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The non-linear response of a rotor supported by active magnetic bearings is investigated,
and both primary and internal resonances are considered. The method of multiple scales is
used to obtain four "rst order ordinary di!erential equations that describe the modulation
of the amplitudes and phases of vibrations in the horizontal and vertical directions. The
steady state response and the stability of the solutions are determined numerically from the
reduced system. It is shown that the steady state solutions lose their stability by either
saddle-node bifurcation or Hopf bifurcation. In the regime of multiple coexisting solutions,
two stable solutions are found. The e!ect of imbalance eccentricity, as well as the e!ect of the
proportional and derivative gains of the controller on the non-linear response of the system,
are studied. Finally, numerical simulations are performed to verify the analytical predictions.
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1. INTRODUCTION

Several components of an active magnetic bearing (AMB) are characterized by non-linear
behavior and therefore the entire system is inherently non-linear [1]. However, in the
simulation of the dynamic behavior of magnetically suspended rotors, the non-linearities
are usually neglected for simplicity, and the components of the AMBs are modelled using
linear analysis. Additionally, many of the AMB control techniques used previously are
based on a linearized electro-mechanical system. In fact, the non-linear properties of AMBs
can lead to a di!erent behavior of the rotor-magnetic bearing system from that predicted by
a linear model. Thus, a fundamental scienti"c investigation of the e!ects of
electro-mechanical system non-linearities on the dynamic behavior of a rotor, and their
in#uence on the performance of AMBs is required.

The e!ects of co-ordinate coupling, due to the geometry of the pole arrangement, on
non-linear behavior have been examined in reference [2]. Multiple coexisting solutions and
fractal boundaries were obtained. Stable quasi-periodic vibration has been demonstrated
for large geometric coupling values for cases in which the rotor weight was neglected [3].
When the rotor weight was taken into account [4], the parameters were investigated by
semi-analytical methods to "nd regimes of non-linear behavior such as jump phenomenon
and subharmonic motion. A local bifurcation of codimension two of rotor motion was
investigated on the center manifold near the double-zero degenerate point by using center
0022-460X/01/090599#14 $35.00/0 ( 2001 Academic Press



600 J. C. JI AND C. H. HANSEN
manifold theory and the normal form method [5]. Saddle-node bifurcation, Hopf
bifurcation and saddle-connection bifurcation were found in the reduced normal form
equations.

In a typical AMB, the essential non-linearity results from the force}displacement}current
characteristics of the electromagnets. The non-linear magnetic forces are even more
pronounced for a large air-gap AMB [6]. In this paper, a two-degree-of-freedom (d.o.f.),
non-linear system, with cubic non-linearities will be used to explore the non-linear, dynamic
behavior of a rotor suspended by large air gap AMBs. The fundamental resonance of the
system is examined by using a perturbation method. The e!ects of unbalance and control
gains on the steady state motion of the rotor are also investigated.

2. ROTOR}AMB SYSTEM MODEL

An AMB is shown schematically in Figure 1. The stator has eight pole pairs. For
simplicity, the saturation and the hysteresis of the magnetic core material, the eddy current
losses, and all other secondary e!ects are neglected. All magnets are assumed to have an
identical structure and the same number of windings.

According to electromagnetic theory, the electromagnetic force f
i
produced by every pair

of electromagnets can be expressed as follows [7]:

f
i
"

1

4
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0
N2A

I2
i

d2
i

cosu, i"1, 2,2, 8, (1)

where k
0
is the permeability, A is the e!ective cross-sectional area of one electromagnet, N is

the number of windings around the core, I
i
is the coil current that is equal to the sum of the

bias current of the electromagnet and the control current, d
i
is the radial clearance between

the stator and the rotor, and u is the corresponding half-angle of the radial electromagnetic
circuit respectively. The idealized magnetic force of equation (1) depends in a non-linear
Figure 1. Schematic for modelling magnetic forces acting on the rotor.
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ROTOR-ACTIVE MAGNETIC BEARING SYSTEM 601
way, on the rotor position and the current. For a large displacement or a large current, the
non-linear characteristic dominates.

For an AMB, when the rotor deviation from the center of the bearings is denoted by
x and y, the radial clearance between the electromagnets and the rotor can be written as

d
i
"c

0
$x sin aGy cos a, i"1, 5,

d
i
"c

0
$x sin a$y cos a, i"4, 8,

d
i
"c

0
$x cos aGy sin a, i"2, 6,

d
i
"c

0
$x cos a$y sin a, i"3, 7, (2)

where c
0

is the steady state air gap and a is the angle de"ned in Figure 1.
To reduce the non-linearity of the magnetic force and also the uncertainty of currents

resulting from force changes near the zero position, the pre-magnetization current I
0

