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The vibration of an axially moving string is studied when the string has geometric
non-linearity and translating acceleration. Based upon the von Karman strain theory,
the equations of motion are derived considering the longitudinal and transverse de#ections.
The equation for the longitudinal vibration is linear and uncoupled, while the equation
for the transverse vibration is non-linear and coupled between the longitudinal
and transverse de#ections. These equations are discretized by the Galerkin method after
they are transformed into the variational equations, i.e., the weak forms so that the
admissible and comparison functions can be used for the bases of the longitudinal and
transverse de#ections respectively. With the discretized equations, the natural frequencies,
the time histories of the de#ections, and the distributions of the de#ection and stress are
investigated. In addition, comparisons between the results of linear and non-linear theories
are provided.

( 2001 Academic Press
1. INTRODUCTION

Transverse vibrations of an axially moving string have been investigated by many
researchers, because a variety of physical systems may be modelled as axially moving
strings, e.g., belts, tapes, paper and "bres. Comprehensive reviews on the dynamics of axially
moving strings are given in references [1, 2]. Most of the analyses for the vibration and
stability of axially moving strings have mainly focused on the transverse de#ection.
Qualitative and quantitative studies for the non-linear vibrations of axially moving strings
were performed by Mote [3] and Thurman and Mote [4]. In their studies, the non-linear
strain was derived considering the geometric non-linearity and the in"nitesimal strain
simultaneously. However, it is reasonable that the geometric non-linearity is considered in
the general Lagrangian strain that is often called the von Karman strain, because the
in"nitesimal strain theory is suitable for a linear system while the von Karman strain theory
is for a non-linear system [5]. On the other hand, many authors presented studies on the
vibration and stability of axially moving strings when the strings had axial acceleration
[6}9].
022-460X/01/090733#14 $35.00/0 ( 2001 Academic Press



734 J. CHUNG E¹ A¸.
In this study, the equations of motion for an axially moving string are derived from the
extended Hamilton principle [10], when the string has transverse and longitudinal
de#ections, geometric non-linearity and translating acceleration. The geometric non-linear
characteristics are considered by adopting the von Karman strain theory instead of the
approximated in"nitesimal strain theory. The weak forms or the variational equations
corresponding to the equations of motion are discretized by the Galerkin method, in which
the admissible and comparison functions are used as basis functions for the longitudinal
and transverse de#ections respectively. Based on the discretized equations, to investigate
the dynamic behaviours of the string, the natural frequencies and the dynamic responses are
obtained for the longitudinal and transverse vibrations. The time histories and distributions
for the de#ections and the stress are computed by the generalized-a method [11].
Additionally, computation results from the non-linear theory are compared with those from
the linear theory.

2. THEORETICAL MODEL AND EQUATIONS OF MOTION

Figure 1(a) shows a string drive system, containing driving and driven pulleys which have
the same radius R and the same mass moment of inertia J. The driving pulley is subjected to
a torque M

T
(t). The string has the mass density per length o, the cross-sectional area A,

Young's modulus E, the translating speed <(t) and the acceleration <Q (t). A model of the
axially moving string with the transverse load per length p(x, t) is shown in Figure 1(b),
where two supports are separated by a distance ¸ and the longitudinal and transverse
de#ections are represented by u(x, t) and v(x, t) respectively. Assuming that there exists no
friction in the axes of the pulleys, the acceleration may be expressed as

<Q (t)"
R

2(J#o¸R2)
M

T
(t). (1)
Figure 1. Schematics of an axially moving string: (a) a string drive system between two pulleys; and (b)
a theoretical model of the string with the longitudinal and transverse de#ections.
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If the initial tension is ¹
0

when M
T
"0 and the tension at x"¸ is ¹

L
when M

T
O0, the

relation between ¹
0

and ¹
L

is given by

¹
L
"¹

0
#o¸<Q (2)

The equations of motion are derived by using the extended Hamilton principle [10],
because mass is transported across the boundaries of x"0 and ¸. In this case, Hamilton's
principle is expressed as

P
t2

t1

(d¹!d;#d=
nc
!dM) dt"0, (3)

where t
1

and t
2

are any two instants, ¹ the kinetic energy,; the potential energy, d=
nc

the
virtual work done by the non-conservative forces, and dM the virtual momentum transport
across the boundaries. After the string is deformed, the position vector of a point at x can be
written as

r"(x#u) i#vj, (4)

where i and j are the unit vectors along the x- and y-axes respectively. The material
derivative of r yields the velocity vector

v"A<#
Lu

Lt
#<

Lu

LxB i#A
Lv

Lt
#<

Lv

LxB j. (5)

