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A new kinematic model based on exact gear geometry that is derivable from a set of
manufacturing parameters is developed for analyzing the hypoid gear-mesh-coupling
mechanism. The approach involves a discretization of the contact lines in the plane of action
assuming an unperturbed quasi-static gear meshing state to obtain the e!ective mesh
excitation and position vectors. This mesh formulation forms the basis for
a three-dimensional multiple-degrees-of-freedom (d.o.f.s) dynamic model of the hypoid gear
pair, which is used to simulate the rotation and translation response spectra due to the
harmonically driven transmission error excitation. From the free and forced vibration
results, the unique elastic modes that contribute to the generation of gear-mesh-induced
vibrations are identi"ed. The mesh force response function is also analyzed to examine the
sensitivity of dynamic coupling and vibratory response to critical design parameters. This
study demonstrates the superiority of the proposed theory compared to the simpler
gear-mesh representations utilized in previous studies, and leads to the conclusion that all
6 d.o.f.s of each gear body must be modelled explicitly. Numerous parametric studies are
performed to quantify the dependence of vibration modes and response trends to selected
design values and operating conditions.
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1. INTRODUCTION

The hypoid rear set is widely used in the rear axles of passenger cars and trucks to transmit
rotational motion in perpendicular directions. The gears in this application are often
subjected to a harmful dynamic response that can cause gear whine annoyance and
structural fatigue problems. It is generally known that the gear kinematic transmission
error is the primary source of the vibratory energy excitation. There have been extensive
studies performed on the synthesis of machine tool and cutter settings to manufacture
higher precision pinion and gear pro"les, and optimization of mesh patterns by applying
tooth contact analysis to minimize transmission errors [1}8]. However, very limited e!ort
has been directed at the modelling and dynamic analysis of the hypoid or related bevel (that
sCurrently with Optimal CAE Inc., Novi. MI, U.S.A.
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is essentially a hypoid design with no o!set) gear pair, even though the dynamics of parallel
axis gears have been investigated extensively [9}12]. Thus so far, an integrated and exact
dynamic model for the hypoid-geared rotor system does not exist. Hence, several
experimentally observed phenomena remain unexplained, such as the measured di!erence
in the dynamic characteristics under drive and coast conditions, and the nature of torsional
and translational vibration coupling.

The limited studies reported in the open literature on hypoid gear dynamics are mostly
based on either experimental observation or simple semi-empirical formulation. For
instance, one of the earlier attempts by Remmers [13] used a lumped parameter model to
simulate the torsional response of the rear axle driveline containing a hypoid set, and
identi"ed the pinion resonance spectrum assuming in"nite mesh sti!ness. Later, Kiyono
et al. [14] derived an analytical two-degrees-of-freedom (d.o.f.s) model of a bevel gear pair
using an assumed pattern of the line-of-action vector, and studied the system stability
characteristics. At about the same time, Terauchi et al. [15] published some experimental
data in the form of dynamic load, torque #uctuation and shaft bending vibration responses
containing system resonant frequency information for the simpler straight bevel
gears. Later, Fang [16] developed a lumped parameter vibration model of a spiral bevel
gear transmission to compute dynamic load and gear response. His mesh model is based on
the classical gear mesh force equations that produce a simple unidirectional
gear-mesh-coupling vector. Furthermore, Nakayashiki et al. [17] showed a direct
correlation between the torsional vibration response of a hypoid set in a rear axle driveline
assembly, which is a!ected by the pinion shaft compliance and bearing sti!ness, and gear
whine level. Recently, Abe and Hagiwara [18] demonstrated experimentally that hypoid
gear noise from a speci"c design could be reduced by tuning driveline vibration modes
through the addition of an inertia mass on the side-#anges of the output shaft. In another
experimental study, Hirasaka et al. [19] developed a method to estimate the dynamic mesh
force of a hypoid gear pair using the measured data, and predicted that lowering propeller
shaft sti!ness could reduce gear mesh force signi"cantly in some cases. The most practical
model prior to the present study was suggested by Donley et al. [20] who proposed an
approximate hypoid gear mesh formulation for the use in the context of a dynamic "nite
element representation. Their approximate formulation relies on the assumption of a mean
pitch point location and is based on a bevel gear mesh equivalence theory. None of the
above studies clearly de"nes the hypoid gear mesh coupling precisely, and the models
essentially rely on simpli"ed mesh force vector. Furthermore, only torsional vibrations were
usually modelled. It is quite clear that a more precise hypoid gear mesh formulation, which
is directly related to the gear design parameters and capable of modelling the translation
and rotation vibrations simultaneously, is needed.

This paper presents a new analytical derivation of the hypoid gear-mesh-coupling
mechanism based on the simulation of tooth contact assuming idealized gear geometry. The
proposed theory is incorporated into a three-dimensional (3D) elastically coupled
rigid-body dynamic model, which is applied to compute the dynamic characteristics of
a generic hypoid geared rotor system subjected to transmission error excitation. The
dynamic model is also used to analyze the mesh-force-coupling phenomenon and the
transmissibility of the gear mesh excitation and externally applied loads through the gear
mesh interface.

2. KINEMATICS

Given the complete machine and cutter settings, the geometry of the pinion and gear
surfaces can be generated theoretically using the numerical space gearing method
JSVI 20003247



Figure 1. (a) Hypoid gear co-ordinate systems S
f

and S
l
( l"1, 2) used in tooth contact simulation; distance

E de"nes the pinion o!set, H is the pitch apex O
1

beyond cross point O
f
, and axes >

1
and >

2
represent rotation

centerlines for the pinion and gear respectively. (b) Pitch plane and spiral angles.
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[1,6,21}27]. This approach is applied here because an explicit mathematical representation
of the hypoid tooth pro"le generally does not exist unlike the tooth forms of spur and
helical gears. It may be noted that a hypoid gear pair with true conjugate action
theoretically produces line contact form. In order to decrease the sensitivity of the mesh to
manufacturing or assembly error, a certain amount of tooth modi"cation is usually applied
to the gear teeth. Hence, point contact occurs between the mating teeth rather than line one,
which actually become more elliptical under load. In the following derivation, the
theoretical contact is assumed to concentrate at a single point that represents the mean
contact position.

