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An incident time harmonic scalar wave iy; impinging on a cylindrical surface S gives rise
to a time harmonic scattered wave , and the total field = y; + Y is solution of the
Helmholtz equation in the domain D surrounding S,

Ay + k2 =0, (1)

where k is the wave number of the incident field. In addition, i satisfies some boundary
condition on S. To investigate the properties of the scattered wave, a versatile technique,
with many applications to different configurations of cylindrical surfaces [1, 2], consists in
expanding ¥; and Y in series of Bessel and of Hankel functions and in matching the
coefficients of these expansions to satisfy the boundary condition on S.

A different point of view is adopted, upon considering that one has in fact to solve
a boundary value problem of Helmholtz’s equation for which integral equations with Green
functions as kernels have been developed [3]. A circular cylinder is considered with axis
along oz and radius a (see Figure 1) and ; = exp(ikx) with time-dependence exp(iwt). So,
one has to deal with a two-dimensional (2D) problem and can use the cylindrical
co-ordinates r = (r, ¢). S is assumed perfectly reflecting and smooth so that s and G satisfy
on S the Neumann boundary conditions

LY ()] -a =0, [0,G(r,r)].-, =0, 2
but one is mainly interested in a weakly corrugated perfectly conducting cylinder to be

defined later. For the boundary conditions (2), the conventional integral equation of the
2D-Helmholtz equation [4, 5] due to Weber [6] takes the simple form

v = —J g )G, r2a G)

0

To get the Green function satisfying equation (2), one starts with the Green function G°(r, r’)
for the un-bounded 2D domain which is [5, 6] the Hankel function in)“(klr —r'|)/4 that
one writes, by using a well-known expansion of HY"” [7] as

4G°(r,r') =i i H,,(kr')J,,(kr) exp[in(¢ — ¢")], Q)
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Figure 1. Geometric configuration.

in which J, and H,(= H,(,l)) are the Bessel and Hankel functions. Then, G(r,r’) =
G°(r, r') + g(r, ¥') in which g is a solution of the 2D-Helmholtz equation such that G satisfies
equation (2) and

4g(r, 1) = —i i H, (kr')H,(kr)J,(ka)/H,(ka) exp[in(¢ — ¢")]. )

n= — o0

So finally

4G(r, 1) =i i H,,(kr)[Ju(kr) — H,(kr)J,,(ka)/H,(ka)] exp[in(¢ — ¢)]. (©)

And since exp(ikx) =Y iJ,.(kr) exp(im¢) [5], one proves easily that the solution of the
integral equation (3) is

00

W)=Y i"[u(kr) — H,(knJ,(ka)/H, (ka)] exp(ime), )

m= — oo

which represents the total field for a plane wave exp(ikx) incident perpendicularly to the
z-axis of a perfectly reflecting circular smooth cylinder [5].

The surface of the cylinder is supposed to be described by a function b = a + ¢(¢b) in
which the roughness function £(¢) is small enough to make negligible the &2-terms. So, one
has just to change a into b in relations (2) and (3) so that the integral equation becomes

Y = J T ()G E Y, r 2 b, ®

To get an approximate solution of the integral equation (8), a first order expansion of the
integrand neglecting the &*-terms is used. So

Lo ()] =p = [ ()] =0 + (@)Y ()] =0 = [o(0) ] =0 (9a)

since according to equation (2) the second term is zero, also denoting by 1, (r) the solution
(7) when ¢ = 0 and

[ar’G(r’ r/)]r/Zb = [ar’G(r: r/)]r/Ia + 8((15’) [6,2,G(r, l'/)],u:a. (9b)
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Substituting equations (9a) and (9b) into equation (8) gives
27

W) = olt) — f A o) G, 1)y (10)

0
since [ (r')], =, 1s the solution of the integral equation (3) while according to equation (6)
AL07 G(r, 1)1, =y = iak® ) [J,(kr)Hj (ka) — H,(kr)J,(ka)H, (ka)/H, (ka)] exp[in(¢ — ¢")].
" (1)
Now one obtains from equation (7) [Y(r')], =a = ., i"Wn(ka) exp(im¢’)/H,,(ka), in which
the Wronskian w,,(ka) = J,,(ka)H, (ka) — H,, (ka)J,,(ka) = 2i/nka [7], so

¥ ()], - = (2i/nka) } i" exp(im¢’)/H,, (ka). (12)

Substituting equations (11) and (12) into equation (9) gives

2

¥ (r) = olr) + k/ZHJ nd¢’8(¢’) 2. i"Fyu(a, r) exp[ing +i(m —n)¢")], (13)

Fya(a,1) = [3,(kr)H, (ka) — H,(kr)J,(ka)H, (ka)/H, (ka)]/H,,(ka). (13a)

Exchanging integration and summation in equation (13) gives finally

2

W) = o) + (k/2m) 3 i"Fyu(a, 1) eXp(inqﬁ)j nd¢’8(¢’)exp[i(m —m¢il.  (14)

0

For a perfectly reflecting corrugated cylinder, one may write

&(¢) = p[2 — exp(ipp) — exp(—ipg)], (15)

in which p is a length, small with respect to the radius of the cylinder and p an integer. With
equation (15) one obtains from equation (14) the approximation

l//(l‘) = lpO(r) + k,() Z [2Fm,m(a> r) - Fm,m+p(a7 r) exp(1p¢) - Fm,n*p(aa r)

x exp(— ip¢)]i™ exp(ime) (16)

for the total field outside a weakly corrugated perfectly conducting circular cylinder on
which the harmonic plane wave exp(ikx) impinges.

One could also consider a perfectly conducting rough cylinder with a roughness function
depending on a random number p, for instance &(¢) = p sin(p¢). These results may be
generalized to problems with boundary conditions more general than conditions (1), in
particular for cylinders with a surface impedance Z so that one has [0,y + ikZy),-, =0and
[0,G + ikZG],-, =0. The integral equation (3) becomes

Vi) = — f T4 )0 Grrlr, )T - 17

0

where G, is obtained from equation (6) by changing J,(ka)/H,(ka) into £J,(ka)/QH, (ka) in
which Q is the operator 0, + ikZ.
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For instance, if Z depends only on frequency [8] and if the real and imaginary parts
R and X of Z can be expanded in even and odd powers, respectively, of w, as

Z)=R +iX =Ry + R,0* + - +i(X10 + X300 + ---), (18)

one would use similar expansions for y and G in order to obtain for every power of w an
integral equation and one would solve successively this system of equations.

To obtain a tractable approximation of the scattered wave by a corrugated perfectly
reflecting cylinder, one may use the Debye approximations of the Bessel and Hankel
functions [7], and provided that ka is large enough, one may truncate the infinite series in
equation (15) after M, the integer part of ka [9]. Methods of summing the coefficients have
been discussed by Jobst [10].
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