. Finally, this leads to the following equation for
the vector of support locations after each iteration in the minimization process.

At the kth iteration,

MhN
k`1

"MhN
k
#[STWeS]~1

k
ST
k

We MZ
e
!Z

c
N
k
. (4)

The iteration process will continue till the solution converges.
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3. COMPUTATIONAL IMPLEMENTATION

To implement the above formulation (equation (4)) for the detection of support locations,
the modal data need to be computed for a given MhN

k
. In this paper, an FE model is used for

this purpose. The next and perhaps the more di$cult task is to construct the sensitivity
matrix S from the FE model. In additon, the experimental modal data for some unknown
support locations which are to be found, is required to determine MdZN in equation (4).

3.1. ESTIMATION OF SENSITIVITY MATRIX

As seen from equation (2), the construction of the sensitivity matrix, S, requires the
derivative of the eigenvalues with respect to the support location (i.e. Lj

ci
/Lx

j
). This can be

obtained by the di!erentiation of the following characteristic structural dynamic equation:

[K!jM] MUN"0, (5)

where K and M are the sti!ness and mass matrices and MUN is the normalized eigenvector of
the structural system and j is the eigenvalue.

Mathematically, each element of the sensitivity matrix at the kth iteration can be written
as [28]
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where j
ci,k

and MU
i
N
k
are the ith eigenvalue and eigenvector of the structural system and x

j
is

the jth support location, all at the kth iteration.
In general, when the sti!ness and mass matrices of the structural system are continuous

functions of the updating parameters, equation (6) can be directly used to construct the
sensitivity matrix. This is so, for example, when the parameters are physical dimensions,
material properties and boundary sti!nesses of the structural system. For example, if the
updating parameter is modulus of elasticity (E

j
) of the jth element of the FE mesh, the

analytical di!erentiation of eigenvalue (Lj
ci
/LE

j
) using equation (6) is possible. Such

updating parameters, in fact, generally change the value of coe$cients at "xed locations in
the system sti!ness and mass matrices during the after model updating process. Many
updating problems studied earlier in the literature are of this type, for example, the various
works reported earlier [28].

However, in the present problem the updating parameter is the support position (x) and
not the value of the spring support sti!ness (which is an appropriately "xed value). The shift
in support location is re#ected as a change in the nodes to which the springs are attached.
This is further re#ected in the FE model in the form of discrete (step) jumps in the value of
those elements of the sti!ness matrix which correspond to the direct sti!ness at the nodes to
which the springs are attached. In short, this is equivalent to a change in the model itself, for
each set of support locations. Thus, it is not possible to compute the sensitivity matrix
analytically using equation (6) in the present case.

Thus, an alternate method has to be used to derive the eigenvalue derivative for the
present problem. This has been done in three ways* the "rst two are based on equation (6)
and the third one is based on the basic de"nition of derivative (Lj

ci
/Lx

j
). In the case of

detection of support locations, the derivative (LM/Lx) is zero since it is assumed that the
mass of the spring-loaded supports is negligible and hence, the change of support locations
would not change the overall mass matrix. The derivative (LK/Lx) can be estimated by the
following relations [39].
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(i) Eigenvalue Derivative 1 (Gradient estimation based on local linearization).
The sti!ness derivative with respect to the jth support location is
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where x
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is the location of the jth support in the system FE model at the kth iteration, x*
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the nodal position in the system FE model adjacent to the nodal position of the jth support
(i.e., x

j,k
) at the kth iteration, K
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iteration with spring supports at MhN
k
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is the sti!ness matrix of the structural system

with the jth support at location, x*
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, and the other supports remaining the same as that at
the kth iteration.