Consider three Cartesian co-ordinate systems "xed to the frame, pinion and gear
components, respectively, as shown in Figure 1. The co-ordinate system "xed to the frame is
assumed inertial and denoted by S

f
(x

f
, y

f
, z

f
). The other two co-ordinates are given by

S
l
(x

l
, y

l
, z

l
), where subscript l"1, 2, are rigidly connected to the driving pinion and driven

gear, respectively, in which both>
l
axes de"ne the operating rotational directions. Based on

a method similar to those used by references [1,23}27], the tooth surface R
l

may be
represented in S

l
by the vector function

r (l)(s
l
, v

l
)LC2, r (l)

sl
]r (l)

vl
O0, (1)

where s
l
and v

l
are the surface co-ordinates, C2 refers to the class of function r (l) that

possesses continuous derivatives up to the second order, and

r (l)
sl
"

Lr (l)

Ls
l

, r (l)
vl
"

Lr (l)

Lv
l

. (2)

Here the superscript (l) in parenthesis refers to the speci"c gear number, while the subscript
l indicates the reference co-ordinate system. Accordingly, the surface normal vector N (l) and
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the corresponding unit normal vector n(l) are given by

N(l)"r (l)
sl

]r (l)
vl

, n(l)"
N (l)

DN (l) D
. (3)

The tooth surface R
1

of the pinion that rotates about >
1

can be represented as a family of
curved surfaces in S

f
given by

r(1)
f
"[M

f1
]r(l)

1
"r(l)

f
(s
1
, v

1
, u@

1
) , (4)

where [M
fl
] is the transformation matrix from S

l
to S

f
, and u@

1
is the instantaneous roll

angle of the pinion. The unit normal vector of R
1

can also be expressed as

n(1)
f
"[M

f1
]n(1)

1
"n(1)

f
(s
1
, v

1
, u@

1
). (5)

Similarly, the mating gear that rotates about >
2

with the tooth surface R
2

can be de"ned in
S
f

by

r(2)
f
"[M

f2
]r(2)

2
"r(2)

f
(s
2
, v

2
, u@

2
), (6)

n(2)
f
"[M

f2
]n(2)

2
"n(2)

f
(s
2
, v

2
, u@

2
). (7)

During the gear meshing process, the tooth surfaces R
1

and R
2

must be in continuous
tangency as shown by line ¹}¹ in Figure 1, and therefore they must have a common
contact point and normal vector. By enforcing this condition, the following two equations
can then be obtained:

r(1)
f

(s
1
, v

1
, u@

1
)"r(2)

f
(s
2
, v

2
, u@

2
), n(1)

f
(s
1
, v

1
, u@

1
)"n(2)

f
(s
2
, v

2
, u@

2
), (8, 9)

where u@
2

is the instantaneous roll angle of the gear member. It should be noted that
Dn(1)

f
D"Dn(2)

f
D"1. Thus, the above pair of equations provides a system of "ve independent

scalar equations

f
j
(s
1
, v

1
, u@

1
, s

2
, v

2
, u@

2
)"0, j"1, 2, 3, 4, 5. (10)

These "ve non-linear algebraic equations can be solved numerically using a standard
iterative method. In our study, a modi"ed Powell}Hybrid algorithm is used in which
a forward-di!erence approximation to the Jacobian matrix is applied. The solution will
determine the relationships between the roll angles of the gear members, path of contact,
transmission error as well as meshing position and normal vectors for any angular position.

The detailed generation of the pinion and gear tooth surfaces is described in references
[1,25,27]. The corresponding matrices in the above equations are provided explicitly in
Appendix A. Subsequently, the instantaneous kinematic transmission error can be
computed from

e (u@
1
)"(u@

2
!u*

2
)!

N
1

N
2

(u@
1
!u*

1
), (11)

where u*
1

and u*
2

are initial roll angles of the pinion and gear at the theoretical mean
position, and N

1
and N

2
are pinion and gear tooth numbers respectively. This formulation
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TABLE 1

Hypoid gear design parameters

Blank data
Number of teeth 10 (pinion)

43 (gear)
Face width (mm) 48
Pinion o!set (mm, below) 31)75
Mean cone distance (mm) 152)14
Gear face angle 1)2834
Gear root angle 1)2322
Gear addendum (mm) 3)41
Gear dedendum (mm) 10)42

Gear machine and cutter setting
Machine root angle 1)2287
Machine center to back (mm) 1)270
Horizontal setting (mm) 85)598
Vertical setting (mm) 96)177
Cutter blade angle 0)3927
Nominal radius (mm) 114)30
Point width (mm) 3)81

Pinion machine and cutter settings
Cutter blade angle 0)3491
Machine root angle !0)0226
Machine center to back (mm) !4)5847
Point radius (mm) 108)450
Basic swivel angle !0)7046
Radial setting (mm) 118)513
Basic cradle angle 1)0614
Blank o!set (mm) 24)542
Sliding base (mm) 18)242
Ratio of roll 3)9936
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is a signi"cant improvement over the simpler mesh model [13,18,20] used in earlier
dynamic simulations. The earlier models essentially assume the mesh line of action to be
n
f
"M0, 0,$1NT, where the negative sign refers to the forward drive while the positive sign

is for the coast case, which does not produce any observable di!erence in the system
dynamic response.