On the other hand, when the geometric non-linearity is considered for the elastic string, the
displacement}strain relation [12] and the strain}stress relation are given by

e
x
"

Lu

Lx
#

1

2 A
Lv

LxB
2
, p

x
"Ee

x
. (6)

Neglecting the gravity, the kinetic and potential energies are computed by

¹"

1

2
o P

L

0

v ) v dx, ;"

1

2
A P

L

0

p
x
e
x
dx. (7)

and the virtual work done by the non-conservative forces and the virtual momentum
transport are expressed as

d=
nc
"!¹

0
du D

x/0
#¹

L
duD

x/L
#P

L

0

p (x, t) dvdx, dM"o (v ) dr) (< i ) n)DL
x/0

, (8)

where n is the outward normal vector at the boundaries. The equations of motion can be
obtained by substituting equations (7) and (8) into equation (3).

Governing equations of motion for the axially moving string with the longitudinal and
transverse de#ections are given by

oA
L2u
Lt2

#2<
L2u
Lt Lx

#<2
L2u
Lx2

#<Q
Lu

LxB!EA
L2u
Lx2

"!o<Q , (9)

oA
L2v
Lt2

#2<
L2v
Lt Lx

#<2
L2v
Lx2

#<Q
Lv

LxB!EA
L
Lx A

Lu

Lx

Lv

LxB"p (10)
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and the boundary conditions are given by

EA
Lu

Lx
"¹

0
at x"0, EA

Lu

Lx
"¹

0
#o¸<Q at x"¸, v"0 at x"0, ¸. (11)

Introducing the dimensionless variables

q"
JEA/o

¸

t, m"
x

¸

, /"

u

¸

, t"

v

¸

, c"
<

JEA/o
, cR"

o¸<Q
EA

, h"
¹

0
EA

, c"
p

EA/¸

(12)

into equations (9) and (10) yields the dimensionless equations of motion

L2/
Lq2

#2c
L2/
LqLm

!(1!c2)
L2/

Lm2
#cR

L/

Lm
"!cR , (13)

L2t
Lq2

#2c
L2t
Lq Lm

#c2
L2t
Lm2

!

L
Lm A

L/

Lm
Lt
LmB#cR

Lt
Lm

"c. (14)

The boundary conditions corresponding to equations (11) are

L/

Lm
"h at m"0,

L/

Lm
"h#cR at m"1, t"0 at m"0, 1. (15)

If the translating velocity is constant and the tension is uniform along the string, the
equations of motion and the associated boundary conditions reduce to

L/

Lm
"h"const, (16)

L2t
Lq2

#2c
L2t
Lq Lm

!(h!c2)
L2t
Lm2

"c, (17)

t"0 at m"0, 1. (18)

Note that equation (17) is the well-known equation of motion for an axially moving string
with a constant translating speed and a uniform tension.

3. DISCRETIZATION OF THE EQUATIONS OF MOTION

In order to obtain approximate solutions in a "nite-dimensional function space, the
Galerkin method is applied to the variational equations, i.e., the weak forms [13] that are
derived from equations (13) and (14) with the boundary conditions (15). Denoting by /M and
tM the weighting functions corresponding to the trial functions / and t, respectively, the
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weak forms of equations (13) and (14) may be expressed as

P
1

0
C/M

L2/
Lq2

#c A/M
L2/
Lq Lm

!

L/M
Lm

L/
LqB#(1!c2)

L/M
Lm

L/
Lm

#

cR
2 A/M

L/
Lm

!

L/M
Lm

/BDdm

"!c C/M
L/

LqD
1

m/0

#(1!c2) C(h#cR )/M (1)!h/M (0)D!
cR
2

[/M /]1m/0
!cR P

1

0

/M dm, (19)

P
1

0
CtM

L2t
Lq2

#cAtM
L2t
Lq Lm

!

LtM
Lm

Lt
LqB#

LtM
Lm A

L/

Lm
Lt
Lm

!c2
Lt
LmB#

cR
2 AtM

Lt
Lm

!

