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1. INTRODUCTION

Several authors have studied the vibration of beams with attachments. Goel [1]
investigated the free vibration of a beam-mass system hinged at either end by rotational
springs and arbitrarily located heavy mass. GuK rgoK ze [2] studied the natural frequencies of
restrained beam and rods with point masses, also he [3] derived the characteristic equation
of a Bernoulli}Euler beam carrying springs, heavy masses and viscous dampers. Chang [4]
analyzed the vibration of a mass-loaded beam with a heavy tip mass by using Laplace
transform. Recently, Chang and his associate [5] adopted the same method to perform the
vibration analysis of a beam with a two-degrees-of-freedom (2 d.o.fs) spring}mass system.
The purpose of this study is to apply Laplace Transform to determine the eigenvalues of
a uniform simple beam carrying arbitrarily located point masses, translational springs and
viscous dampers.

2. METHOD OF ANALYSIS

The partial di!erential equation of the free bending vibration for a uniform beam with
point masses, springs and viscous dampers, according to Bernoulli}Euler theory, is the
well-known expression (see Figure 1)
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where w (x, t) is the transverse displacement, m
i
is the ith point mass, k

j
is the sti!ness of the

jth translational spring, c
l
is the damping constant of the lth viscous damper, m is the mass

per unit length of the uniform beam, E is the Young's modulus of elasticity of the beam, I is
the area moment of inertia of the beam and d( ) ) is the Dirac delta function.

Assume a solution of equation (1) as the form

w(x, t)"= (x)ejt , (2)
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Figure 1. Viscously damped Bernoulli}Euler beam carrying point masses restrained by linear springs.
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then substituting equation (2) into equation (1) gives
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The boundary conditions at x"0 and ¸ are assumed as follows:

= (0)"0, =@@(0)"0, (4a,b)

=(¸)"0, =@@(¸)"0. (4c,d)

Taking the Laplace transform on equation (3) in conjunction with the boundary condition
equations (4a) and (4b), then applying the inverse Laplace transform yields
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where A"=@(0), B"=@@@ (0), b4"mj2/a, a"EI and H( ) ) is the Heaviside unit step
function. Now substituting equation (5) into the boundary condition equations (4c) and (4d)
yields the following two equations:
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be achieved. The determinant of the coe$cients of these equations, which is the
characteristic equation, must be equal to zero for each eigenvalues j

n
(n"1, 2, 3,2,R).

Finally, the characteristic equation can be expressed as
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are presented in Appendix A. The eigenvalues j
n
can be calculated readily after equation (8)

has been solved.

3. NUMERICAL RESULTS AND DISCUSSIONS

Some numerical examples are presented to demonstrate the validity of the proposed
method. The system parameters used here are as follows: beam mass density
m"341)615 slug/ft (1)6363]104 kg/m); beam Young's modulus E"576,000 kips/ft2
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(2)756]1010 N/m2); beam length ¸"50 ft (15)24 m). For simplicity, p, q and s are all
considered as one in the numerical computations. There are in"nite number of roots in
equation (8), and the "rst three roots are evaluated by using Secant method in conjunction
with MATLAB. There are six parameters in the characteristic equation: m

1
, k

1
, c

1
, x

i1
, x

j1
and x

l1
denoting individually the point mass, spring constant, damping constant, locations

of the point mass, spring and damper.
First of all, the eigenvalues of the beam carrying only the point mass is calculated. Tables 1}4

show the comparisons between the results calculated according to the present method and
those of the others. As it can be seen, the eigenvalues j

n
shows an excellent agreement

between the results from the proposed method and those of the other methods for di!erent
magnitude of the heavy mass. Moreover, it is very interesting to notice that the second
eigenvalues are almost identical for various heavy masses. This phenomenon can be
illustrated since the heavy mass is located at the middle, which happens to be the node of the
second mode; therefore, it does not have any impact on the second natural frequency.
Secondly, the eigenvalues of the beam with only the translation spring attached are
evaluated and presented in Tables 5}7. As it can be detected from Table 7, the "rst
eigenvalue of the system with spring (k

1
"23m¸u2

1
) is exactly four times the second
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eigenvalue of the system in Table 7. Physically speaking, the system in Table 7 can be
considered as a beam attached by a spring with in"nite spring constant, so that the span
length of this system is reduced to be half of the original length of the system without any
spring attached. Once again, the second eigenvalues of the system remains almost the same
despite the spring constants being di!erent; the phenomenon again is quite understood
since the spring is located at the middle of the beam, which is the node of the second mode.
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In Tables 8}10, the eigenvalues of the system carrying the damper are obtained for di!erent
damping constants, it should be noted that the computed eigenvalues are complex numbers
which are quite reasonable. Also it can be concluded that the second eigenvalues of the
structure are unchanged for di!erent damping constants. Finally, as presented in Table 11,
the "rst three eigenvalues are calculated for the case with m
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, x
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"¸/2. In Figure 2, the undamped "rst natural

frequency of the system, carrying a heavy mass m
1
"m¸, is plotted against the position of

the point mass. As it can be seen from the plot that the "rst natural frequency reaches the
minimum value as the position of the mass is located at the middle, which is de"nitely



Figure 2. First natural frequency versus the position of mass.

Figure 3. First natural frequency versus the non-dimensional mass.

Figure 4. First natural frequency versus the position of spring.
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rational since it produces largest static de#ection in the middle. In Figure 3 the "rst natural
frequency of the system with a point mass located at the middle of the beam is depicted for
various non-dimensional mass Q"m

1
/m¸, it is quite acceptable that the fundamental

natural frequency gets smaller as non-dimensional mass Q gets larger. In Figure 4, the
undamped "rst natural frequency of the system, carrying a spring with spring constant
k
1
"m¸u2

1
, is depicted with respect to the position of the spring. It is noted that the "rst

natural frequency becomes a maximum as the spring is located at the middle of the beam. It
can be explained that the smaller static de#ection of the beam is obtained when the spring is
attached at the middle rather than at any other places of the beam. As it can be found from
Figure 5, the "rst natural frequency of the system is presented for various non-dimensional
spring G"k

1
/m¸u2

1
, it is noted that the "rst natural frequency becomes larger as

non-dimensional spring G gets larger.



Figure 5. First natural frequency versus the non-dimensional spring.
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4. CONCLUSIONS

In this paper, the natural frequencies of a Bernoulli}Euler beam carrying arbitrarily
located point masses, translational springs and viscous dampers are determined by using
Laplace transform with respect to the spatial variable. The various cases of di!erent
location and magnitude of spring constants and point masses are investigated to model
di!erent structural systems, it is noted that the proposed approach plays an important role
in performing the analysis and design of the structures.
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