is
usually sent through all coils and are superimposed on the control currents. Thus, currents
#owing in the coils are given by
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The magnetic force acting on the rotor in each direction is the di!erence between the
attractive forces of both magnets "xed on opposite sides. Therefore, the total
electromagnetic forces in the horizontal and vertical directions are of the form
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Substituting equations (2) and (3) into equation (1), gives the resulting force as
a non-linear function of the control current and the rotor displacements x and y. For small
vibration amplitudes, the force, f

i
, is expanded about the (0, 0, 0) point using a Taylor series

and is approximated by only retaining the lower order non-linear terms. The resulting
expressions for the electromagnetic forces from all magnets acting together can be derived
from equation (4) as

f
x
"f

x
(linear)#f

x
(cubic)#0(4),

f
y
"f

y
(linear)#f

y
(cubic)#0(4), (5)

where 0(4) denotes terms of order greater than four. Here, for the sake of brevity, the simple
notations f

x
(linear) and f

y
(linear) are used to denote the linear terms, while f

x
(cubic) and

f
y
(cubic) represent the cubic non-linear terms respectively.
For magnetically suspended rotors various control techniques have been used to achieve

various aims. However, in this article, only the current PD controller is considered:

i
x
"k

p
x#k

d
xR , i

y
"k

p
y#k

d
yR , (6)

where k
p
is the proportional gain and k

d
is the derivative control constant, and the PD gains

of the controllers, for all eight pole pairs are taken to be same.
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602 J. C. JI AND C. H. HANSEN
As the focus of the work is on the e!ect of non-linearity of AMBs on the non-linear
response of a rotor, the rotor is assumed, for simplicity, to be a rigid body supported in
AMBs. Thus, the model consists of one mass with two degrees of freedom. The equations of
motion governing the unbalance of the rotor can be written as

mxK"f
x
!cxR #meX2 cosXt, myK"f

y
!cyR #meX2 sinXt, (7)

where m, e, c, X are the mass, the eccentricity of unbalance, the damping coe$cient, and the
rotor speed respectively. The rotor weight is neglected in the present analysis. If the rotor
weight is taken into account, the resulting total electromagnetic forces will be expressed in
di!erent forms. This is the subject of work currently in progress.

Substituting equations (5) and (6) into equation (7), introducing non-dimensional
parameters x"c

0
xN , y"c

0
yN , i

x
"I

0
iN
x
, i

y
"I

0
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y
, t"BtN , X"B~1XM , and omitting the hat for

brevity, equation (7) can be rearranged as
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(8)

where k, u, X, f and the coe$cients of the non-linear terms, a
i
, are de"ned in Appendix A.

The closed form of the solutions of equation (8) cannot be found. Hence, approximate
solutions will be sought by using the method of multiple scales (MMS) [8].

3. PERTURBATION ANALYSIS BY USING MMS

The MMS [8] is employed to obtain four "rst order amplitude} and phase}modulated
equations. To achieve this, the small dimensionless parameter, e, is introduced as
a book-keeping device to indicate the smallness of damping (derivative gain), non-linearities
and excitation (unbalance). Assuming the amplitude of motion is small, equation (8) can be
expressed as
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where De D@1, x"e1
2xN , y"e1

2yN , k"kN e~1, 2e fN"2 fe~1
2. Here, for the sake of brevity, the

&&overbar'' has been omitted.
Equation (9) is a two-degree-of-freedom non-linear system with cubic non-linearities.

Obviously, the system is in a one-to-one internal resonance condition, because its linearized
natural frequencies are equal. When the natural frequencies and forcing frequency satisfy
certain external resonance conditions, di!erent types of external resonance such as
fundamental, subharmonic and superharmonic resonance can occur. Here, the fundamental
resonance is analyzed. To study the fundamental resonance, the frequency of the external
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excitation is assumed to be almost equal to the linearized natural frequencies. To describe
this proximity, the external detuning parameter, p, is introduced as

u2"X2#ep. (10)

By using the MMS, the following "rst order approximation for the solutions of equation (9)
are obtained:
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The amplitudes, a
i
, and phases, b
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, of the fundamental resonance response are governed by
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where /"b
2
!b

1
, and the coe$cients p

1
, f

1
and b

i
(i"1, 6) are de"ned in Appendix B.

For the steady state response, a@
1,2

"0 and b@
1,2

"0. Equation (12) can then be reduced
to a set of four non-linear algebraic equations, and the steady state response obtained from
these four algebraic equations by using the Newton}Raphson procedure. The stability of
steady state solutions can be examined by computing the eigenvalues of the coe$cient
matrix of characteristic equations, which are derived from equation (12) in terms of small
disturbances to the steady state solutions.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the steady state responses of the system are investigated extensively for
di!erent system parameters under primary and internal resonance. It is shown that the
steady state response loses its stability either by saddle node (SN) or by Hopf bifurcation
(HB). In the region of multiple coexisting solutions, two stable solutions exist, and the initial
conditions determine which curve is followed. The "xed points of the four non-linear
algebraic equations reduced from system (12) correspond to the periodic responses of the
original system (8). The four non-linear algebraic equations are numerically solved by the
Newton}Raphson procedure. The stability of the steady state response is obtained from the
eigenvalues of the corresponding Jacobian matrix. Moreover, to verify the analytical
predictions, equation (8) is numerically integrated with a fourth order Runge}Kutta
algorithm. In the frequency and forced response plots the stable and unstable branches are
indicated, respectively, by solid and dot broken lines.