The above computational procedure is then applied to a pair of hypoid gear set that is
suitable for automotive application. In this case, the forward driving mesh encompasses the
concave side of the pinion and the convex side of the gear. Its corresponding manufacturing
parameters are given in Table 1. The predicted kinematic transmission error in degrees
based on equation (11) is shown in Figure 2 for three mesh cycles in terms of pinion roll
angle. From this numerical exercise, it is clear that the tooth mesh simulation depends on
the machine tool settings and cutter information as well as the exact mathematical
representation of the generation process, unlike the earlier model. Also note that the
formulation can readily compute the e!ects of temporal and spatial-varying mesh
parameters in the case where the mesh representation is not reduced to a discrete
representation. On the other hand, if a time-invariant mesh formulation is of interest,
a more primitive method based on the pitch cone design concept can be applied as
suggested by references [25}28]. For the case in Table 1, the e!ective mesh position and
normal vectors obtained from these two approaches are compared in Table 2. The results of
JSVI 20003247



Figure 2. Kinematic transmission error of the hypoid gear pair obtained from the mesh simulation.

TABLE 2

Comparison of the position and normal vectors of the ewective mesh point obtained from pitch
cone equation and the proposed quasi-static tooth mesh simulation between concave side of the

pinion and convex side of the gear

Method x
f

(mm) y
f

(mm) z
f

(mm) n
xf

n
yf

n
zf

Pitch-cone equation !40)31 142)31 2)532 !0)1896 !0)7468 !0)6474
Proposed theory !40)32 140)51 2)702 !0)1797 !0)7448 !0)6426
Di!erence (%) 0)02 1)3 6)7 5)2 0)3 0)7
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both calculations are nearly equal at the pitch point, which indirectly provided a partial
validation of our proposed theory. Since our derivation includes a more precise mesh
characteristics, it is assumed to be more superior and in fact provides a basis for modelling
non-linear time-varying behavior that is normally more prominent in lightly loaded
condition. The calculated mesh position and line of action vectors will be used in the
development of the dynamic model in the subsequent section. The dynamic response
calculations performed in this paper will be limited to linear cases only since the present
intent is to examine the nature of the mesh coupling from the system perspective for high
steady state torque input.

3. DYNAMIC MODELLING

3.1. GEAR MESH FORMULATION

Consider a generic driveline system comprising a hypoid gear pair, an engine inertia and
a load element as shown in Figure 3, which is an idealization of a typical
hypoid-geared-rotor system. Each gear is modelled as a rigid conical body attached to
a torsionally #exible shaft, which is supported by a compliant rolling element bearing
JSVI 20003247



Figure 3. A dynamic model of a hypoid gear transmission. (Note that torsional springs are not shown to avoid
clutter in the sketch.)
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represented by a set of discrete sti!ness and damping elements [29] in the centroids
of the gear bodies. The nominal rotations of the pinion and gear are about >

1
and

>
2
, respectively, as mentioned earlier. Furthermore, only the torsional co-ordinates

of the engine and the load are modelled as they are normally decoupled from the gear
set in the translational directions by design. The elastic gear mesh coupling is represented
by an oblique, proportionally damped mesh spring. It is also the source of
displacement-type excitation caused by transmission error, which generates internal
dynamic mesh forces and moments acting on the centroids of the gear bodies. These
concepts are basically extrapolated from previous parallel axis gear models as described in
references [9,11,12,30].

To de"ne a mathematical representation of the mesh-coupling sti!ness, the contact area
in the plane of action is discretized into a series of cells containing the localized sti!ness k

s
that is a function of the spatial dimensions. The positional vectors of each contact cell in the
local coordinate system S

l
(l"1, 2) is R(l)

s
"[x(l)

s
y(l)
s

z(l)
s

]T and the unit normal vector is given
by n(l)

s
"[n(l)

sx
, n(l)

sy
, n(l)

sz
]T. The projection of the normal vector into the tangential direction of

rotational motion relative to the X
l
}>

l
}Z

l
co-ordinate system can be expressed in the

vector and reduced scalar forms as

j(l)
sx
"n(l)

s
) (i(l)]R(l)

s
) , j(l)

sy
"n(l)

s
) ( j(l)]R(l)

s
) , j(l)

sz
"n(l)

s
) (k(l)]R(l)

s
) , (12a)

j(l)
sx
"n(l)

sz
y(l)
s
!n(l)

sy
z(l)
s
, j(l)

sy
"n(l)

sx
z(l)
s
!n(l)

sz
x(l)
s
, j(l)

sz
"n(l)

sy
x(l)
s
!n(l)

sx
y(l)
s
, (12b)

respectively, where i(l), j(l) and k(l) are the triad of unit vectors that de"nes the co-ordinate
system S

l
. The directional cosine of cell s depends on the gear geometry and position of the
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cell, and can be written in the vector and reduced scalar forms relative to S
l
as

h(l)
s

(t)"Gn(l)
s
) i(l), n(l)

s
) j(l), n(l)

s
)k(l) ,

n(l)
s
) ( i(l)]R(l)

s
)

R(l)
sx

,
n(l)
s
) ( j(l)]R(l)

s
)

R(l)
sy

,
n(l)
s
) (k(l)]R(l)

s
)

R(l)
sz

H, (13a)

h(l)
s
"Mn(l)

sx
n(l)
sy

n(l)
sz

m(l)
sx

m(l)
sy

m(l)
sz

N, (13b)

where m(l)
sj
"j(l)

sj
/R(l)

sj
for j"x, y, z, and R(l)

j
denotes rotational radius computed from

R(l)
sx
"Ei(l)]R(l)

s
E, R(l)

sy
"Ej(l)]R(l)

s
E and R(l)

sz
"Ek(l)]R(l)

s
E. Therefore, the normal approach

de"ned as the translational deformation in the plane of action, which is usually referred to
as the dynamic transmission error, can be written in vector form as

d
s
(t)"h(2)

s
(t) ) q

2
(t)!h(l)

s
(t) ) q

1
(t), (14)

where q
l
(t)"Mx

l
y
l
z
l
w

xl
w
yl

w
zl
NT is the vibratory displacement vector for each gear relative

to S
l
. Here x

l
, y

l
and z

l
are the translational displacements and w

xl
, w

yl
and w

zl
are the

angular ones where l"1, 2 corresponding to the speci"c gear member under consideration.