LtM
Lm

tBD dm

"P
1

0

tM cdm. (20)

It is noted that the longitudinal de#ection may be approximated as a series of
the admissible functions while the transverse de#ection should be approximated as a
series of the comparison functions, because the natural boundary conditions for / have
been already considered in the weak form given by equation (19). Therefore, the
dimensionless longitudinal and transverse de#ections are approximated by the trial
functions that are linear combinations of the admissible and comparison functions,
respectively,

/ (m, q)"
J
+
j/1

C
j
(q) cos jnm, t (m, q)"

N
+
n/1

S
n
(q) sin nnm (21)

and in a similar manner the weighting functions corresponding to the trial functions are
approximated by

/M (m, q)"
J
+
i/1

CM
i
(q) cos inm, tM (m, q)"

N
+

m/1

SM
m
(q) sinmnm, (22)

where J and N are the total numbers of the basis functions for the longitudinal and
transverse de#ections, respectively, C

j
(q) and S

n
(q) are unknown functions of q to be

determined, and CM
i
(q) and SM

m
(q) are arbitrary functions of q.

The Galerkin method is used to obtain the discretized equations of motion from the weak
forms. When collecting all the terms of equations (19) and (20) with respect to CM

i
(q) and

SM
m
(q) after substituting equations (21) and (22) into equations (19) and (20), the coe$cients

of CM
i
(q) and SM

m
(q) provide the discretized equations given by

J
+
j/0

[mc
ij
C$

j
#2cgc

ij
CQ

j
#(1!c2)kc

ij
C

j
#cR gc

ij
C

j
]"f c

i
, i"1, 2,2,J, (23)

N
+
n/1
Gms

mn
S$
n
#2cgs

mn
SQ
n
#C

J
+
i/1

a
imn

C
i
!c2ks

mnDS
n
#cR gs

mn
S
nH"f s

m
, m"1, 2,2,N, (24)
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where the superposed dots indicate derivatives with respect to the dimensionless time q and

mc
ij
"1

2
d
ij
, ms

mn
"1

2
d
mn

,

gc
ij
"G

0, for i"j,

1!(!1)i`j

2

i2#j2

i2!j2
for iOj,

gs
mn
"G

0, for m"n,

[1!(!1)m`n]
mn

m2!n2
for mOn,

kc
ij
"

i2n2

2
d
ij
, ks

mn
"

m2n2

2
d
mn

,

a
imn

"G
!

2i2mn (i2!m2!n2)n2

(i#m#n) (i#m!n) (i!m#n) (i!m!n)
if i#m#n is odd,

0 if i#m#n is even,

f c
i
"(1!c2 ) [(h#cR ) (!1)i!h], f s

m
"P

1

0

csinmnmdm, (25)

in which d
ij

and d
mn

are the Kronecker delta functions. Equations (23) and (24) can be
written in matrix-vector form:

McCG#2cGcC0 #[(1!c2)Kc#cR Gc]C"Fc , (26)

MsSG#2cGsS0 #[Ksc (C)!c2Ks#cR Gs] S"Fs , (27)

where

C"MC
1
, C

2
,2,C

J
NT, S"MS

1
, S

2
,2,S

N
NT , Ksc (C)"C

J
+
i/1

a
imn

C
iD. (28)

Note that equation (26) is a linear ordinary di!erential equation while equation (27) is
a non-linear ordinary di!erential equation. Furthermore, the longitudinal de#ection is
coupled with the transverse de#ection in equation (27). This means that the longitudinal
vibration has an in#uence on the transverse vibration.

4. NATURAL FREQUENCIES

Consider the convergence characteristics of the natural frequencies for the axially moving
string when the translating speed is constant and the applied transverse force is zero. In
order to compute the natural frequencies, the linear equations of motion should be derived
from equations (26) and (27). Denoting the equilibrium solutions of equations (26) and (27)
by C* and S* respectively, the elements of C* and S* can be expressed as

C*
i
"

2h [(!1)i!1]

n2i2
, S*

m
"0. (29)

Even though an analytical veri"cation cannot be provided in this paper, it can be
numerically veri"ed that Ksc (C*) approaches hKs as the numbers of the basis functions,
J and N, increase. Using this fact, the linearization of equations (26) and (27) in the



TABLE 1

Convergence characteristics of the dimensionless natural
frequencies j for the longitudinal vibration when c"0)35

and h"0)25

J j
1

j
2

j
3

j
4

1 2)9429 N/A N/A N/A
2 2)6881 6)4437 N/A N/A
3 2)6772 5)7058 10)0109 N/A
4 2)6608 5)5350 8)8800 13)7644
5 2)6588 5)5294 8)3972 12)1754
6 2)6525 5)5026 8)3818 11)2652
7 2)6517 5)5001 8)3395 11)1298
8 2)6484 5)4889 8)3363 11)1043
9 2)6479 5)4874 8)3195 11)0787