The modal amplitudes, a
1

and a
2
, of the periodic solutions are shown in Figure 2 as

functions of the forcing amplitude, f
1
. To perform the numerical simulations, the values for

the system parameters are chosen as follows: X"1, a"0)3926991, c
1
"0)001, p"1)22,

d"0)005. It can be seen that the response curves of the two modal amplitudes are similar
and topologically equivalent. There are three types of solutions. One corresponds to equal
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Figure 2. The response amplitudes a
1

and a
2

as a function of the forced amplitude for positive external
detuning, under p"1)22, d"0)005.

Figure 3. Transition from an unstable steady state motion to a stable one under p"1)22, d"0)005, f
1
"0)004,

with initial conditions x (0)"0)18, y (0)"0)18 and zero initial velocities.
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amplitudes of primary resonance responses for the two directions, a
1
"a

2
, which is illustrated

by the curve titled, &&e'', in the "gure. The other two correspond to di!erent amplitudes,
a
1
'a

2
, and a

1
(a

2
, which are represented by the curves labelled &&u1'' and &&u2'' respectively.

When the forcing amplitude is small, the system admits a stable solution with equal
amplitudes of response, a

1
"a

2
. This stable solution loses its stability via SN bifurcation at

f
1
"0)003, and a jump from this unstable steady motion to a stable one occurs. In Figure 3,

a jump from an unstable steady motion to a stable one is illustrated. The numerical
simulation was done using f

1
"0)004, initial conditions x(0)"0)18, y(0)"0)18 and zero

initial velocities (corresponding to an unstable solution), while other parameters are the
same as those used to derive Figure 2. It can be seen that after some initial transients, the
motion settles down to the theoretically predicted stable steady state response, which
corresponds to the stable part of branch &&u1'' of Figure 2.

As f
1
'0)003, a total of three solutions exist, but only two stable branches occur. The

solution for which a
1
"a

2
is an unstable one, while the solutions corresponding to unequal

amplitudes are stable.
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As the amplitude of excitation is varied, the two stable branches lose their stability by HB
occurring at f

1
"0)009 and 0)016, respectively, and amplitude-modulated motion is

generated. The existence of the HB is detected by examining the eigenvalues of the matrix of
the coe$cients of the variational equations, evaluated for the steady state solutions. Such an
examination shows a pair of complex eigenvalues passing through the imaginary axis,
which gives rise to HB. The HB is expected to lead to amplitude modulation of the steady
state response. The prediction will shortly be veri"ed by numerically integrating the system
equation (8).

In a typical linear dynamic system, the steady state amplitude is independent of initial
conditions; that is, the response is unique. This is not necessarily the case for non-linear
systems. For a forced non-linear system, when two or more stable steady state solutions
exist, the initial conditions determine which steady state solution is picked up. It may be
noted that there exist two stable solutions in the interval between f

1
"0)003 and 0)009, the

physically attainable solution is determined by the initial conditions. Figures 4(a) and 4(b)
Figure 4. Continued.
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Figure 4. Periodic motions of the system under p"1)22, d"0)005, f
1
"0)005. (a) Response of system corres-

ponds to branch &&u2'' of Figure 2; (b) Response of system corresponds to branch &&u1'' of Figure 2; (c) The
corresponding orbit of the rotor.
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show the steady state response of the system for f
1
"0)005, corresponding to branches &&u1''

and &&u2'' respectively. As the initial conditions are di!erent, the steady state solutions are
di!erent. The initial conditions for computing these responses are chosen as x(0)"0)0206,
xR (0)"0)1164, y(0)"!0)1166 and yR (0)"0)0184 for Figure 4(a), while x(0)"0)1196,
xR (0)"0)1943, y (0)"!0)1198 and yR (0)"!0)0839 for Figure 4(b). From this example it
can be seen that the results of numerical integration agree well with the analytical
predictions.

If, however, the cosine and sine parts of the force are exchanged, the solutions for the
x and y directions exchange places. This dependence on phase or initial conditions is
a characteristic of a non-linear system. The coexistence of multiple solutions and the
dependence on initial conditions are an important challenge in the controller design.

