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There is some interest on the effect of temperature gradient on sound propagation in
a catalytic monolith. Some results are available in the literature for the effect of a constant
temperature gradient on non-isentropic propagation in a narrow pipe modelling a monolith
pore, but the effect of mean flow is neglected in these solutions. This paper presents an
approximate solution in which the presence of a mean flow, which is assumed to have
a uniform velocity profile, is taken into account. The solution also includes the effect of
a constant pressure gradient. A dispersion equation is derived by assuming that the spatial
variations of the ambient variables can be lumped by using their average values. This
approximation limits the range of application of the solution to small ambient gradients or
relatively high frequencies. For typical catalytic monolith cylinder dimensions, the present
solution can be used to predict the mean flow effects over a useful frequency range.
© 2001 Academic Press

1. INTRODUCTION

A chemical performance study by Bennett et al. [1] has shown that the mean temperature
distribution along a monolithic reactor is not uniform, but a substantial temperature
increase occurs within about the first half of its length, after which the temperature remains
constant. Tests in automobile applications show a wall temperature increase amounting to
about 100 K in the first few centimeters of the monolith [2]. There is therefore some interest
on sound propagation in the pores of a monolith with a temperature gradient. From
previous work on sound transmission in a monolith without a temperature gradient, it is
known that a non-isentropic fundamental mode formulation based on the simplification of
the general acoustic equations in the manner of Zwicker and Kosten is satisfactory for
acoustic modelling of monolith pores as narrow pipes. An extension of this approach for the
presence of a constant temperature gradient has been presented by Peat [3], who has
proposed an approximate analytical solution neglecting mean flow and the presence of
a mean pressure gradient. The present paper describes an approximate analytical solution
in which these effects are also taken into account. The mean flow profile is assumed to be
uniform and the temperature and pressure gradients are assumed to be constant. In the
analysis it is assumed that the spatial variations of the ambient state variables are small
enough to be replaced by their average values in the governing acoustic equations. Under
this approximation, the present solution can be expected to be accurate for relatively small
temperature and mean pressure increases, or for relatively high frequencies. Nevertheless,
typical mean temperature increases in automotive applications amount to only about 10%
or less, and the mean pressure drop is even less than this. For these conditions, the proposed
solution can be used for the prediction of the mean flow effects in a useful frequency range.
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2. THEORETICAL FORMULATION

2.1. GOVERNING EQUATIONS AND ASSUMPTIONS

The governing equations are derived from the continuity, momentum and energy
equations of fluid dynamics and the state equation for a perfect gas by the usual process of
linearization. Several approximations are made in order to simplify the linearized equations
into a mathematically tractable form. The pipe is assumed to be uniform and of circular
cross-section and the study is restricted to the fundamental mode of propagation. An order
magnitude analysis is applied, in the manner of the Zwicker and Kosten theory, in order to
dispense with the second order terms arising from the extreme differences in length and
velocity scales in axial and radial directions. The mean flow velocity, vy, is assumed to be
axial and have a uniform profile. The mean temperature, Ty, is assumed to be a function of
the axial co-ordinate, x, and u and k, the shear viscosity coefficient and thermal
conductivity, respectively, are assumed to be slowly varying functions of T, so that the
gradients du/dx and di/dx are small to the first order. Under these assumptions, the
continuity equation is

dp dpo dp  doo o
E‘i‘ xdx v ox E—FPOVV—O, (1)

where t denotes the time, p denotes the acoustic density fluctuations, p, is the ambient
density, v denotes the particle velocity, v, being its axial component and

ov, 0v, v,
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Here, v, is the radial component of the particle velocity and r denotes the radial co-ordinate.
The axial component of the momentum equation is

ovy vy do, op

_ 2
Po 7 +povoa +pove o= o0 + uVi oy, (3)

where p is the acoustic pressure and the Laplacian on the cross-section is defined as

0* 0
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The radial component of the momentum equation is simply
ap
—=0. 5
or )
The energy equation is
o 2 =Py B S k2T, (6
Po [at+”°ax+” dx}”%”"dx o Tt ax T ©)

where T denotes the temperature fluctuations, Ty is the ambient temperature and ¢, is the
specific heat coefficient at constant pressure, These equations are closed by the state
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equation for the ambient fluid, which is assumed to be a perfect gas:

p pT
=P Poo 7
P=RT T T, (7

Here, R denotes the gas constant. The boundary conditions for which a solution of the
foregoing equations is required are that v and T have finite values on the pipe center line,
r =0, and vanish on the pipe periphery, r = a, where a is the pipe radius.