3.2. EQUATIONS OF MOTIONS

It is assumed that the gears contact continually and thus there is no loss of tooth contact.
If we set the number of contact cells to be N

c
whose localized spatially dependent sti!ness is

k
s
, then it can be shown that the equation of vibratory motions for the pinion and gear can

be expressed in matrix form as

[M
1
]MqK

1
N!

Nc
+
s/1

c
s
[DQ (1)

s
]!

Nc
+
s/1

k
s
[D(1)

s
]#[C

1b
]MqR

1
N#[K

1b
]Mq

1
N"MF

1
N, (15a)

[M
2
]MqK

2
N#

Nc
+
s/1

c
s
[DQ (2)

s
]#

Nc
+
s/1

k
s
[D(2)

s
]#[C

2b
]MqR

2
N#[K

2b
]Mq

2
N"MF

2
N, (15b)

[D(i)
s
]"h(i)T

s
h(2)
s

Mq
2
N!h(i)T

s
h(1)
s

Mq
1
N. (15c)

From the above equations, the sti!ness matrices can be expressed explicitly as

[K
11

]"
Nc
+
s/1

k
s
h(1)T
s

h(1)
s

, [K
12

]"!

Nc
+
s/1

k
s
h(1)T
s

h(2)
s

, (16a, b)

[K
21

]"!

Nc
+
s/1

k
s
h(2)T
s

h(1)
s

, [K
22

]"
Nc
+
s/1

k
s
h(2)T
s

h(2)
s

, (16c, d)

Next, equation (15) can be assumed with the dynamical equations of the motor w
E

and
output load w

o
co-ordinates to obtain a system model of dimension 14, which is given in the

classical second order di!erential equation form as

[M]qK#[C]qR #[K]q"MF(t)N, (17)

where q"Mw
E

qT
1

w
o
qT
2
NT is the system vibratory displacement vector. The system matrices

are given by

[M]"C
M

1
0

0 M D , [C]"[C
e
]#[C

b
], [K]"[K

e
]#[K

b
]. (18a}c)
2
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Furthermore, the sub-matrices M
l

associated with each gear is diagonal based on the
lumped parameter formulation, and are explicitly given by

[M
1
]"diagC

I
E

R2
py

m
p

m
p

m
p

I
px

R2
px

I
py

R2
py

I
pz

R2
pz
D , (19a)

[M
2
]"diagC

I
O

R2gy

mg mg mg

Igx
R2gx

Igy
R2gy

Igz
R2gz
D , (19b)

where m
l
is the mass term, I

li
(i"x, y, z) refers to the mass moment of inertia term, and R

li
denotes the equivalent rotational radius. Thus, the mesh coupling and support sti!ness
matrices in equation (18) can be simply expressed as

[K
e
]"C

K*
11

K*
12

K*
21

K*
22
D , [K

b
]"C

K
b1

0

0 K
b2
D , (20a, b)

where each sub-matrix can be shown to be precisely,

[K*
ll
]"C

A
1

P

B K
ll
D , [K*

21
]"C

0 P

B K
21
D , [K*

21
]"[K*

12
]T , (21a}c)

A
l
"G

k
bly

R2
ly

0 0 0 !

k
bly

R2
ly

0H , (21d)

[K
bl
]"diagC

k
bly

R2
ly

k
lx

k
ly

k
lz

k
blx

R2
lx

k
bly

R2
ly

k
blz

R2
lz
D . (21e)

Note that k
li
(i"x, y, z) is the translation sti!ness term, and k

bli
is the related to the e!ective

torsion (i"y) and bending sti!nesses (i"x, z) of the support (bearing) components. For
the purpose of applying the forced response analysis by the modal method, the damping
matrix [C

s
] is assumed to be the proportional viscous type of represent the net vibratory

energy dissipation that occurs within the bearing elements and gear mesh interface.

3.3. GENERALIZED EXCITATION AND FORCE COUPLING

The forcing vector on the right-hand side of equation (17) is represented as

MF (t)N"MF
int

(t)N#MF
ext

(t)N (22a)

MF
int

(t)N"G
F (1)

int

F (2)
int
H , MF

ext
(t)N"G

F(1)
ext

F(2)
ext
H , (22b, c)

where forcing sub-vectors F
int

and F
ext

correspond to the internal load due to the
harmonically driven transmission error excitation and the external load #uctuation
vector applied to the gear member, motor and output load respectively. They are explicitly
given by

F (l)
int
"G

0

Nc
+
s/1

(k
s
h(l)T
s

h(l)
s

)e (t) H , (23a)

F(l)
s
"MM (l) F(l)

x
F (l)
y

F (l)
z

M(l)
x

M(l)
y

M(l)
z
NT, (23b)
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where the projected transmission error term e (t)"Me
x
, e

y
, e

z
, e

wx
, e

wy
, e

wz
NT is the vector of

equivalent translation and rotation displacements of the pinion relative to the gear resulting
from the tooth manufacturing errors and variation of the instantaneous coupling sti!ness at
the pinion-gear mesh interface. This is generally regarded as the primary excitation source
for gear whine by most gear dynamic researchers [9}12]. Here e (t) can be related back to
the classical de"nition of transmission error along the line of action e(t)"h(1)

s
e(t), where e (t)

can be obtained by the projection of transmission error given in equation (11) on the line of
action. Therefore, it follows that the net generalized dynamic load vector at the gear mesh
interface projected onto the centroid of the pinion (l"1) or gear (l"2) can be computed
from

f (l)
mesh

(t)"![K
l2
]q

2
![K

l1
]q

1
#[K

l1
]e(t)![C

l2
]qR

2
![C

l1
]q5

1
#[C

l1
]e5 (t) (24)

while the bearing dynamic force vector is predicted using

f (l)
b

(t)"![K
bl
]q

l
![C

bl
]q5

l
. (25)