An interesting feature of the system is found for the forced case corresponding to Figure 2.
Suppose that the system is started from each of two stable branches separately. With an
increase in forced excitation, the response of the system will be totally di!erent in each case,
as illustrated in Figures 5 and 6, which show the amplitude-modulated motions for
JSVI=20003257=Ravi=VVC
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f
1
"0)021 and 0)030 respectively. Once again, this indicates that the response is dependent

on the initial conditions, even for the amplitude-modulated response.
As the linearized natural frequencies of the system are related to the proportional gain

(see Appendix A), the external detuning shown in Figure 2 is positive. For the case of
negative external detuning, the variation of response amplitudes as a function of the forced
amplitude is shown in Figure 7. The values of the system parameters are chosen to be same
as those of Figure 2 except for the proportional gain. By comparing these two "gures, it can
be seen that they are topologically equivalent. The major di!erence is that the region of
amplitude of excitation for existence of stable solutions for a negative detuning is shorter
than that for a positive detuning. The values of the amplitude of excitation are decreased
from f

1
"0)003 to 0)002 for SN bifurcation, and from f

1
"0)009 and 0)016 to f

1
"0)006 and

0)009 for HB respectively.
Figure 5. Continued.
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Figure 5. Amplitude-modulated motions under p"1)22, d"0)005, f
1
"0)021. (a) Forced response correspond-

ing to branch &&u2'' of Figure 2; (b) Forced response corresponding to the branch &&u1'' of Figure 2; (c) The
corresponding orbit of the rotor.
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Figure 8 shows the response amplitudes as a function of forced amplitude for a lower
value of derivative gain. The values of all parameters except the derivative gain are equal to
those for the case shown in Figure 7. It can be observed that with a lower value of derivative
constant, the critical points for SN and HB shift to the left. The regime of amplitude of
excitation for existence of stable steady state motion is narrower too.

Keeping other system parameters constant, with f
1
"0)008, d"0)005, and c

1
"0)001,

the e!ect of proportional gain on the response amplitudes is shown in Figure 9. There are
three coexisting solutions. The solution with equal amplitudes is unstable. The other two
solutions with unequal amplitudes lose their stability via HB. There also exists an interval of
two coexisting stable solutions. With an increase in proportional gain, the stable branch of
the response, a

1
'a

2
, increases until it reaches the critical point. The amplitude of response,

a
2
, increases more sharply than a

1
does.

The e!ect of the derivative gains on the response amplitudes can also be examined.
Figure 10 shows the in#uence of increasing the value of the derivative gain while the
proportional gain is held constant at 1)215. The values of all parameters except the
proportional gain are equal to those for the case shown in Figure 9. With an increase in the
derivative control constant, the response amplitudes of unstable and stable branches
decrease. It is easy to see that the derivative gain can suppress the vibration, but cannot
eliminate the number of solutions.

5. CONCLUSIONS

The non-linear response of a rotor in active magnetic bearings (AMBs) has been
investigated, and both fundamental and internal resonance conditions have been
considered. It has been shown that the non-linear properties of AMBs can lead to
phenomena that are not described by a linear model, indicating the importance of taking
non-linearities into account.
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Figure 6. Continued.
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The rotor-AMB dynamic system exhibits a variety of interesting phenomena, including
bifurcation, jump, sensitivity to initial conditions, coexistence of multiple solutions, and
amplitude-modulated motions. The method of multiple scales (MMS) has been used to
determine the four "rst order averaged equations. The stability and bifurcation of the forced
response are studied for various system parameters. It has been shown that the solutions
corresponding to equal amplitudes for the x and y directions lose their stability via SN
bifurcation. The responses with unequal amplitudes lose their stability through HB and
then amplitude-modulated motions are generated. The results obtained by the perturbation
method and by numerical integration are in good agreement. The results presented are
expected to be useful in the design of a controller to reduce the vibration amplitude of
rotor-AMB systems.
JSVI=20003257=Ravi=VVC



Figure 6. Amplitude-modulated motions under p"1)22, d"0)005, f
1
"0)030. (a) Forced response correspond-

ing to branch &&u2'' of Figure 2; (b) Forced response corresponding to branch &&u1'' of Figure 2; (c) The
corresponding orbit of the rotor.

Figure 7. The response amplitudes a
1

and a
2

as a function of the forced amplitude for negative external
detuning under p"1)215, d"0)005.

Figure 8. The response amplitudes a
1

and a
2

as a function of the forced amplitude for negative external
detuning under p"1)215, d"0)003.
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Figure 9. The response amplitudes a
1
and a

2
as a function of the dimensionless proportional gain for f

1
"0)008,

d"0)005.

Figure 10. The variation of derivative gain on the response amplitude for positive external detuning, under
p"1)22, f

1
"0)008.
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APPENDIX A

Expressions for the coe$cients of equation (8):
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APPENDIX B

Expressions for the coe$cients of equation (12):
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