The axial distribution of the mean temperature and pressure is assumed to be linear,

To(x) = To(1 + &), polx) =Po(l +7), &= —1+— )]

where po denotes the ambient pressures, L is the length of the pipe, the overbar (~ ) denotes
an axial average, and the temperature and pressure change parameters are defined as

o To(L) — To(0) . Po(L) — po(0)
- 3T , m= e .

©)

The axial variation of the mean density distribution is then determined by the perfect gas
law po = poRT,, and the axial variation of the mean flow velocity is determined from the
continuity equation for the mean flow, pov, = constant. Hence, the ambient gradients
occurring in the governing acoustic equations can be expressed in terms of the temperature
and pressure change parameters by using the relations

dTo_z'ETO dpo_zﬂ:ﬁo de _ dUO _ TO 2t ﬁo 2n (10)
dx L’ dx L’ podx wodx Ty L po L~

After having substituted these gradients, and assuming exp (—iwt) time dependence, where
o is the radian frequency and i denotes the unit imaginary number, equations (1), (3) and (6)
can be expressed to O[t2] and O[n?] as follows:

[wt=my g 2, tmesmsiay

Po Lpo Po 0x
+[iw1_TOTETHO{Lz;OT_I_Tonigﬂ—z“gmvﬁ Vv =0, (11)
—iwpo[1 — (t — m)EJvy + Pobo Bz; + 2(7_;)”] =— Z—i + /1<1 + T;) Viv., (12)
- ﬁoép[iw[l —(t—m&]T + o {ZTLT _aﬁzﬂ = — [n — ;ir J 21520"

_ [iwp + {Léﬂ_pl) 1= (- n)¢] Ziﬂ + ;z<1 + f) V2T. (13)

Here, 7 is the ratio of specific heat coefficients and it is assumed that c, can be treated as
a constant at its value for T, and x and u are approximately proportional to the square root
of the absolute temperature at sufficiently high temperatures. A solution of these equations
could not be found without making the assumption that in the terms involving &, pg, v, Tp,
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Po and k, u can be replaced by their axial averages. With this approximation, the accuracy of
the analysis may no longer be maintained at O[t?] and O[#*] under all conditions. As an
examination of equations (11-13) will reveal, this approximation can be justified if T and
© are small compared to unity. However, the same effect can also be obtained if one assumes
that the mean value theorem can be invoked for the -dependent terms by taking the axial
mean value position at the pipe center, ¢ = 0. Thus, equations (11-13) may remain accurate
to first order in 7 and 7 if these are small compared to unity or if the mean value theorem is
applicable as stipulated above.

2.2. THE DISPERSION EQUATION

Under the above-described approximation, solution of equations (11)-(13) can be
searched in the form

p = Aexp(iKkx), v, = H(®r)p, T = F(r)p. (14)

Here, A denotes a constant, K denotes a propagation constant and k is the average
wavenumber, k = w/¢, where & = ./7Po/p,. Substituting these in equations (12) and (13)
gives the equations governing the radial functions H(r) and F(r) respectively:

d’H dH 5
—_— H = p*H 15
dr2+rdr+ﬁ B*H,, (15)
d’F dF
W"FE-FO'ZF:O'ZFO-FFIH. (16)
Here,
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M= p=tr g4 [P22 (20)
Co K "
and the function @ is defined as
_ 2Mo,
Pa)=1— MK + ——. 21
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Solution of equation (15) can be expressed in terms of Bessel function of zeroth order.
Writing down the general solution of equation (15) applying the boundary condition v, = 0
and the finiteness requirement at r = 0, one finds that H(r) is given as

Jo (ﬁr)}
Jo(Ba) '

H(r) = H, [1 - (22)
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where J, denotes a Bessel function of order n. An analytical solution of equation (16) can
also be found. Briefly, equation (22) is substituted into equation (16) and the right-hand side
of the resulting equation is re-arranged as a sum of a constant term and an r-dependent
term. Since the left-hand sides of equations (15) and (16) are formally the same, the solution
corresponding to the constant part can be written down by emulating the solution of
equation (15). The particular solution corresponding to the r-dependent term, on the other
hand, is obtained by noting that it must be proportional to Ju(fr). Thus, the solution of
equation (16), which follows after invoking the principle of superposition and applying the
boundary condition T' = 0 at r = a and the finiteness condition at r = 0, can be expressed as

