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A modelling method for the vibration analysis of rotating pretwisted blades with
a concentrated mass is presented in this paper. The blade has an arbitrary orientation with
respect to the rigid hub to which it is fixed. The equations of motion are derived based on
a modelling method that employs hybrid deformation variables. The resulting equations for
the vibration analysis are transformed into a dimensionless form in which dimensionless
parameters are identified. The effects of the dimensionless parameters on the modal
characteristics of the rotating blade are investigated through numerical analysis.
© 2001 Academic Press

1. INTRODUCTION

Structures having the shape of blades are often found in several practical engineering
examples such as turbines and aircraft rotary wings. For reliable and economic designs of
the structures, it is necessary to estimate the modal characteristics of those structures
accurately. Since significant variations of modal characteristics result from rotational
motion of the structures, they have been investigated by many researchers.

An early analytical model to calculate natural frequencies of a rotating beam was
suggested in reference [1]. Based on the Rayleigh energy theorem, a simple equation that
related the natural frequency to the rotating frequency of a beam was suggested. This
equation is well known as Southwell equation, and widely used by many engineers even
nowadays. Later, to obtain more accurate natural frequencies, a linear partial differential
equation that governs bending vibration of a rotating beam was derived (see reference [2]).
Applying Ritz method to the equation, more accurate coefficients for the Southwell
equation could be obtained. Since early 1970s, due to the astonishing progress of computing
technologies, large number of papers based on numerical approaches have been published.
For instance, in reference [ 3, 4], approximation methods for the modal analysis of rotating
beams were employed. More complex shapes and effects of beams were considered, too.
The effects of tip mass (see reference [5, 6]), elastic foundation and cross-section variation
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(see reference [ 7]), shear deformation (see reference [8]), the pre-twist and the orientation of
the blade (see reference [9]), and the gyroscopic damping effect (see reference [10]) on the
modal characteristics of rotating beams were studied. Survey papers (see reference [11, 12])
in which large number of related papers are reviewed are available, too.

In this study, a model to analyze the vibration characteristics of a rotating blade is
presented. The effects of a concentrated mass as well as its arbitrary location, the pre-twist
angle, and the orientation of the blade are incorporated into the model. In previous studies
(see reference [5, 6, 9, 13]), these effects have not been considered simultaneously, and the
concentrated mass is located at the tip of the blade. To obtain the equations of motion,
a modelling method using hybrid deformation variables is employed. The use of hybrid
deformation variables is the key ingredient to capture the stiffness variation due to
rotational motion. Linear equations of motion are derived directly based on Kane’s method
(see reference [ 14]). The validity of the modelling method that employs hybrid deformation
variables was verified in reference [ 15]. To draw general conclusions from numerical results,
the equations of motion are transformed into dimensionless forms by using dimensionless
variables. Dimensionless parameters corresponding to the concentrated mass, the location
of the concentrated mass, the angular speed, the hub radius, the principal area moment of
inertia ratio, the pre-twist angle, and the orientation angles are identified. The effects of
these parameters on the modal characteristics of the rotating blade are investigated in this
study.

2. EQUATIONS OF MOTION

2.1. SYSTEM CONFIGURATION

The following assumptions are made in this study: the blade has homogeneous and
isotropic material property. The pre-twist rate of the blade along its longitudinal axis is
uniform. The blade has slender shape so that shear and rotary inertia effects will be
neglected. The neutral and centroidal axes in the cross-section of the blade coincide so that
eccentricity effect will not be considered. No external force acts on the blade.

Figure 1 shows the configuration of a pre-twisted blade. 0, is the pretwisted angle of the
free end (to which b, b, and b; are attached) with respect to the fixed end (to which d,, 4,
and 4, are attached). Thus, b, = 4, and cos 0, = d, - b,.

A
b,

Fixed end Free end

Figure 1. Configuration of a pre-twisted blade.
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LA

Rigid hub

Figure 2. Orientation of the undeformed blade neutral axis.