Substituting this derivative into equation (6), each element of the sensitivity matrix can be
written as
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(ii) Eigenvalue Derivative 2 (Gradient estimation based on two successive iterations).
Based on a concept similar to Ricles and Kosmatka [34] in their study on crack

identi"cation in structures, a modi"ed estimate of the system sti!ness derivative has been
constructed as given below
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where x
j,k

is the location of the jth support in the system FE at the kth iteration, x
j,k~1

is the
location of the jth support in the system FE at the (k!1)th iteration, K
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k
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same as that at the (k!1)th iteration.

Substituting this derivative into equation (6), each element of the sensitivity matrix can be
written as
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(iii) Eigenvalue Derivative 3 (Direct gradient estimation based on basic de"nition).
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where x
j,k

and x
j,k~1

are as de"ned in Eigenvalue Derivative 2 above, j
ci,k~l

is the ith
eigenvalue at the (k!1)th iteration and j*

ci,k
is the ith eigenvalue at the kth iteration for the

jth support location, x
j,k

, such that the other support locations remain the same as that at
the (k!1)th iteration. This is nothing but the eigenvalue for incremental change in the jth
updating parameter.

A similar concept has been used earlier for eigenvector derivatives for continuous
updating parameter problem by Suther et al. [40].

The computational e!ort involved in the estimation of eigenvalue derivative is least for
Eigenvalue Derivative 1 (equation (7)) and more for Eigenvalue Derivative 3 (equation (9)).
The usefulness, e!ectiveness and limitations of these formulations for eigenvalue derivative
estimations is not known and reported in th literature. This exercise was also carried out in
the way of development of the proposed method.
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3.2. COMPARISON OF COMPUTED AND MEASURED MODAL DATA

As mentioned earlier, the computed eigenvalues MZ
c
N for a set of support locations must

be paired correctly with the measured eigenvalues MZ
e
N, if one is using gradient-based model

updating method. The modal assurance criteria (MAC) [31] are used for this purpose in this
study. The frequencies of mode pairs with MAC50)5 have been used in all the numerical
simulations presented in section 4.

3.3. ITERATIVE PROCESS

The iterative process in equation (4) starts with an initial guess for the support locations
MhN

0
. However, for the construction of sensitivity matrix, two locations of each support are

required. To start the iteration, the second set of location was assumed to be the nodes
adjacent to nodal locations of the initial guess vector. Using each of the three equations
(7)}(9) for the eigenvalue derivatives the sensitivity matrix was constructed as in equation (2)
and the iteration was carried out as per equation (4). The computed locations at each
iteration by equation (4) may not coincide with the nodes of FE model. One way to proceed
further is that the FE model of the structural system be re-discretized in the vicinity of the
updated/computed location of the supports at every iteration, if exact location is required.
But this practice would de"nitely be time consuming and would require substantial
computational e!ort for a large-sized problem. Alternatively, one can assumed the updated
locations of the support to the nearest nodes at the end of each iteration if the accuracy
requirement is not very strict, i.e. if it is su$cient to obtain the support locations in terms of
the nearest node. The latter scheme was adopted for the study reported. The advantage of
this scheme is that the matrices of the structural system do not have to be generated at each
iteration. Only the sti!ness of the spring supports has to be placed at the correct nodes in
the global sti!ness matrix. The only limitation of this scheme is that if the actual location of
the support is between two nodes of the FE model, it can only approximate this location to
the nearest node. Hence, a very "ne FE mesh is required to avoid large errors in the
detection of support locations if high accuracy is required.

After each iteration, the eigenvalues and eigenvectors were computed using the updated
FE model for the new set of support locations. The computed eigenvalues were then
compared with the measured natural frequencies and progressively mode pairs with
MAC*0)5 are also included in the next iteration. This iterative process continues till the
problem converges. In all the examples, the following convergence criteria were used:

LZ
i,k
)10~5 and MAC

i,k
*0)9, i"1, 2, 3,2, m.

4. ASSESSMENT AND VALIDATION

To proceed to the detection of spring support locations in the structural system from
di!erent initial guesses using the proposed method, a knowledge of the following modal
parameters is essential.