10 2)6458 5)4813 8)3183 11)0685
11 2)6455 5)4802 8)3089 11)0580
12 2)6441 5)4763 8)3083 11)0522
13 2)6439 5)4755 8)3022 11)0465
14 2)6429 5)4728 8)3019 11)0427
15 2)6427 5)4722 8)2976 11)0391
16 2)6419 5)4701 8)2974 11)0364
17 2)6418 5)4697 8)2942 11)0339
18 2)6412 5)4681 8)2941 11)0318
19 2)6411 5)4677 8)2916 11)0300
20 2)6406 5)4665 8)2915 11)0284

AXIALLY MOVING STRING 739
neighbourhood of the equilibrium solutions leads to

McCG#2cGcC0 #(1!c2)KcC"0, (30)

MsSG#2cGsS0 #(h!c2)KsS"0, (31)

from which the natural frequencies can be computed for the longitudinal and transverse
vibrations. Denote the dimensionless natural frequency for the natural frequency u by

j"
u

JEA/o¸2
. (32)

Tables 1 and 2 demonstrate that the dimensionless natural frequencies for the longitudinal
and transverse vibrations are converged with J and N when c"0)35 and h"0)25. As
shown in Tables 1 and 2, it is reasonable that J"N"20 are chosen in further
computations.

The e!ects of the translating speed and the longitudinal load on the natural frequencies
are analyzed for both the longitudinal and transverse vibrations. Figure 2 describes the
variation of the lowest four dimensionless natural frequencies j for the dimensionless speed
c, when the dimensionless longitudinal load has a constant value of h"0)25. As shown in
Figure 2, the critical speed is c"1 for the longitudinal vibration and c"0)5 for the
transverse vibrations. These results are compatible with equations (30) and (31) which imply

that the critical speeds are c"1 and Jh for the longitudinal and transverse vibrations



TABLE 2

Convergence characteristics of the dimensionless natural
frequencies j for the transverse vibration when c"0)35

and h"0)25

N j
1

j
2

j
3

j
4

1 1)1218 N/A N/A N/A
2 0)8353 3)0131 N/A N/A
3 0)8050 1)9970 5)2683 N/A
4 0)8044 1)6471 3)7421 7)6655
5 0)8022 1)6161 2)7627 5)8731
6 0)8021 1)6107 2)4433 4)3902
7 0)8015 1)6069 2)4290 3)4876
8 0)8015 1)6055 2)4154 3)2414
9 0)8013 1)6044 2)4131 3)2398

10 0)8013 1)6038 2)4089 3)2195
11 0)8012 1)6034 2)4083 3)2194
12 0)8012 1)6031 2)4064 3)2124
13 0)8012 1)6029 2)4062 3)2124
14 0)8012 1)6028 2)4053 3)2093
15 0)8012 1)6027 2)4051 3)2093
16 0)8012 1)6026 2)4046 3)2076
17 0)8011 1)6025 2)4045 3)2076
18 0)8011 1)6025 2)4042 3)2066
19 0)8011 1)6024 2)4042 3)2066
20 0)8011 1)6024 2)4040 3)2060
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respectively. Since the real parts of the eigenvalues are positive for the speed above the
critical speeds, in other words, the system is dynamically unstable, the dimensionless natural
frequencies in the regions above the critical speeds are not plotted in Figure 2. On the other
hand, the e!ects of the dimensionless longitudinal load h on the dimensionless natural
frequencies j are presented in Figure 3, where the dimensionless translating speed c is "xed
at a constant value of 0)35. Figure 3 shows that the natural frequencies for the longitudinal
vibration are independent of h while the frequencies for the transverse vibration are
dependent on h. Similarly, with Figure 2(b), Figure 3(b) does not describe the behaviour of
the natural frequencies in the region of h(c2 (in this case, h(0)1125), because the string
becomes unstable.

5. DYNAMIC RESPONSES

The time histories of the de#ections as well as the distributions of the de#ections and the
stress may be obtained from equations (26) and (27) by using the generalized-a method [11].
To apply the generalized-a method to the equations, it is convenient to express the
discretized equation (26) as

Mca
c
n#1!am#2cGcv

c
n#1!a

f
#[(1!c2)Kc#cR Gc] dc

n#1!a
f
"Fc

n#1!a
f
, (33)



Figure 2. Dimensionless natural frequencies j versus the dimensionless translating speed c when h"0)25: (a)
the longitudinal vibration; and (b) the transverse vibration.