Figure 2 shows the undeformed configuration of the blade neutral axis which has an
arbitrary orientation with respect to the rigid hub. Mutually, orthogonal unit vectors 3y, $5,
and §j are fixed to the rigid hub A which rotates with angular velocity Q3§5. The orientation
of the blade neutral axis can be defined by taper angle 0, (rotation about $,), eccentric angle
0, (rotation about §3), and the setting angle (rotation about $;). The eccentric angle, if
considered here in the formulation, is not usually allowed for the design of a blade since it
introduces extremely large bending stress during the rotation. Moreover, the setting angle is
not considered here since its effect can be included by changing the area moments and
products of inertia of the blade cross-section. For the convenience of describing
deformation vectors, another unit vector triad (d,, d,, and d5), which is also fixed to the rigid
hub A4, is shown in the figure.

Figure 3 shows the deformation of the blade neutral axis. A concentrated mass is located
at an arbitrary position of the neutral axis. P, and P are the positions of a generic point
before and after deformation respectively. Conventionally, only Cartesian variables are
employed to describe the deformation. In the present modelling method, however,
a non-Cartesian variable s denoting the arc length stretch of the neutral axis is employed.
There is a geometric relation between the arc length stretch and the Cartesian variables (see
references [ 15]). Since the arc length stetch s instead of u; is approximated in this study, this
geometric relation is used to derive generalized inertia forces in the equations of motion.
Since linear equations of motion are to be derived eventually, the following approximate

relationship is used:
1 2 2
s=u; + J |:<aqu2> + <6ﬁu3> }da. 1)
2 Jo Jdo do

The use of the above approximate equation significantly simplifies the procedure of deriving
the equations of motion.
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Figure 3. Deformation of the blade neutral axis and the location of a concentrated mass.

2.2. APPROXIMATION AND STRAIN ENERGY

In the present modelling method, s, u, and u; are approximated by using spatial functions
and corresponding co-ordinates in order to derive the ordinary differential equations of
motion. The Rayleigh-Ritz method is employed to approximate the variables as follows:

500 = 3 B @
w6 0= 3 dul)axlt) o)
w(e 0= 3 $alvaalo) @

i=1

where ¢q;, ¢,;, and ¢3; are the spatial functions for s, u, and usz; qq;, ¢2;, and g3; are
corresponding generalized co-ordinates; and u,, u,, and p; are the numbers of respective
generalized co-ordinates.

Using the arc length stretch, the strain energy can be expressed as follows:

1t 0s\? 0%u, \? 0%us \2 0%uy )\ [0%us
U= EA|— El;|— El,| — 2El5| — d 5
2 L |: <6x> + 5L ( ox? ) L < ox? > + 25Dz < ox? )\ ox? x )

where E denotes Young’s modulus, A is the cross-sectional area of the blade, I,, I; and
I,5 are second areca moments and product of inertia of the cross-section, and L is the
undeformed length of the blade. By using I% and I%, the principal second area moments of
the cross-section, I,, Is and I,3 can be expressed as follows:

G+ I—I%

() ===+ 2 5 2 cos (20), (6)
I5+ 1% I —I%
L(x) = 2; S cos (20), )

* *

Iy =2 P sin20), ®)
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where

X
0=0,7, ©)

0 is the pre-twist angle of a cross-section with respect to the fixed end. Thus, 0 = 0 at the
fixed end, and 0 = 0, at the free end.