(a) Measured modal parameters. It is a set of measured natural frequencies and mode
shapes of the structure corresponding to some support locations which are to be determined
by the proposed method. This set of data is henceforth referred to as the target data for
iterative solution. Any of the all-known experimental techniques for modal analysis [41]
can be used to obtain these modal parameters. In the present numerical study, analytically
simulated modal data are used in place of the experimental modal data for assessment of the
method.
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(b) Initial guess for support locations in the FE model. The initial guess data are also a
set of natural frequencies and mode shapes (i.e., eigenvalues and eigenvectors)
computed from the FE model corresponding to initially assumed support location in the
structure.

An assessment of the e!ectiveness of the proposed method and the limitations of the
di!erent ways of estimation of the eigenvalue derivative have been brought out through
numerical examples. In all the numerical examples, beams of two di!erent dimensions and
spring supports of sti!ness 1)0]104 N/m have been chosen for the present study.
Dimensions (length]depth]width) of both the beams used for the study are
(2000 mm]50 mm]25 mm) and (2000 mm]25 mm]12)5 mm) respectively. The material
properties Young's modulus of elasticity (E) and density (o) for both the beams are chosen
to be 70]109 N/m2 and 2666)67 kg/m3 respectively. In all the examples considered, the FE
model was constructed using simple beam elements and a massless spring element for the
spring support. A two-noded beam element with each node restricted to two degrees of
freedom (2 d.o.f.*one for bending displacement and the other for bending rotation) is used.

To check the computational implementation of the proposed technique and the three
di!erent eigenvalue derivatives, a few examples (from simple to complex) were solved before
solving the problem de"ned in section 1. Here, only the "rst three modes have been used for
the support location detection. However, depending upon the structural con"guration and
change in their natural frequencies due to shift to supports, a few higher modes can be
included in the detection process. The results and various limitations observed for di!erent
eigenvalue derivatives are discussed in subsequent sub-sections.

4.1. RESULTS USING EIGENVALUE DERIVATIVE 1

To start with a simple problem of a single beam with a single spring support was solved to
check the computational implementation. The schematic of the FE model of a cantilever
beam with a spring support is shown in Figure 2(a). The FE model consists of 19 beams
elements (i.e., 20 nodes). In the target data, it was assumed that the translational spring
support was at node location, x

1
"1473)7 mm (node 15) from the "xed end of the beam.

The computed "rst three natural frequencies of the beam from the FE model for this target
location of spring are 9)373, 32)355 and 90)410 Hz respectively. These frequencies are now
considered as target data.

The following two initial guesses for the spring locations in the FE model were used to
detect the target support location through the proposed method using a support position
vector x

1
as updating parameter. The sensitivity matrix was constructed using Eigenvalue

Derivative 1.

Initial guess 1: x
1
"947)37 mm (node 10)

Natural frequencies*6)331, 33)471 and 90)117 Hz.

Initial guess 2: x
1
"631)58 mm (node 07)

Natural frequencies*5)468, 32)976 and 90)559 Hz.

As can be seen from the values of frequencies, the "rst natural frequency for the initial
guess of support location in the beam signi"cantly varies from target and the di!erence in
the other two natural frequencies is small. Based on MAC value (*0)5), dZ was
de"ned using these di!erence in the natural frequencies and the iterative solution of
equation (4) was applied for the detection of target support location. It was observed that
the target support location could be detected at the "rst and third iterations from initial



Figure 2. Beam models used in the numerical simulations: (a) A Cantilever Beam with a Spring Support;
(b) Two Cantilever Beams with a Spring Support; (c) Two Fixed}Simply Supported Beams with a Spring Support;
(d) Two-Fixed}Fixed Beams with a Spring Support; (e) Two Fixed}Fixed Beams with Two Spring Supports;
k
spring

"1E04 N/m; f, Node point.
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guesses 1 and 2, respectively, without any error. This is expected for simulated example
without noise.