Figure 3. Dimensionless natural frequencies j versus the dimensionless longitudinal load h when c"0)35: (a)
the longitudinal vibration; and (b) the transverse vibration.
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where

dc
n#1!a

f
"(1!a

f
) dc

n#1#a
f
dc

n, vc
n#1!a

f
"(1!a

f
)vc

n#1#a
f
vc

n,

ac
n#1!a

m
"(1!a

m
) ac

n#1#a
m
ac

n , Fc
n#1!a

f
"Fc ((1!a

f
) q

n`1
#a

f
q
n
), (34)

dc
n#1"dc

n#Dqvc
n#(1

2
!b)Dq2ac

n#bDq2ac
n#1, vc

n#1"vc
n#(1!c)Dqac

n#cDqac
n#1 ,

(35)

in which a
m
, a

f
, b and c are the algorithmic parameters determined by the numerical

dissipation parameter; Dq is the time step size, i.e., Dq"q
n`1

!q
n
; dc

n , vc
n and ac

n are
approximations to C (q

n
), C0 (q

n
) and CG (q

n
) respectively. Similarly, the discretized equation

(27) for the transverse vibration may be rewritten as

Msa
s
n#1!a

m
#2cGsv

s
n#1!a

f
#[Ksc (d

c
n#1!a

f
)!c2Ks#cR Gs] ds

n#1!a
f
"Fs

n#1!a
f
, (36)

where

ds
n#1!a

f
"(1!a

f
) ds

n#1#a
f
ds

n, vs
n#1!a

f
"(1!a

f
)vs

n#1#a
f
vs

n ,

as
n#1!a

m
"(1!a

m
)as

n#1#a
m
as

n , Fs
n#1!a

f
"Fs ((1!a

f
) q

n`1
#a

f
q
n
), (37)

ds
n#1"ds

n#Dqvs
n#(1

2
!b)Dq2as

n#bDq2as
n#1, vs

n#1"vs
n#(1!c)Dqas

n#cDqas
n#1 ,

(38)

in which ds
n , vs

n and as
n are approximations to S (q

n
), S0 (q

n
) and SG (q

n
) respectively.

Although equation (36) is a non-linear coupled equation between ds
n and dc

n , the use of
a non-linear equation solver, e.g., the Newton}Rhapson method, in order to update the
displacement, velocity and acceleration vectors, can be avoided. After dc

n#1 , vc
n#1 and

ac
n#1 are computed from equations (33)}(35) for given dc

n, vc
n and ac

n , the vector
dc

n#1!a
f
becomes a known vector. At this time, equation (36) becomes a linear equation with

a given sti!ness matrix at each time step, so that the updated vector for the transverse
vibration, ds

n#1 , v
s
n#1 and as

n#1 can be computed from equations (36)}(38) without applying
a non-linear equation solver.

The time histories of the longitudinal and transverse de#ections are computed from
equations (33)}(38), when the torque M

T
of Figure 1(a) has a constant positive value for

0)q)50, zero for 50)q)150, and a constant negative value for 150)q)200. The
associated velocity pro"le is plotted in Figure 4, which implies that the translating
acceleration cR has the same pattern as M

T
. When computing the time histories of the

de#ections, the dimensionless longitudinal load of h"0)25 and the dimensionless
transverse load of the unit impulse are applied to the string. The total number of the basis
functions and the time step size are selected as J"N"20 and Dq"0)2.

Consider the e!ects of the translating acceleration on the string vibrations. The computed
longitudinal and transverse de#ections at m"0)5 are plotted with q in Figures 5 and 6(a),
when the generalized-a method has no numerical dissipation. Figures 5 and 6(a) show that
the periods of the longitudinal vibration are shorter than those of the transverse vibration.
This phenomenon is coincident with Figure 2, which shows that the natural frequencies of
the longitudinal vibration are larger than those of the transverse vibration for the same
translating speed. On the other hand, as shown in Figure 5, the longitudinal vibration has
a negative average value when 0)q)50 while it has a positive average value when
150)q)200. This results from the inertia e!ect related with the acceleration. When the



Figure 4. Time history of the dimensionless translating speed.

Figure 5. Time histories of the dimensionless longitudinal de#ection at m"0)5 for the velocity pro"le of
Figure 4 when h"0)25.