2.3. EQUATIONS OF MOTION

With the assumptions given in section 2.1, the equations of motion can be obtained from
the following equation (see reference [14]):

0

L ovP ou
pa’- Yax+ & -0 (=1,2,.... ), (10)
0q; aq;

where p is the mass per unit length of the blade, ¢;’s consist of the generalized co-ordinates
q1i» 921> and g¢s;; and v* and a’ are the velocity and the acceleration of the generic point
P respectively. The acceleration can be obtained simply by differentiating the velocity v*
with respect to time, which can be obtained by using the following equation:

A

vP:vO+E+wA><p, (11)

dr
where v? is the velocity of point O that is fixed to the rigid hub, o is the angular velocity of
the rigid hub, and p is the vector from point O to point P. The second term on the
right-hand side of equation (11) denotes the time differentiation of vector p in the reference
frame A. Using the co-ordinate systems fixed to the rigid hub, v°, ®*, and p can be expressed
as follows:

VO = Q8 ot= Q8 (12, 13)
P = (X + uy)dy + ud, + uzds, (14)

where r is the radius of the rigid hub and Q is the angular speed of the rigid hub (see
Figure 2). Since the blade has arbitrary orientation with respect to the rigid hub, the two
co-ordinate systems (§y, $», $3 and d;, d,, d3) have the following relationship:

S1 = €110y + C12dy + Cy3d3, (15)
2 = C21d1 + Cp2dp + C23d3, (16)
S3 = €31d; + C32d3 + C33d3, (17)

where ¢;; represent the direction cosines between §; and d; which can be easily obtained by
using the taper angle 6, and the eccentric angle 6,. Space 1-2-3 Euler angles are employed in
this study. The taper angle is the second Euler angle and the eccentric angle is the third
Euler angle. The first Euler angle is set to 0. Thus,

c11 = cos0;cos0,, €1 = —sinf,, c13 = sin 04 cos0,,
Cy1 = cos0;sinb,, Cas = C0OS0,, Cp3 =sinf; sin0,, (18)

C31:—Sin01, C32:0, C33:C0801.
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Now, by using equations (11)-(17), the velocity of point P can be obtained as follows:
v = {rQc,y; + iy + Q(cszus — c33uy)} dy
+ {rQcyy + 1iy + QLeas(x + uy) — cayu3]} dy (19)
+ [rQcy3 + 113 + Q[eaguy — c32(x + uy)]} ds.

To derive the equations of motion by employing Kane’s method, the partial derivatives of
the velocity of P with respect to the generalized speed ¢;’s are to be obtained. Thus,

ovP

34 =¢ua; (i=12,...,u), (20)

1i

ovP K x . .

o =|:— Y (J ¢/2i¢/2jdo-> qz,‘] ay + ¢y (i=1,2,..., 1), (21)
q2i j=1 0

ovP o0 . .

Py =|:— Z (J ¢§i¢%jd0>Q3j:|a1+¢3ia3 (i=12,...,u) (22)
qsi ji=1 0

where a symbol with a prime () represents the partial derivative of the symbol with respect

to the integral domain variable. By using equation (1)-(22), the linearized equations of

motion are obtained as follows:

My Ha

Z Mt gi; + z (K3 — (32 + c33) M gy + Y, (€320312°M i g5 — 233 QM )
j=1

(23)

Ha
+ Z (53303192Mi1j3%j + ZCSZQMi1j3q3j) =r(C33C22 — €32€23)2%Py; + (32 + ¢33)2%041,

ji=1

1t
Z MZZ G2j + 2c33Q z M21 4ij+ Z(K523 + 03303292Mi213)613j

j=1 j=1
Hs
— 2¢3,Q Z Mu daj + €31€32 Q7 Z le(]l,

i= j=1

(24)

Ho
+ Z {(c32 + C%s)QZKg'BZ —1(C32C23 — C33022)92K1‘GJA2 + K?Z —(c33+ Csl)QzMu §q2j
=1

2 2
=1(C31C23 — €33C21) Q27 Pa; — €3132,027Q5;,

Z M33 43+ 2c3,Q Z M32¢121 + Z Kﬁ” + ‘73203392Mi3jz)Q2j

j=1 Jj= Jj=

—2¢3,80 Z Mu d1j+ 31033 Q7 Z Mu qij
j= i=

(25)
H3

+ Z {(ng + C§3)QZKS'B3 —r(c32C23 — 033022)92K5A3 + Kﬁs — (3 + C§2)92M33J q3;j
j=1