A few more exercises were also carried out for di!erent initial guesses or/and the target
frequencies for di!erent target support locations. It was observed that the problem did not
converge towards the desired target in many cases. One such non-convergence iteration
history is shown in Figure 3 for case 1a of Table 1. Thus, it was concluded that
the construction of sensitivity matrix using Eigenvalue Derivative 1 (equation (7))
based on local gradient concept may not be always e!ective. Hence, the Eigenvalue
Derivative 2 was used for the construction of sensitivity matrix for further exercises as
discussed below.



Figure 3. Iteration history of case 1a by using Eigenvalue Derivative 1: *L*, iterative process; **,
target location.

TABLE 1

Results using Eigenvalue Derivative-2 for the example shown in Figure 2(a)

Case 1a Case 2a Case 3a

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 1684)21 631)58 2000)00 631)58 2000)00 210)53
location (node 17)s (node 07) (node 20) (node 07) (node 20) (node 03)

Natural 1st 10)881 5)468 12)394 5)468 12)394 5)170
frequency 2nd 32)427 32)976 34)747 32)976 34)747 32)290
(Hz) 3rd 90)118 90)559 90)925 90)559 90)925 90)142
No. of iterations to
achieve target 04 10 19

sBeam 1 node number for spring support position.
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4.2. RESULTS USING EIGENVALUE DERIVATIVE 2

The detection of spring support for the case 1a of Table 1 was again carried out but using
the sensitivity matrix based on Eigenvalue Derivative 2 (equation (8)) and the support
position vector x

1
as updating parameter. It was observed that solution converged to the

target at the fourth iteration (see Table 1). It was also observed that the solution converged
to the target without any error for the simulated example showed in Figure 2(a) in all cases.
Results are listed in Table 1.

Further, the exercise of spring support detection was carried out for the example of two
cantilever beams with a single spring support as shown in Figure 2(b). It was observed that
some of the target locations could not be detected even when a number of di!erent initial
guesses were used. One such cases for the example shown in Figure 2(b) was found, wherein
the location of the target data of case 1b in Table 2 was not detected from the initial guess.



TABLE 2

Results using Eigenvalue Derivative-3 for the example shown in Figure 2(b)

Case 1b Case 2b Case 3b

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 1789)47 947)37 1789)50 210)53 210)53 1473)68
location (nodes (nodes (nodes (nodes (nodes (nodes

18}38)s 10}30) 18}38) 03}23) 03}23) 15}35)

Natural 1st 4)741 4)427 4)741 2)619 2)619 4)733
frequency 2nd 13)733 6)490 13)733 5)170 5)170 14)386
(Hz) 3rd 26)459 23)415 26)459 16)314 16)314 18)567
No. of iterations to
achieve target 12 03 04

sBeam 1}2 node numbers.

Figure 4. Iteration history of case 1b by using Eigenvalue Derivative 2: *L*, iterative process; **,
target location.
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The iteration history of this non-convergence is graphically shown in Figure 4. Thus, the use
of Eigenvalue Derivative 2 (equation (8)) is also not a fully reliable solution for the present
requirement of detection of support locations in elastic structures.

4.3. RESULTS USING EIGENVALUE DERIVATIVE 3

To start with, the solution of the case 1b (unsolved case using Eigenvalue Derivative 2) in
Table 2 was attempted "rst. It was observed that the solution converged to the target at the
12th iteration (see Table 2). In fact, the solution for the example shown in Figure 2(b)
converged to the target in all simulated cases using Eigenvalue Derivative 3 without any
error. Results are listed in Table 2.