Figure 6. Comparison of the time histories for the dimensionless transverse de#ection at m"0)5 for the velocity
pro"le of Figure 4 when h"0)25: (a) the non-linear theory; and (b) the linear theory.
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acceleration is zero, that is, 50)q)150, it is natural that the average value of the
longitudinal vibration becomes zero. Figure 6(a) illustrates that the period increases with
the translating speed. This behaviour of the axially moving string with acceleration is very
similar with that of the spinning disc with angular acceleration [14].

It is interesting to compare the computation results of the linear and non-linear theories.
The linear theory for the transverse de#ection of an axially accelerating string was
introduced by Pakdemirli et al. [7, 8], in which the linear equation is corresponding to the
linearized version of equation (27):

MsSG#2cGsS0 #[(h!c2)Ks#cR Gs] S"Fs . (39)

Since the tension is uniform in the linear theory, it is not necessary to derive the linearized
equation of motion for the longitudinal de#ection. With the same conditions in the above,
the time history for the transverse de#ection at m"0)5 is computed from the linear equation
Figure 7. Comparison of the de#ection and stress distributions between the non-linear theory (**) and the
linear theory () ) ) ) )) when h"0)25, q"20, c"0)14 and cR"0)07: (a) the dimensionless longitudinal de#ection; (b)
the dimensionless transverse de#ection; and (c) the dimensionless stress.
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of motion given by equation (39). Figure 6(a) represents the time response from the
non-linear theory while Figure 6(b) represents the time response from the linear theory. It is
noted in Figure 6 that the response of the non-linear theory is quite di!erent from that of the
linear theory, that is, the period of Figure 6(a) is longer than that of Figure 6(b).

Finally, it is valuable to investigate what di!erence the linear and non-linear theories
yield in the de#ection and stress distributions along the string. The distributions are
computed and presented in Figure 7, when h"0)25 and q"20. The dimensionless time of
q"20 corresponds to c"0)14 and 0)07 in Figure 4. The dotted and solid lines stand for the
distributions from the linear and non-linear theories respectively. As shown in Figure 7(a),
it is hard to "nd a di!erence between the longitudinal de#ection distributions from the
linear and non-linear theories. However, Figure 7(b) demonstrates that the transverse
de#ection distribution of the non-linear theory has a large di!erence from the distribution
of the linear theory. As is well known, in the linear theory, the stress is constant because
the tension is uniform along the string. On the other hand, the stress is not constant in
the non-linear theory. The stress of the non-linear theory may be measured by the
dimensionless stress de"ned as

p
n
"

L/

Lm
#

1

2 A
Lt
LmB

2
. (40)

The stress distributions in Figure 7(c) show that the stress from the linear theory is uniform
along the string while the stress from the non-linear theory #uctuates. In Figure 7(c), the
value corresponding to the dotted line is the averaged value of the solid line. This value is
the slope of the dotted line in Figure 7(a), which is represented by the "rst term on the
right-hand side of equation (40). Therefore, the #uctuation originates from the geometric
non-linearity that is represented by the second term on the right-hand side of equation (40).

6. CONCLUSIONS

The equations of motion for the axially moving string are derived, simultaneously
considering the longitudinal and transverse de#ections, the geometric non-linearity and
the translating acceleration. The derived equations consist of a linear equation for the
longitudinal vibration and a non-linear equation for the transverse equation. Especially,
the non-linear equation is a coupled equation between the transverse and longitudinal
de#ections. Applying the Galerkin method to the equations of motion results in the
discretized equations, in which the natural frequencies and time responses are computed.

From the computation of the natural frequencies, the e!ects of the translating speed and
the longitudinal load are examined for the longitudinal and transverse vibrations. The time
histories for the de#ections the distributions for the de#ections and stresses are computed
by using the generalized-a time integration method. The results of this study are
summarized as follows.

(1) The critical speeds are c"1 and Jh for the longitudinal and transverse vibrations
respectively.

(2) The natural frequencies for the longitudinal vibration are independent of h while the
frequencies for the transverse vibration are dependent on h.

(3) The longitudinal vibration has negative, zero and positive average values for the
positive, zero and negative accelerations respectively.

(4) The period of the transverse vibration increases with the translating speed.
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(5) The transverse response of the non-linear theory is quite di!erent from that of the
linear theory.

(6) The stress from the linear theory is uniform along the string while the stress from the
non-linear theory #uctuates.
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