_ 2 2
=7(C32021 — €31C22)Q2°P3; — ¢31¢3302°Q3;,
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where
AL
M?Jb = . PGaidp;dx, (26)
AL
Kt = p(L = x)¢udu;dx, (27)
Jo
AL
a p ’ ’
K= | L2 = x)$udydx, (28)
Jo
AL
Pi=| pdudx, (29)
Jo
AL
Qai = pxd)ai dxv (30)
Jo
AL
Kfj = | EA¢Li¢y;dx, 31
Jo
K.B‘ZZ (‘LEI " ”'d 32
ij = 3 21(1’)2] X, (32)
Jo
rL
Kgs = Elz /3:1' gjdx, (33)
Jo
rL
Ki® = | Elys¢u¢p;dx, (34)
Jo

a symbol with a double prime (") represents the double differentiation of the symbol with
respect to the integral domain variable.

Expressing the mass per unit length of the blade by using a Dirac’s delta function enables
us to consider a concentrated mass at an arbitrary location of the blade (for instance, at
x = d as shown in Figure 3).

p¥(x) = p(x) + mo(x — d), (35)

where m is the magnitude of the concentrated mass. Substituting p* for p into equation
(26)-(30), the integral values of equations (26)—-(30) can be obtained as follows:

—_~
ab _

MG} = M + md(d) dyy(d), (36)

o~ d
Kt = Kt + mJ Guis;dx, (37
0

o~ d
K% = K™ + mdj Diii;dx, (38)

0
Py = Py + mold), (39)

0ui = Qui + mdi(d). (40)
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The coupling effect between the stretching and the bending motions will be neglected in this
study. It was proved (see reference [10]) that the coupling effect can be ignored for slender
beams. Ignoring the coupling effect and stretching equations, the equations of motion of the
blade can be simplified as follows:

Ha H3 H3 —
Z MZZ Grj — 2¢3182 Z M23Q3J + Z Kﬁ” + 53353292Mi2j3)Q3j

Ha S o~
+ Z {(ng + C%a)Qng'BZ — 1 (C32€23 — €33C23) QZK?,’“ + Kzl'i'z (41)

j=1
— (33 + C%l)QzMz }gaj =r(c31C23 — €33€21) Q7 Pz; — €31€3,Q% Qz;,

H3 —
Z M33 43+ 2c31Q2 + Z M32q2j + Z Kﬁ-” + c3203392Mi3jz)q2j

Jj=1 Jj=1 Jj=

S 2 2 TGBY GA3 B3
+ Z {(c32 + 33) QPKEP — r(c3x023 — €33¢20) Q°KF + K (42)

j=1

—_~ T~ —_~
- (Cgl + C%z)QZM?jS} q3j = r(c32c21 — C31(322)921031' - 03103392Q3i~

2.4. DIMENSIONLESS EQUATIONS OF MOTION

To draw general conclusions from numerical results, equation (41) and (42) are to be
transformed into dimensionless equations. For this transformation, dimensionless variables
and parameters need to be defined as follows:

t=r. =7, Su= (43-45)
azpﬂL, ﬁz%, y=QT, (46-48)
5E£, Kzg, (49, 50)
where T appearing in equation (43) and (48) is defined as
r= o 1)

Hereinalfter, a, f, y, , k will be called concentrated mass ratio, concentrated mass location
ratio, angular speed ratio, hub radius ratio, and principal area moment of inertia ratio
respectively. By using the parameter defined in equation (50), equation (4)-(6) can be
expressed as

30+ 1) + 3(c — 1)cos(204¢), (52)

13

I

I 3+ 1) — 3 — 1)cos(204¢), (53)
3
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D2 4 (e 1)sin(2050). (54
I3