A few more exercises were repeated for the assembly of two beams with a single
intermediate spring support having di!erent boundary conditions as shown in Figure 2(c)



TABLE 3

Results using Eigenvalue Derivative-3 for the example shown in Figure 2(c)

Case 1c Case 2c Case 3c

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 842)10 631)58 842)10 210)53 947)37 210)53
location (nodes (nodes (nodes (nodes (nodes (nodes

09}29)s 07}27) 09}29) 03}23) 10}30) 03}23)

Natural 1st 17)013 14)642 17)013 11)475 17)927 11)475
frequency 2nd 24)300 23)257 24)300 22)694 25)203 22)694
(Hz) 3rd 40)178 41)339 40)178 37)087 38)451 37)087
No. of iterations to
achieve target 03 02 03

sBeam 1}2 node numbers.

TABLE 4

Results using Eigenvalue Derivative-3 for the example shown in Figure 2(d)

Case 1d Case 2d Case 3d

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 842)10 421)05 842)10 210)53 947)37 526)32
location (nodes (nodes (nodes (nodes (nodes (nodes

09}29)s 05}25) 09}29) 03}23) 10}30) 06}26)

Natural 1st 23)265 18)053 23)265 16)636 23)962 19)264
frequency 2nd 34)504 33)105 34)504 32)921 34)967 33)291
(Hz) 3rd 46)839 47)858 46)839 45)736 45)537 48)928
No. of iterations to
achieve target 06 03 05

sBeam 1}2 node numbers.
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and 2(d). In all the cited numerical examples, it was observed that the spring support was
detected reliably without any error. The results are listed in Tables 3 and 4. In fact, all the
unsolved cases found while attempting to use Eigenvalue Derivative 1 and 2 were
successfully solved using Eigenvalue Derivative 3. Thus, the use of Eigenvalue Derivative 3
(equation (9)) based on basic de"nition of di!erentiation for the construction of sensitivity
matrix is shown to be reliable for the detection of the support. Hence, Eigenvalue Derivative 3
was used for solving the problem of multiple supports between two "xed beams as de"ned
in section 1.

4.4. DETECTION OF TWO SPRING SUPPORTS BETWEEN TWO FIXED}FIXED BEAMS

The schematic of the FE model of this structural con"guration is shown in Figure 2(e).
Here, the support locations, x

1
and x

2
, for both the spring supports are chosen as the

updating parameters simultaneously. Many exercises have been carried out to determine



TABLE 5

Results of the study for unsymmetrically placed two spring supports

Case 1e Case 2e Case 3e

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 520)0 440)0 520)0 440)0 520)0 440)0
location (nodes (nodes (nodes (nodes (nodes (nodes

14}65)s 12}63) 14}65) 12}63) 14}65) 12}63)
x
2

(mm) 1880)0 1720)0 1880)0 1400)0 1880)0 1200)0
(nodes (nodes (nodes (nodes (nodes (nodes
48}99) 44}95) 48}99) 36}89) 48}99) 31}82)

Natural 1st 19)217 18)769 19)217 22)088 19)217 23)341
frequency 2nd 33)295 33)246 33)295 34)101 33)295 35)226
(Hz) 3rd 48)950 48)984 48)950 51)479 48)950 49)536
No. of iterations to
achieve target 05 06 09

sBeam 1}2 node numbers.
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the location of both the spring supports for the di!erent target data from the same initial
guess for di!erent cases. These are successfully detected as can be seen from the details of the
results reported in Tables 5 and 6. The iteration history for the convergence of the problems
for cases 1e and 9e is shown in Figure 5 for two di!erent cases.

De"ning the square root of the summation of the square of the percentage frequency
errors (SRSS of Freq. Errors) at the kth iteration as

SRSS of Freq. Errors"A
m
+
i/1

E2
i,kB

1@2
,

where E
i,k
"(( fn

ci
!fn

ei
)/fn

ei
)
k
]100% is the percentage frequency error at the kth iteration

and fn
ci

and fn
ei

are the ith computed and measured natural frequency of the structural
system respectively.

The graphical representation of the SRSS of Freq. Errors of all the three modes with
iteration numbers is shown in Figure 6. This "gure also clearly indicates the convergence
towards the target.