Since the steady state harmonic response is of primary interest here, the frequency
response functions can be computed assuming q (t)"q exp(iut), where u is the mesh
frequency. The undamped free vibration formulation yields the classical eigenvalue problem
[K]U

r
"u2

r
[M]U

r
, where u

r
is the natural frequency and U

r
is the corresponding modal

shape normalized with respect to [M] according to UT
r
[M]U

r
"1. The modal damping

ratio is m
r
"UT

r
[C

r
]U

r
/2u

r
. The steady state forced response of the system is directly

computed from Q(u)"[H(u)]F (u), where Q(u) and F(u) are the frequency spectra of q (t)
and F (t), respectively, and [H(u)] is the dynamic compliance matrix derived from the

modal superposition method (i"J!1),

[H(u)]"
14
+
r/2

U
r
UT

r
(u2

r
!u2#2im

r
uu

r
)
"C

H
11

H
12

H
21

H
22
D . (26)

In the forced response analysis, the mesh force vector f (l)
mesh

in equation (24) can be used to
determine the severity of gear tooth loading and vibration transmissibility. The modal
frequency response functions computed using equation (26) is used to transform the
time-dependent mesh force vector into the spectral domain by applying the Fourier
transform as

F (l)
mess

(u)"![K
l2
]Q

2
(u)![K

ll
]Q

l
(u)#[K

l1
]E (u)

![C
l2
]QQ

2
(u)![C

ll
]QQ

l
(u)#[C

l1
]EQ (u), (27a)

G
Q

1
(u)

Q
2
(u)H"MH] )G

F
1
(u)

F
2
(u)H"C

H
11

H
12

H
21

H
22
D C

K
11

E (u)#F (1)
ext

(u)#i )C
11

EQ (u)

K
21

E (u)#F (2)
ext

(u)#i )C
21

EQ (u)D , (27b)

where Q(u) and E (u) are the complex-valued, Fourier transforms of q(t) and e(t),
respectively, and F

l
(u) is the spectral function of F (l)

ext
(t). Direct substitution of
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equation (27b) into (27a) gives

F (l)
mesh

(u)"[G (l) (u)]E (u)#[R (l)(u)]F(1)
ext

(u)#[R(l2)(u)]F (2)
ext

(u), (28a)

[R (l1)(u)]"[D
l1
][H

11
]#[D

l2
][H

21
], (28b)
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][H

12
]#[D
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][H
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], (28c)

[D
ij
(u)]"[K

ij
]#iu[C
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] (i, j"1, 2), (28d)
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l1
][H
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l2
][H

21
])[D

l1
]!([D

l1
]([H

12
]#([D

l2
] [H

22
])[D

21
],

(28e)

where [G(l)(u)] is the mesh-related dynamic sti!ness transfer function matrix of dimension
six similar to that derived by Blankenship and Singh [11] for parallel axis gears. This matrix
[G(l)(u)] physically describes the dynamic load vector generated within the gear mesh
interface due to e (t), which directly acts on the pinion (l"1) or gear (l"2) body centers of
mass. On the other hand, [R (l1)(u)] and [R(l2)(u)] are the transmissibility transfer function
matrices for the dynamic load reaction vector due to the external load #uctuations acting
on the pinion ( l"1) and gear (l"2), respectively, via the gear mesh interface, and [D

ij
(u)]

is the complex-valued mesh sti!ness matrix. Similarly, the dynamic load reaction vector of
the pinion bearing supports in the frequency domain form can also be obtained using the
same derivation technique, resulting in

F (l)
b

(u)"[G (l)
b

(u)]E (u)#[R(1)
b

(u)]F (1)
ext

#[R(2)
b

(u)]F (2)
ext

, (29a)

[G (1)
b

(u)]"![D
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]([H

l1
][D

11
]#[H

l2
][D

21
]), (29b)

[R (l)
b

(u)]"![D
b
][H

l1
], [D

bl
(u)]"[K

bl
]#iu[C

bl
], (29c, d)

where F (l)
b

(u) is the complex-valued Fourier transform of f (l)
b

(t), and [G (l)
b

(u)] refers to the
dynamic reaction forces and moments acting on the pinion ( l"1) or gear ( l"2) support
bearing due to harmonically driven unit magnitude of e (t). Also, [R (l)

b
] in the above

expressions characterizes the transmissibility of the external harmonic load #uctuation
vectors acting on the driving pinion F (1)

ext
and driven gear F(2)

ext
to the support bearing

reaction load vectors for the pinion (l"1) via the gear mesh interface.
Suppose the contact cells encompass centrally around the e!ective pitch point position

that is de"nable by the theoretical surface normal vector, the e!ective mesh sti!ness can be
derived without loss of generality as

Nc
+
s/1

k
s
h(l)T
s

h(l)
s
:K

m
h(l)Th(l),

Nc
+
s/1

k
s
h(l)T
s

h(l)
s

e(t):K
m
h(l)Th(l) e (t), (30a, b)

where K
m

is the spatially averaged mesh sti!ness and assumed to be a constant in the
following analysis. Also, since we are primarily interested in the perturbations above the
mean steady state operating condition, it is assumed that the external forcing vector
F
ext

(t)"M0N, and the internal forcing vector F
int

(t) is solely due to e (t). The resultant
dynamic model is still relatively general and can be applied to predict dynamic transmission
error, mesh force, and bearing reaction forces for a variety of steady state operating
conditions, such as forward drive and coast conditions. The proposed theory can also
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account directly for the e!ects of variations in the hypoid gear parameters, such as pinion
o!set and pinion mean spiral angle, which also induce changes in other gear design
parameters such as pitch angles and pressure angles of both convex and concave sides of the
gear teeth, on system vibration response. To the knowledge of the authors, this type of
model has never been proposed in the past.