The right-hand side terms in equation (41) and (42) may be neglected for the free vibration
analysis. By using the dimensionless variables and parameters defined in equation (43)-(50),
the dimensionless equations of motion are finally obtained as follows:

H2 H3 H3
Z M 92, — 2c31y Z M7; 1931' + Z (K3 + 03303272Mi2j3)193j
1

Jj= Jj=1

j=

Ha
+ Z {(Céz + C%s)VZ(Kg'BZ + “ﬁKGcz 5V2(C32023 — €33C22) (Kﬁ“ + OCKiGjCZ
j=1

+K52_(C§3+031 2M22}92]—0 (55)

M3 . Ha _
Z M?js 83; + 2¢31y Z M3, 192, + Z (KBZ3 + c32c33y2M?jz)92j
=1

Jj=1 j=

H3
+ Z {32 + C%a)VZ(Kg'BS + “ﬁKg’“) — 0y*(c32€23 — 033022)(KiGjA3 + OCKiGjC3

j=1
+ KP —(c31 + ¢32)7° M3} 95, =0, (56)
where
r1
M = | Yath;dE + apai(B)ni(B), (57)
Jo
B2 [ 1 1 // ”
Kij = E(K +1)— 2(K — 1)cos(206¢) iW5;dE, (58)
Jo
B3 M 1 1 // "
Ky = E(K +1)+= 3 (x — 1)cos (204¢) Ws;deE, (59)
Jo
r1
Kt = | (1 = Opuay;dé, (60)
Jo
_ 1
K= | 50 = EWuiydg, (61)
Jo
— /‘ﬂ
Ki“ = | v, dg, (62)
Jo
I [ 1 . ” " I3
K= 5 (c—1)sin(2008) Y, de, (63)
Jo

where y, which is equivalent to ¢, is a function of &.
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2.5. MODAL FORMULATION

Equations (55) and (56) are expressed in a matrix form as follows:

MI+ CI+KI=0, (64)
where
M?? 0 0 — 3, M?3
KZZ K23 92
K= |:K32 Ksa]’ I= {93}- (67, 63)

In equations (65) and (68), M?? and 9,, for instance, are matrices which consist of elements
M?? and 9,; respectively. The sub-matrices appearing in equation (67) are defined as
follows:

R22 = [RP (¢, + o)y M2

+ 092 (€33€22 — €32€23) (KO*? 4+ K9] (69)
+(c32 + ¢33)7* (K2 + apK)],
K?? = [KP? + c3303,0?M?*], (70)
K32 = [KP*2 + ¢350337* MP2], (71)

R = [K® — (¢ + 32);> M7
+ 0y2(C33C22 — C32C23) (K43 4+ 0 K63 (72)
+ (32 + 33)7* (KO + apKO)].
Equation (64) can be transformed into the following equation:
M* + K* = 0. (73)

The matrices constituting the above equation are defined as follows:

M 0 C K
M* = K* =
[0 1} [_1 0} (74, 75)

3
n= {9} (76)

where I represents an identity matrix. For the complex modal analysis, it is assumed that
n is a harmonic function of 7 expressed as

n=¢e"o, (77

where /4 is the complex eigenvalue and @ is the corresponding complex mode shape.
Substituting equation (77) into equation (73), the following equation is obtained:

IM*@ + K*0 = 0. (78)

From the complex eigenvalues obtained from equation (78), the natural frequencies can be
obtained.
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3. NUMERICAL RESULTS

Figure 4 shows lowest four dimensionless natural frequencies of a rotating blade that
converge rapidly as the number of modes increases. A typical set of dimensionless
parameters used for the simulation are shown in the figure. The natural frequencies
obtained by using nine modes for each bending deflection are compared with their
correspondents obtained by using 10 modes, and it is found that the maximum difference is
approximately 0-14%, which may be presumed to be sufficiently small. Therefore, all the
numerical results presented hereinafter are obtained by using 10 modes for each bending
deflection. In other words, 20 modes are used for the numerical results obtained in this
study.