The proposed method using Eigenvalue Derivative 3 has further been applied and tested
on a simple laboratory experimental set-up of two parallel tubes, which is as discussed in
section 5.

5. EXPERIMENTAL EXAMPLE

A laboratory-scale experiment consists of two parallel tubes made of steel which are
inter-connected by a rubber band [39, 42]. The schematic of the set-up is shown in Figure 7.
The details of the dimensions and the boundary conditions of both the tubes are also
marked in the "gure. A modal test was carried out using impulse-response method [41]. It
was assumed that the spring action of the rubber band was linear for the small levels of
excitation used in the test. Modal tests were conducted for two di!erent locations of the
rubber band (656)5 and 746)5 mm from one end), and the measured natural frequencies of
the set-up are listed in Table 7. The FE model of the set-up was constructed using beam



TABLE 6

Results of the study for symmetrically placed two spring supports

Case 4e Case 5e Case 6e

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 520)0 240)0 520)0 280)0 520)0 360)0
location (nodes (nodes (nodes (nodes (nodes (nodes

14}65)s 07}58) 14}65) 08}59) 14}65) 10}61)
x
2

(mm) 1880)0 1760)0 1880)0 1720)0 1880)0 1640)0
(nodes (nodes (nodes (nodes (nodes (nodes
48}99) 45}96) 48}99) 44}95) 48}99) 42}93)

Natural 1st 19)217 17)041 19)217 17)428 19)217 18)565
frequency 2nd 33)295 32)986 33)295 33)040 33)295 33)221
(Hz) 3rd 48)950 46)542 48)950 47)211 48)950 48)885
No. of iterations to
achieve target 08 15 05

Case 7e Case 8e Case 9e

Parameters Initial guess Target data Initial guess Target data Initial guess Target data

Spring support x
1

(mm) 520)0 440)0 520)0 600)0 520)0 800)0
location (nodes (nodes (nodes (nodes (nodes (nodes

14}65)s 12}63) 14}65) 16}67) 14}65) 21}72)
x
2

(mm) 1880)0 1560)0 1880)0 1400)0 1880)0 1200)0
(nodes (nodes (nodes (nodes (nodes (nodes
48}99) 40}91) 48}99) 36}87) 48}99) 31}82)

Natural 1st 19)217 20)137 19)217 23)851 19)217 26)696
frequency 2nd 33)295 33)542 33)295 34)930 33)295 37)780
(Hz) 3rd 48)950 50)627 48)950 52)142 48)950 48)643
No. of iterations to
achieve target 09 07 14

sBeam 1}2 node numbers.
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elements for both the tubes and a spring element for the rubber band. Sinha [39] gave
a more detailed description of the experiment and FE modelling.

Once again, the detection of the spring location has been carried out using the position of
the spring, x

1
, as the updating parameter and the sensitivity matrix using Eigenvalue

Derivative 3. As shown in Table 7, the target location for both cases has been detected at the
third and fourth iterations from the initial guess of the rubber spring at 508)44 mm. The
position of the spring for both cases has a very small error of the order of 0)0366 and
!0)672% from their target locations respectively. The detection would have been even
better by using "ner elements in the FE model. Hence, the Eigenvalue Derivatives 3 is once
again found to be reliable even for the experimental example which is expected to have some
noise contamination in the measured data.

The usefulness of di!erent Eigenvalue Derivatives is quickly summarized in Table 8.
Although one or two supports of same sti!ness and beam elements have been used for the
development of the method, these are not the constraints of the method. The method can be
used even when the support sti!ness values are di!erent. Similarly, the method can also be



Figure 5. Iteration history for support locations detection by using Eigenvalue Derivative 3: (a) Case 1e:
Unsymmetrically placed two supports; (b) Case 9e: Symmetrically placed two supports;*L*, iterative process;
**, target location.
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applied easily to more than two supports and plate structures. In fact, this method was used
for solving a typical problem encountered in nuclear power plants [39, 42].