FiH, Jo(a7) FiH, Jo(Br)  Jo(ar)
Fry=|F+—— || 1— — — . 23
v [ "t }[ Jotoa) |~ |o* = 1 || Jo(Ba) ~ Jofoa) >
Now, expressing p in terms of F and H, substituting the result in equation (11) and invoking
the boundary conditions v, =0 at r = 0 and v, = 0 at r = a gives

f 0 1ik [5050(”) _ % ‘D(Tfi Fiy _ {K + Z(TE_L T)} H(r)] dr = 0. (24)

This is the dispersion that determines the propagation constant K. Upon integration, it can
be expressed as

o el e o S
where )
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e 1- [ B2+ e | Znts )

C, = W (28)

In the case of zero mean flow, equation (25) simplifies to a quadratic equation for the
propagation constants:

K2 + AlK + A2 = 0, (29)

where
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As t/kL and n/kL tend to zero, the quotients C;/®(n) and C,/C; tend to unity, and the
dispersion equations reduces to the uniform temperature case [4].

3. RESULTS AND DISCUSSION

The propagation constants depend on the parameters 3, 5, M, P,,t/kL,n/kL. The
presence of mean flow may introduce some hydrodynamic modes into the dispersion
equation. The present study is concerned only with the effects of mean flow on the two
propagation constants of the zero mean flow case. These can in general be distinguished as
waves along the positive (forward) and negative (backward) directions of the pipe axis and
are denoted, respectively, by K™ and K, as usual. The wave transfer over a pipe of length
L can then be expressed as

p*(L)=p"(0)exp(kK"L), p (L)=p (0)exp(ikK L), (33)

where p*(x) and p~(x) denote forward and backward sound wave pressures, respectively, at
section x. The propagation constants are usually given as attenuation and phase speed
ratio. Attenuation in dB/m is defined as A* = + 8-686kK; and the phase speed ratio is
given by ¢ * = + 1/Kg, where the subscripts, ‘R* and ‘I’ denote the real and imaginary
parts of a complex quantity, respectively.

Ambient gradients are represented in the dispersion equation by the non-dimensional
parameters t/kL and m/kL. As these parameters tend to zero, the dispersion equation
reduces to the uniform temperature case. Therefore, the smaller they are, the more accurate
should be the representation of the ambient gradient effects in the solution. This shows that
the present solution can be expected to be a good approximation for relatively small
temperature and pressure change parameters or for relatively high frequencies. On these
premises, the following test can be used to estimate the relative accuracy of the present
solution: Compute the propagation constants by decreasing L gradually, while all other
parameters are kept unchanged. The solution will be most accurate for the largest L and
over the range of L for which the results remain substantially the same as those for the
largest L.

An application of this test is shown in Figure 1 for a monolith tube of radius a = 0-5 mm
with T, = 950K, t = 0-05, pp = 105kPa, 1 =0, jt = 40 x 10~ > Ns/m?, R = 288-1 J/kgK,
7 = 1-34, P, = 0-70 and M(0) = 0, where M(0) is the Mach number of the mean flow velocity
at the tube inlet. The lower limit of the frequency range is 20 Hz and, as can be inferred from
the figure, the present solution can be expected to be satisfactory in this frequency range for
tube lengths greater than about 50 mm. This does not mean that the results will be grossly
inaccurate for shorter lengths, they may also be acceptable for the shorter tube lengths, but
this cannot be asserted with certainty a priori, except when the frequency is sufficiently high.
In general, the smaller is |z|, or |n|, the smaller is the tube length for which the present
solution is a valid approximation in a given frequency range, the effect of low Mach number
mean flow on the accuracy being indiscernible.