First of all, the accuracy of the present modelling method needs to be confirmed. In
Table 1, lowest two natural frequencies of a pre-twisted rotating blade are given. The
dimensionless parameters used for the numerical results are shown in the table. All the
dimensionless parameters except those shown in the table are zero. The results obtained by
using the present modelling method are compared with those obtained by using the plate

TaBLE 1
Comparison of natural frequencies (x = 1/400, 0, = 30°, 6 = 2/3)

First Second

y = 0-0000 Reference [13] 0-1766 1-0001
Present 01763 09825

y = 0-0882 Reference [13] 02217 1-0273
Present 0-2200 1-0203

y=0-1763 Reference [13] 0-3166 1-1321
Present 0-3157 1-1253

y = 02645 Reference [13] 04277 12852
Present 04288 1-2796

(x=10,$=10,7=10,0=10, k=05, 6,=30° 0, =30°, 6, =30

70
8 L
% 60 D S D D D VD G —
=}
§ 50 | A—A A A A A A A
!
<
E=}
% 30 |-
2
g
‘g 20
g ——o——0—0 —0—0 *—0—@ L ]
g
.- 10 -
Q —f—3———N—i—R———§——— 8§
O 1 1 1 1 1 1 1 1

1 2 3 4 ) 6 7 8 9 10
No. of modes

Figure 4. Convergence of natural frequencies: —4—, fourth natural frequency; —A—, third natural frequency;
—@—, second natural frequency; —M—, first natural frequency



902 H. H. YOO ET AL.
TABLE 2

Comparison of natural frequencies (o = 1:0, f = 1-0, x = 1-0)

First natural frequency Second natural frequency

y Present Reference [6] Present Reference [6]
0 1-5573 1-5573 16-2527 16-2500
1 19017 19017 167595 16-7570
2 2:6696 2:6696 18-1932 18-1910
3 3-5823 3-5823 20-3524 20-3504
4 4-5429 4-5429 23-0246 23-0229
5 5:5219 5:5218 26:0431 26:0415
6 6-5091 6-5090 29-2933 29-2917
7 7-5007 7-5005 32:7002 32:6984
8 84947 84945 362156 362134
9 9-4903 9-4899 39-8079 39-8048

10 10-4870 10-4864 43-4561 43-4517

theory (see reference [13]). The maximum difference between the two results is less than
1:5%. It can be found that the natural frequencies obtained by the present modelling
method are generally lower than those obtained in reference [13]. Thus, the present
modelling method provides more accurate results.

In Table 2, the results of flapwise bending vibration analysis of a rotating beam with tip
mass are given. The dimensionless parameters employed for the numerical results except
those shown in the table are zero. The results obtained by using the present modelling
method are compared with those introduced in reference [6]. As observed in the table, the
two results are found to be almost identical (showing only 0-02% maximum difference).

In Figures 5 and 6, the effects of the concentrated mass and the taper angle on the first
natural frequency are shown. With taper angle 30°, the first natural frequency increases as
the angular speed increases. It is also shown that the first natural frequency loci are lowered
as the concentrated mass ratio increases. In Figure 6, where the taper angle is given 60°

(f=10,xk=106=10, 8, =30°
10

First natural frequencies

0 2 4 6 8 10
Dimensionless angular speed

Figure 5. The effect of concentrated mass ratio on the first natural frequency loci (with a taper angle for
increasing loci): -+, 0 =00; —-—-—-— Lo =05 ------ , o =10, ——, a =20.
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(B=10,k=10,5=10,0,=60°
4.0

35 &
30

2:5

2:0

15 |

First natural frequencies

1 ‘0 \\\\\~\\ \"\‘_ .
05 .