6. CONCLUDING REMARKS

A new method for the detection of locations of interconnecting intermediate spring
supports in beam structures as a solution of an inverse vibration problem has been
presented. The proposed method uses the natural frequencies of the structural system for
the detection of such support locations. The methodology presented makes use of a baseline
FE model along with the measured modal data in an iterative gradient-based model
updating techniques. This is a unique kind of application in the domain of model updating
techniques. The validation and advantages of the proposed method have been presented



Figure 6. Convergence trend of the error in the natural frequencies with iteration number of cases 1e and 9e:
*d*, symmetrically placed supports;*L*, unsymmetrically placed supports; **, target.

Figure 7. Laboratory experimental set-up.

TABLE 7

Results of spring location for the experimental example

Case 1 Case 2

Parameters Initial value Target (test) Initial value Target (test)
data data

Spring support x
1

(mm) 508)44 656)50 508)44 746)50
location (nodes (nodes (nodes (nodes

25}88)s 32}95) 25}88) 36}99)

Natural 1st 18)0531 20)938 18)0531 21)875
frequency 2nd 29)081 28)750 29)081 29)375
(Hz) 3rd 37)219 39)375 37)219 39)375

Using Estimated 656)74 mm 741)48 mm
Eigenvalue location (% (#0)036) (!0)672)
Derivative 3 error)

No.of iterations 03 04
required

sTube 1}2 node numbers.
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TABLE 8

Summary of usefulness of di+erent eigenvalue derivatives

Examples Description of example Sensitivity matrix Results Remarks

Figure 2(a) A cantilever beam with a
spring support

Using Eigenvalue Derivative 1

Using Eigenvalue Derivative 2

Detected target support location
for few cases
Detected target support location
for all simulated cases (Table 1)

Unrealiable for most cases (see
Figure 3 for case 1a of Table 1)
Reliable solution without any
error

Figure 2(b) Two cantilever beams with
a spring support

Using Eigenvalue Derivative 2

Using Eigenvalue Derivative 3

Not able to detect target support
location
Detected target support location
for all simulated cases (Table 2)

Not useful (see Figure 4 for case
1b of Table 2).
Reliable solution without any
error

Figure 2(c)

Figure 2(d)

Figure 2(e)

Two "xed}simply supported
beams with a spring support
Two "xed}"xed beams with
a spring support
Two "xed}"xed beams with
two spring supports

Using Eigenvalue Derivative 3

Detected target support locations
for all simulated cases. See
Tables 3}6

Reliable solution without any
error. (see Figures 5 and 6 for
cases 1e and 9e)

Figure 7
(experimental
example)

Two parallel tubes with an
interconnection by a rubber
band spring

Using Eigenvalue Derivative 3 Detected the target location of
rubber band spring for two cases
reliably within an error of 1%

Error can be reduced by use of
"ner FE mesh
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through a few numerical simulations and a simple experimental example. It is shown that
the support locations could be detected reliably and in a small number of iterations for the
example problems considered.

It is important to note that in the analysis presented here the support locations appear
directly in the problem considered here as updating parameters. Therefore, the system mass
and sti!ness matrices are not a continuous function of the vector of updating parameters.
The shift in support locations is re#ected as a change in the nodes to which the springs are
attached. This is further re#ected in the FE model in the form of discrete (step) jumps in the
value of those elements of the sti!ness matrixs which correspond to the direct sti!ness at the
nodes to which the springs are attached. Thus, it is not possible to estimate the eigenvalue
derivative analytically for the construction of the sensitivity matrix. Hence, three possible
mathematical alternatives for the eigenvalue derivative estimation have been de"ned and
evaluated in the present study. It was observed that Eigenvalue Derivative 3 based on the
basic de"nition work best for the detection of the support locations, although it is slightly
more time consuming compared to the other two alternatives. The method, based on this
derivative, is shown to be reliable.
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