Accordingly, the corresponding dynamic transmission error that quanti"es the e!ect of
tooth de#ection along the e!ective line-of-action due to vibratory motion of gear bodies is
given by d

d
(t)"h(2)q

2
!h(1)q

1
. Furthermore, the scalar dynamic mesh force along the

line-of-action is expressed as

Fd(t)"K
m
(d

d
(t)(#e (t))#C

m
(dQ

d
(t)#eR (t)). (31)

Note that the magnitude of Fd generally plays a major role in determining the sensitivity of
a transmission design to gear noise, and is frequently used as a design metric. Such a design
concept has been applied in previous studies on spur and helical gears [10,11,20,30,31] and
is being extended to the hypoid case here. In addition, the dynamic bearing reaction loads
are of interest here because they represent the vibratory energy that is transmitted into the
housing and surrounding structure, and is often directly proportional to the radiated
gear-noise levels.

4. NUMERICAL RESULTS

4.1. MODAL PROPERTIES

A baseline automotive hypoid gear set that is de"ned in Tables 1 and 3 is used in the
subsequent dynamic analysis. First, the eigensolution corresponding to the free vibration
problem is used to identify the critical elastic modes that directly a!ect gear-mesh force and
thus gear noise. Since the severity of the system dynamic response is directly associated with
the amplitude of the mesh displacement vector, a modal index T

r
"UT

r
[M0, h(1)N M0, h(2)N]T is

de"ned to account for the relative modal shape projection along the mesh direction. Hence,
ts magnitude can be used to di!erentiate the modes that a!ect dynamic response
signi"cantly. The predicted T

r
values corresponding to the critical out-of-phase gear pair

torsional modes that are classically most susceptible to the excitation of e (t) for the baseline
TABLE 3

Baseline system parameters for a typical automotive hypoid gear set (left-hand pinion)

Mass moment of inertia
of the driver (kg m2)

0)0055 Mass moment of inertia
of the pinion (kg m2)

0)0083

Mass moment of inertia
of the load (kg m2) 0)1

Mass moment of inertia
of the gear (kg m2)

0)5233

Mass of the pinion (kg) 11)48 Mass of the gear (kg) 49)53

Torsional sti!ness of
shafts (Nm/rad)

1)0E4 (pinion)
5)0E5 (gear)

Shaft-bearing bending
sti!ness (Nm/rad)

1)0E6 (pinion)
8)0E6 (gear)

Axial support sti!ness
(N/m)

1)0E8 Lateral support sti!ness
(N/m)

3)8E8

Mesh sti!ness (N/m) 6)0E8 Mean torque (in lbf) 12 000
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TABLE 4

Modal indices for the critical class of out-of-phase torsion gear pair modes

Mode number, r ¹
r

u
r
(Hz) Mode description

2 0)013 206)3 Out-of-phase torsion, pinion and gear axial
translation

4 0)021 351)8 Out-of-phase torsion, pinion axial translation and
gear transverse motion

8 0)084 799)8 Out-of-phase torsion, gear yaw motion, and pinion
axial and vertical translation

12 0)367 1419)7 Out-of-phase torsion, pinion yaw motion, and pinion
axial and vertical translations

14 1)000 3120)8 Out-of-phase torsion, pinion yaw motion
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system are given in Table 4. Here, T
r

is normalized in such a manner as to ensure
a maximum level of unit within the same modal set. An illustration of this class of critical
modes is given in Figure 4. The result shows that ¹

r
"0)1 corresponds to the out-of-phase

gear pair torsional mode with a superimposed pinion yaw motion. Thus, this mode is
expected to be very sensitive to e(t). A complementary technique for analyzing the severity
and nature of the vibration modes can also be applied here, which relies on the computation
of the modal strain energy ratio of each elastic element in the geared rotor system model.
Using this technique, the critical structural components that contribute to the mode in
question may be identi"ed. Figure 5 shows the distribution of modal strain energy ratio of
the "ve dominant out-of-phase gear pair torsion modes. The translation or torsion
compliances tend to a!ect the lower modes, while the bending sti!ness controls the higher
order ones. Also, the structural modes possessing a higher percentage of mesh strain
energy density actually generate higher response peaks, which will be evident from the
response spectra presented in the next section. It is also observed that the speci"c modes
with larger ¹

r
values possess generally higher mesh strain energy ratio, and hence further

validating the correlation between T
r
and the e!ectiveness of the modal mesh in storing

vibratory energy.

4.2. MESH LOAD TRANSMISSIBILITY

Previous studies of hypoid gear dynamics ignored the e!ect of bending load
transmissibility and included only torsion component [13,18,19]. The present theory that
incorporates the dynamic mesh force transfer function matrices, given by [G (l)(u)],
[R(l1)(u)] and [R(l2)(u)], in the gear mesh reaction load vector formulation provides a direct
means to examine these e!ects more thoroughly. In this analysis, [G (l)(u)] is a symmetric
matrix of dimension six with 21 distinct terms where each element G(l)

qiqj
represents the q

i
th

component of the dynamic load vector related to the mesh coupling acting on the pinion
(l"1) or gear ( l"2) due to the q

j
th component of projected transmission error excitation.

On the other hand, [R(lk)(u)] is a non-symmetric matrix of dimension six with 36 distinct
terms. Each term denoted by R (lk)

qiqj
de"nes the q

i
th component of mesh related dynamic load

vector acting on the pinion ( l"1) or gear (l"2) due to the q
j
th component of external load