0 2 4 6 8 10
Dimensionless angular speed

Figure 6. The effect of concentrated mass ratio on the first natural frequency loci (with a taper angle for
decreasing loci): -+, 0 =00; - —-—-— o0 =05 ------ , o= 1-0; , o= 2:0.

(=00,=10,k=10,5=1-0)

16
14 |-
12 |

First natural frequencies
oo
T

0 I 1 I 1 1 1 I 1 I
0 2 4 6 8 10 12 14 16 18 20

Dimensionless angular speed

Figure 7. The effect of taper angle on the first natural frequency increasing rate (with no tip mass): -,
0y =40% -----, 0, = 50% ——, 0, = 60",

instead of 30°, the first natural frequency decreases as the angular speed increases. The zero
natural frequencies shown in the figure represent the dynamic buckling of the blade due to
the centrifugal inertial force. From Figures 5 and 6, one may speculate that there exists
a taper angle with which the first natural frequency remains constant even if the angular
speed increases. Figure 7 shows the variation of the first natural frequency versus angular
speed ratio y with several taper angles. As shown in the figure, the first natural frequency
remains almost constant with the taper angle with which the first natural frequency remains
constant changes as the concentrated mass ratio changes (Figure 8).

The effect of the location of concentrated mass on the first natural frequency with zero
angular speed is shown in Figure 9. As can be easily speculated, the first natural frequency
decreases monotonically as the concentrated mass moves out to the free end. Since no
centrifugal inertia force occurs in this case, the taper angle does not affect the natural
frequencies. When the blade rotates, however, the centrifugal inertia force occurs and the
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(x=10,=10,xk=10,6=10)
12

10 |

First natural frequencies

O 1 1 1 1 1 1 1 1 1
0 2 4 6 g8 10 12 14 16 18 20
Dimensionless angular speed

Figure 8. The effect of taper angle on the first natural frequency increasing rate (with a tip mass): --- -, 0, = 35°;
----- , 0, =45% —— 0, =55°.

(x=10,6=1-0, k =0-5, 8, =30°)

_ ™ o w
W < W <
I I

First natural frequencies

—
[«
I

05 ! ! ! !
0 02 0-4 06 0-8 1-0

Concentrated mass location ratio f§

Figure 9. The effect of the location of concentrated mass on the first natural frequency loci (with zero angular
speed).

taper angle does affect the natural frequencies. Figure 10 shows the effects of the location of
concentrated mass and the taper angle on the first natural frequency with a non-zero
angular speed (y = 10). As shown in the figure, the first natural frequency increases to some
extent and then decreases as the concentrated mass moves out to the free end. The effect of
the taper angle on the natural frequency is also shown in the figure. As the taper angle
increases, the loci of the first natural frequency are lowered.

In Figure 11, the effect of the magnitude of the concentrated mass on the first natural
frequency is exhibited. All the numerical values for the dimensionless parameters except the
ones shown in the figure are set to zero. The figure shows that the variation of natural
frequency increases as the magnitude of the concentrated mass increases. Thus, the first
natural frequency of the rotating blade can be varied by changing the location and the
magnitude of the concentrated mass.
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Figure 10. The effect of the location of the concentrated mass on the first natural frequency loci (with non-zero
angular speed): -+, 0, =0% -+ L0, =15%----- , 0, =30% ——, 0, = 45°.
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Figure 11. Concentrated mass location effect on the first natural frequency: ----, 0 =00; —-—-—- = , o =05;
------ ,o =10 —, a=20.

Figure 12 shows lowest two natural frequencies of a pre-twisted blade. When the taper
angle is zero, the two loci cross. With a small non-zero taper angle, however, the two loci
veer rather than cross. The veering phenomena were previously observed and discussed in
other vibration problems (see, for instance, reference [ 16]). As the taper angle increases, the
gap between the two natural frequency loci increases.