Peat [3] has presented some results for this monolith tube for L = 20 mm and t = 0-05
and 0-1. The present propagation constants for the case of t = 0-05 are contained in
Figure 1. A comparison of this case with the results of reference [3] is not presented here,
because of the lack of a satisfactory correlation. This may be due to the present solution not
being accurate enough for L = 20 mm and 7 = 0-05. However, for the larger tube lengths
indicated in the above test, the present results are in fairly good agreement with the
approximate analytical solution of reference [3]. Shown in Figure 2 is the comparison of the
attenuation and phase speed ratio of the monolith tube under discussion for L = 60 mm
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Figure 1. Effect of pipe length on propagation constants in a narrow pipe of radius a = 0-5mm, T = 950 K,
7 =005, n =0 and M(0) =0.
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_ Figure 2. The attenuation and phase speed ratio of a L = 0-06 m long narrow pipe of radius a = 0-5 mm,
T =950K, 7 =005, = = 0 and M (0) = 0: (——), present solution; (- --), computed from wavenumbers given in
reference [3] (phase speed ratio corresponds to ¢ = 0).
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Figure 3. Effect of mean flow on attenuation and phase speed ratio of the forward and backward waves in an
L = 0-:06 m long narrow pipe of radius a = 0-5mm, T =950 K, 7 = 0-05, = = 0.

and 7 = 0:05, as computed by using the present method and the expressions given in
reference [3] for the wavenumbers. The observed correlation between the two solutions
improves as the tube length increases, or the temperature increase parameter decreases, and
for © = 0 they become identical, as expected. As further validation apparently is needed to
confirm the accuracy of the present solution for the relatively shorter lengths of this tube,
further results will be presented here for L = 60 mm. Tests indicate that the temperature
increase in a catalytic monolith occurs over about 40 mm, but this is for the measured wall
temperature; increase in the gas temperature may be distributed over a larger distance.

Shown in Figure 3 is the effect of the mean flow on the attenuation and phase speed ratio
of the forward and backward waves for T = 950K, 1 = 0-05 and t = 0-05 and = = 0. As can
be seen, increasing the inlet mean flow velocity Mach number, M(0), assists the transmission
of the forward wave, and hinders the transmission of the backward wave.

Figure 4 shows the effect of changing the temperature change parameter. The tube is
assumed to carry a mean flow of M(0) = 0-1. The presence of a positive temperature
gradient assists the forward wave and obstructs the backward wave.

Shown in Figure 5 is the effect of changing the mean pressure change parameter for
T =950K, t = 0-05 and M(0) = 0-3. It is seen that the effect of the mean pressure drop
tends to combine with the effect of the mean temperature gradient; however, this is
indiscernible except for the attenuation of the backward wave.

4. CONCLUSION

An approximate solution has been presented for the transmission of sound waves in
a narrow pipe with a constant temperature gradient and a mean flow of uniform velocity
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Figure 4. Effect of the temperature rise on attenuation and phase speed ratio of the forward and backward
waves in a narrow pipe of radius a = 0-5mm, T = 950K, = =0 and M(0) = 0-1.
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Figure 5. Effect of the mean pressure drop on attenuation and phase speed ratio of the forward and backward

waves in a narrow pipe of radius a = 0-5 mm, T = 950K, t = 0-05 and M(0) = 0-3.
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profile. The solution also includes the effect of a constant pressure gradient. The dispersion
equation gives the sound field in the pipe as a superposition of forward and backward
waves. In the presence of mean temperature and pressure gradients, the sound field is
continuously reflective and the propagation constants should be dependent on the axial
co-ordinate. The present solution assumes that these effects can be lumped by using average
values for the ambient variables. This approximation, which is permissible if 7/kL and t/kL
are small enough, limits the range of application of the solution to small ambient gradients
or relatively high frequencies. For typical dimensions of a catalytic monolith cylinder, the
present solution can provide accurate prediction of the mean flow effects over a useful
frequency range.

If the tube is short enough the present solution predicts spatial instability waves at
relatively low frequencies. An example of this is displayed in Figure 1 for the case of
L = 20 mm. For this case, the imaginary part of the propagation constant for the forward
wave remains negative up to about 200 Hz, implying an amplifying wave. For higher values
of 7, the spatial instability waves occur over larger frequency ranges and in a more complex
pattern that requires the application of Briggs’ criterion for the identification of the
amplifying and evanescent waves. This phenomenon is not pursued in this paper because it
occurs for tube lengths for which the low-frequency accuracy of the present solution cannot
be asserted on the basis of the test described in the previous section.

The presence of mean flow may introduce some hydrodynamic modes into the dispersion
equation; however, no attempt has been made in the present study to search these modes.
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