#uctuation on the pinion (k"1) or gear (k"2). Also note that the subscripts q
i
and q

j
can

take the value of x, y, z, w
x
, w

y
and w

z
. Figure 6 shows the frequency response functions of

the pinion lateral shear, axial force, bending moment and torque response components of
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Figure 4. Critical class of out-of-phase gear pair torsional mode shapes: (**), original position; (} } }),
de#ected position; (a) mode 2; (b) mode 4; (c) mode 8: (d) mode 12; and (d) mode 14.
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[G(1)(u)] per unit torsion component of transmission error excitation. It may be noted that
the elemental functions of [G(1)(u)] not shown here are also comparable in magnitude with
the similar spectral content that arises from the contributions of the critical modes
described in Figure 4. The relative amplitudes of these resonance peaks in fact correlate
extremely well with the results of ¹

r
. In addition, the cross coupling terms of [G(1)(u)] are

nearly as signi"cant if not more than its diagonal terms. This implies that all six components
of projected transmission error excitation contribute strongly to the dynamic response of
the system, and the analysis actually proves that the hypoid gear dynamic problem must be
treated by the inclusion of a complete 3D 6 d.o.f. representation of the gear body. In
contrast, the simpli"ed mesh force vector used in the previous studies [13,17}19] can only
be used to account for G (l)

z~wy
(u), G (l)

wx~wy
(u) and the diagonal terms G (l)

qiqi
(u). Hence, the mesh

force transmissibility calculations are limited to simply the vertical translation z, torsion w
y

and bending w
x

co-ordinates, and the equally critical lateral x, axial y and beding w
z

components cannot be predicted.
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Figure 5. Modal strain energy distributions for the "ve critical baseline system modes. (1, 2; pinion and gear
translation compliances; 3, 4; pinion and gear rotational compliances; 5, 6; pinion and gear bending compliances;
7; mesh compliances); (a) 206)3 Hz; (b) 351)8 Hz; (c) 799)8 Hz; (d) 1419)7 Hz; (e) 3120)8 Hz.

Figures 7 and 8 show the force and moment transmissibility functions of R (l)
jqi

and
R(l1)

wiqi
( j"x, y, z) respectively. The former type of functions is essentially associated with the

translation mesh force components acting on the pinion center of mass, while the latter set
of terms is related to the rotational ones. By comparing the transfer function in Figures 7
and 8, it can be seen that the torque excitation corresponding to the w

y
co-ordinate

frequently produces the highest resonant peaks compared to the other excitations due to
coupling provided by the gear mesh. Also, the axial mesh force component is more sensitive
to external axial force and torque #uctuations compared to the pitching-type external

HYPOID TRANSMISSION 533
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Figure 6. Mesh related pinion dynamic load transfer function with the amplitude normalized to the mean mesh
sti!ness. ***, G(1)

x~wy
; } ) } ) } ), G(1)

y~wy
; } } } } }, G(1)

wx~wy
; ) ) ) ) ) ) ) ) ), G(1)

wy~wy
.)

Figure 7. Frequency response functions of [R(11)(u)] corresponding to the translational components of mesh
force vector acting on the pinion center of mass due to external driving load #uctuations: (a) ***, R(11)

x~x
;

} } } } , R(11)
x~wx

; ) ) ) ) ) ) ) ) , R(11)
x~wy

; (b)***, R(11)
y~y

; } } } } , R(11)
y~wx

; ) ) ) ) ) ) ) ) , R(11)
y~wy

; (c)***, R(11)
z~y

; } } } } , R(11)
z~wx

;
) ) ) ) ) ) ) ) , R(11)

z~wz
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Figure 8. Frequency response functions of [R(11) (u)] corresponding to the rotational components of mesh force
vector acting on the pinion center of mass due to external driving load #uctuations: (a) } ) } ) }, R(11)

wx~x
; } } }R(11)

wx~wx
;

222, R(11)
wx~wy

; (b) ***, R(11)
wy~wz

; } } }, R(11)
wy~wy

; } ) } ) }), R(11)
wy~wz

; (c) ***, R(11)
wz~x

; } } }, R(11)
wz~wz

; } ) } ) }),
R(11)

wz~wz
.
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bending moment associated with the w
x
co-ordinate as seen in Figure 7. In fact, the external

bending moment is observed to be nearly uncoupled from many of its other co-ordinate
counterpart. This is evidenced from its small e!ect on the pinion bending moment
R(11)

hz~hx
and reaction torque R(11)

hy~hx
in Figure 8, and on the translation force components of

the mesh reaction force vector R(11)
u~hz

in Figure 7. It is also noticed that the vertical mesh
force response is more sensitive to the pinion yaw-type bending moment excitation
corresponding to the h

z
co-ordinate as characterized by R(11)

z~hz
, at high frequency, in

Figure 7(c). Furthermore, the external drive torque #uctuation about the >-axis a!ects the
low-frequency resonance r"4 signi"cantly as depicted by R(11)

qi~hy
in Figures 7 and 8, while

the bending moment about the Z-axis a!ects the high-frequency modes such as mode 14.
Meanwhile, other external load #uctuations with the exception of the bending moment
about the X-axis also contribute signi"cantly to the response from mid-frequency modes
8 and 12.

4.3. PARAMETRIC ANALYSIS

The e!ect of pinion spiral angle b
1

on the dynamic response solely due to transmission
error excitation e(t) will be investigated next to demonstrate the e!ectiveness of the
proposed model for use in parametric design studies. Pinion spiral angle directly a!ects the
direction of the mesh force coupling vector and contact position, and thus the structure
JSVI 20003247



Figure 9. E!ect of pinion spiral angle b
1
on net dynamic mesh force response along the line of action per lm TE:

())))))))), 413; ***, 463; } } } }, 513).
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sti!ness matrix [K] of the system. Note that varying the spiral angle also requires
re-computation of other gear parameters, such as the gear spiral angle b

2
, pitch angles and

pressure angle.
The e!ect of b

1
on the amplitude of the dynamic mesh force along the line of action Fd

de"ned by equation (31) is shown in Figure 9. Generally, we see a uniform softening of the
system modes with increasing b

1
primarily due to incremental reduction in the mesh

coupling strength. As a result, the critical modes were lowered by approximately 10%/53
increase in b

1
. The spectral results also show an opposing frequency-dependent e!ect on the

two most critical modes. For mode 12 in the vicinity of 1400 Hz, the amplitude response
reduces with increasing b

1
. On the other hand, the higher mode 14 near 3100 Hz actually

becomes more sensitive to higher b
1
. This behavior is typical of a geared rotor dynamic

system possessing frequency ranges with high and low sensitivities to transmission error
excitation, which is also observed in spur and helical gear cases [32].