When the angular speed and one of the natural frequencies of rotating blades match (as
shown in Figure 13), resonance occurs. Such an angular speed is usually called the tuned
angular speed. Catastrophic failures are often caused at the tuned angular speed during the
operation of rotating blades. Thus, the tuned angular speed needs to be calculated for the
design of a rotating blade. The tuned angular speeds are tabulated in Tables 3 and 4. The
two tables (for different area moment of inertia ratios) show the variation of the tuned
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Figure 12. Veering phenomena occurring in a pre-twisted rotating blade with taper angles (6 = 1-0, k = 0-5,
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Figure 13. Tuned angular speed and buckling angular speed.

angular speed caused by the variations of the hub radius, the pre-twist angle, and the
taper angle.

4. CONCLUSION

The equations of motion for the vibration analysis of rotating blades, which have
a pre-twisted cross-section, arbitrary orientation, and a concentrated mass in arbitrary
location, are derived. The equations of motion are transformed into a dimensionless form
by employing dimensionless variables and several dimensionless parameters representing
the concentrated mass and its location, the angular speed, the hub radius, and the principal



ANALYSIS OF ROTATING PRE-TWISTED BLADES 907
TABLE 3

Tuned angular speed versus hub radius ratio, pre-twist angle, and taper angle (x = 1, f =1,

x =05)
) 0, (deg) 0y =0° 0, = 15° 0, = 30° 0, = 45°
0-0 0 17202 1-7172 17085 16945
30 1-:0182 1-:0174 1-0151 1-0113
60 0-7091 0-7090 0-7086 0-7080
01 0 1-8633 1-8606 1-8525 1-8394
30 1-0535 1-0526 1-0502 1-0463
60 0-7167 0-7166 0-7162 0-7156
02 0 2:0458 2:0433 2-:0359 2:0238
30 1-:0920 1-0912 1-0886 1-0846
60 0-7246 0-7244 0-7240 0-7234
0-3 0 2-2881 2-2858 2:2791 2-2682
30 1-1344 11335 1-1309 1-1267
60 0-7327 0-7325 0-7321 0-7314
0-4 0 2:6273 2-6254 2:6195 2:6100
30 1-1814 1-1805 1-1777 1-1734
60 0-7410 0-7408 0-7404 0-7397
05 0 3:1393 3:1377 3:1329 3:1250
30 1-2338 1-2328 1-2300 1-2255
60 0-7496 0-7494 0-7489 0-7482
TaBLE 4

Tuned angular speed versus hub radius ratio, pre-twist angle, and taper angle (o =1, f =1,

x =2)
o 91 (deg) 00 =0° 00 =15° 90 = 30° 90 =45°
0-0 0 1-7202 1-7224 1-7288 1-7391
30 1-2763 1-2770 1-2791 1-2824
60 0-9788 0-9789 0-9793 0-9798
0-1 0 1-8633 1-8656 1-8723 1-8831
30 13195 13202 13222 1-3256
60 0-9892 0-9894 0-9897 0-9902
02 0 2:0458 2:0482 2:0553 2:0665
30 1-3668 1-3675 1:3696 1-3729
60 1-0000 1-0001 1-0004 1-0009
0-3 0 2:2881 2-:2906 2-2978 2-3093
30 1-4192 1-4199 1-4219 1-4251
60 1-0111 1-0112 1-0115 1-0119
0-4 0 2:6273 2:6298 2:6369 2:6484
30 1-4773 1-4780 1-4800 1-4832
60 1-0225 1-0226 1-0228 1-0232
05 0 3-1393 3-1416 3-1484 31591
30 1-5424 1-5430 1-:5450 1-5481

60 1-0342 1-0343 1-0346 1-0349
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area moment of inertia ratio, the pre-twist angle, and the taper angle are identified. The
effects of some dimensionless parameters on the vibration characteristics of the rotating
blade are investigated through numerical study. Combinatory effects among dimensionless
parameters are also exhibited in this study.
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