The e!ect of b
1

on bearing force transmissibility can be predicted as well. Figure 10
shows the harmonic component of the pinion-bearing reaction force in the axial direction.
In this case, we see a systematic increase in this component of bearing force over a broad
frequency range due to either an increase in Fd or coupling between the line of action and
axial co-ordinate. It is worthwhile to note that the previous simpli"ed mesh models are
unable to predict this axial or the lateral bearing reaction load accurately, which can be just
as critical to the structure-borne gear noise transmissibility in the system.

Thirdly, Figures 11 and 12 illustrate the e!ect of b
1

on selected two transfer functions of
[G(1)(u)]. The transfer function G(1)

x~wy
(u) for the lateral component of mesh force vector

acting on the pinion centroid due to the torsion element of the projected transmission error
excitation is given by Figure 11. Its result shows a frequency-wide uniform reduction in
amplitude primarily due to lower coordinate coupling as the spiral angle is increased. The
other transfer function G(1)

y~wy
(u) corresponding to the axial component of mesh force on the

pinion depicts a trend similar to Fd shown in Figure 12, as expected. These results illustrate
the feasibility of applying the proposed theory in predicting dynamic response associated
with the complete 6 d.o.f. co-ordinate of the hypoid geared rotor system, and the potential of
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Figure 10. E!ect of pinion spiral angle b
1

on pinion axial bearing force due to a unit magnitude of transmission
error excitation. ())))))))), 413; ***, 463; } } } }, 513).

Figure 11. E!ect of pinion spiral angle b
1

on G(1)
x~wy

())))))))), 413; 222, 463; } } } }, 513).
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tuning fundamental hypoid gear design parameters to a lower undesirable and sometimes
harmful vibration response for a targeted frequency range.

Finally, the present formulation can also be used to study the experimental phenomenon
observed by Nakayashiki et al. [17], where the dynamic response of the forward drive and
coast operating conditions are found to be di!erent due to the e!ect of change in the gear
tooth engagement side. Figure 13 illustrates the predicted di!erences in the dynamic mesh
force spectra of the forward drive and coast operating conditions for the baseline system
de"ned in Table 3, which turns out to be quite similar to the experimental observation. The
analysis shows that the drive operating condition actually produces a higher amplitude of
JSVI 20003247



Figure 12. E!ect of pinion spiral angle b
1

on G(1)
y~wx

())))))))), 413; 222, 463; } } } }, 513).

Figure 13. Total mesh force spectra of the forward drive and coast operating condition. (***, drive;
} ) } ) } ), coast.)
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peak response for the highest resonance frequency shown, but lower levels for other
resonance frequencies when compared with the response of the coast condition. These
variations are primarily due to the di!erences in the gear mesh coupling characteristics that
cause the alterations in the resultant system sti!ness matrix. This is clearly unpredictable by
the simpler gear mesh formulation described earlier.

5. CONCLUDING REMARKS

A new gear mesh coupling formulation is developed based on the exact gear geometry
and kinematic relations that are derivable from the manufacturing parameters. This new
JSVI 20003247
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theory is incorporated into a 3D multiple-d.o.f.s dynamic model of the hypoid gear pair.
Free and forced vibrations in the presence of transmission error excitation are examined,
and the critical class of pinion-gear out-of-phase torsion modes that a!ect the undesirable
vibration response are identi"ed. The proposed system model also readily provides the
complete gear mesh transfer functions and force transmissibility spectra, which is used to
characterize the nature of the system vibratory behavior including the dynamic coupling
and sensitivity of the vibratory response to critical design parameters. Our analysis suggests
that all 6 d.o.f.s representations of the gear bodies must be included in the dynamic model to
accurately account for the response due to the transmission error excitation and external
load #uctuations. The results also show new mesh coupling e!ect from lateral, axial, and
bending co-ordinates, which was not modelled in the simpler gear mesh representations
utilized in the previous studies. Numerous parametric studies are performed to quantify the
dependence of dynamic characteristics and vibration response to basic gear design
parameters and operating conditions, and explain the di!erence in the dynamic response of
forward drive versus coast conditions. It may be noted that even though our analysis is
based on the time-invariant assumption, the gear-mesh-coupling theory is also applicable to
time-varying modelling, which is the focus of our next research activity.
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APPENDIX A: TOOTH CONTACT SIMULATION MATRICES
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The upper and lower signs in equation (A8) imply the left- and right-hand pinion
respectively:
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APPENDIX B: NOMENCLATURE

[C] damping matrix
e projected transmission error
E pinion o!set
E pinion o!set
M f N forcing term
F forcing term
h direction cosine vector
H pitch apex beyond the cross point
[H] compliance matrix
i
c

pinion cutter tilt angle
i, j, k triad of unit vectors of a co-ordinate system
I mass moment of inertia term
J
c

swivel angle
k sti!ness term
[K] sti!ness matrix
[¸] co-ordinate transformation matrix
m mass element
[M] mass matrix
n surface normal vector
N

c
number of total contact cell

q displacement vector
Q

c
basic cradle setting

r
cP

pinion cutter point radius
r
cG

gear cutter point width
R

a
ratio of roll

S
l

co-ordinate system for dynamical formulation
t time
¹
r

modal displacement index
w

x
, w

y
, w

z
angular displacement

x, y, z translation displacement
X, >, Z co-ordinate axes
f element of direction cosine
m modal damping ratio
U mode shape
/
c

cradle rotation angle
/
1

pinion rotation angle in generation, R
a
/
cu@

1
pinion rotational angle in S

f
u@
2

gear rotational angle in S
f/

BP
pinion cutter balde angle
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/
BG

gear cutter blade angle
u frequency (rad/s)

Subscripts

b bearing
f "xed co-ordinate system
G gear
l label for pinion (l"1) or gear ( l"2)
P pinion
r modal number

Superscripts

l co-ordinate system for pinion ( l"1) or gear (l"2)
T transpose
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