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A speech signal can be decomposed into the fundamental frequency and harmonics, and
the autocorrelation function (ACF) is an e!ective tool for identifying the fundamental
frequency and the harmonics. This paper, thus, explains how ACF harmonic analysis can be
applied to speech detection and reconstruction when speech communication technologies
are used in noisy environments. The dominant sinusoidal components used for the ACF
analysis can be picked out from the short-time Fourier spectrum records of a noisy speech
signal by using a peak-picking method. Because the number of components usable for
speech reconstruction depends on the signal-to-noise (S/N) ratio, we authors developed new
methods for peak-picking method and for harmonic sieving. The number of components
picked out is adjusted frame by frame depending on the short-time S/N ratio, and harmonics
are extracted from the short-time Fourier spectrum record by changing the frame length
adaptively according to the fundamental frequency. Consequently, intelligible speech
without &&musical noise'' could be reconstructed from noisy speech signals.
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1. INTRODUCTION

The reconstruction of speech from noisy signals is a fundamental issue in research on speech
communication technologies that are used in noisy environments, as are hearing aids and
speech recognition systems. For speech recognition from a noisy signal, it is important to
identify the environmental noise and then to detect a speech signal. The environmental
noise in noisy speech signals is generally separated from the speech signals by spectral
subtraction [1]: the noise-power spectrum of the &silent' (noise-only) portions of the signal is
identi"ed and then subtracted from the overall signal. This processing can be done in real
time by using a short-time Fourier transform (STFT), but it is di$cult to determine whether
the signals in short-time frames represent silence or speech information. Furthermore, this
spectral subtraction introduces a processing noise that is called &&musical noise'' [2, 3].

The analysis and synthesis of acoustic signals can be based on the sinusoidal model [4],
and we have already con"rmed that this model enables intelligible speech to be expressed
using "ve high-energy frequency components [5]. We call this approach &&peak picking'',
and an approach of this kind has been used in cochlear implants [6]. When we use
a microphone or talk directly to someone in a noisy environment, we usually come closer to
the microphone or speak louder than we normally would. We can thus assume that most of
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the peaks in the power spectrum of a noisy speech signal are due to the speech rather than
the noise. Consequently, we should be able to synthesize the speech by extracting the
high-energy speech components even from the short-time Fourier spectrum of noisy speech.
The tonal quality, however, of speech reconstructed from a noisy signal by the peak-picking
method is still not good [7].

A vowel can be modelled by the superposition of its fundamental frequency and
harmonics, and the autocorrelation function (ACF) is an e!ective tool to use when looking
for a fundamental frequency [8]. Thus, in this paper, we report our investigation of the ways
that ACF analysis and a new peak-picking method can be used in the detection and
reconstruction of speech. The method we describe here decreases processing distortion
(including musical noise) by adjusting the number of frequency components to be extracted
from a frame according to the S/N ratio of the signal in that frame. And the fundamental
frequencies of vowel sounds are estimated from the ACF of the frequency components
picked out of a noisy speech signal. Our speech reconstruction method is suitable for
real-time signal processing because it uses a STFT.

This paper is organized as follows. In section 2, we brie#y review and summarize our
previous work. In section 3, we demonstrate that the fundamental frequency of a vowel can
be determined by ACF analysis when only a few sinusoidal components are picked out. In
section 4, we describe our new peak-picking and harmonics sieving methods using the ACF
and STFT.

2. THE AUTHORS' PREVIOUS WORK

2.1. SPEECH SYNTHESIS BY PEAK PICKING [5]

To "nd out how many sinusoidal components were needed to represent a speech signal,
we used a Japanese female voice sampled every 1

16
ms. We cut the sample into 32-ms frames,

each with 512 data points, and analyzed the power spectrum of the speech sample in every
frame by using a STFT (see Figure 1). We used a rectangular-window function to cut the
speech data into short frames because we wished to avoid discarding frame signal energy.
Discontinuities between successive frames were avoided by having each frame start with the
last 256 data points of the previous frame. After analyzing the power spectrum of a frame,
we used the peak-picking method to extract the most signi"cant sinusoidal components.
The frame signal was then reconstructed from the extracted components. In this
reconstruction a triangular window was used in order to smooth out any discontinuity [9].

The original and two reconstructed speech waveforms are shown in Figure 2. One can see
that the envelope of the waveform reconstructed from only the most signi"cant sinusoidal
components is almost the same as that of the original waveform. This reconstructed speech
was generally but not completely intelligible, particularly because the consonants were not
clear. Five major sinusoidal components were found to be necessary for expressing
intelligible speech including consonant sounds (see Figure 2(c)).

2.2. NOISE REDUCTION BY PEAK PICKING [7]

To investigate the reconstruction of speech from noisy signals, we added white noise to
clean speech so that the S/N ratio was 0 dB. If the energy of the signal in a frame was greater
than a speci"ed threshold value, we assumed that the frame was a speech frame. The
frequency components in it were analyzed by using a STFT, and the dominant components
were extracted by a peak-picking method. From these components the waveform



Figure 1. Peak-picking method for speech reconstruction.

Figure 2. Original and reconstructed waveforms: (a) original; (b) reconstructed from one sinusoidal component;
and (c) reconstructed from "ve sinusoidal components.
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corresponding to that frame was then reconstructed according to the sinusoidal model [4].
If the energy was less than the threshold value, the frame was assumed to be a silent portion
of the speech signal.

Figure 3(a) and 3(b) show clean and noisy speech waveforms, and Figure 3(c) shows the
speech waveform reconstructed from the "ve frequency components extracted. The residual
noise after the reconstructed speech was extracted is shown in Figure 3(d). The
reconstructed waveform is clearly almost the same as the original one. The noise reduction



Figure 3. Original and reconstructed waveforms: (a) original; (b) original plus noise (S/N 0dB);
(c) reconstructed; and (d) residual noise.
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e!ect can be estimated by calculating a signal-to-deviation ratio (SDR) de"ned by

SDR"10]log A
+

n
s (n)2

+
n
(sL (n)!s (n))2B (dB),

where s (n) is the original speech signal and sL (n) is the reconstructed speech signal. The
peak-picking method increased the SDR by about 10 dB when the S/N ratio in the noisy
speech signal was 0 dB. The reconstructed speech did not sound good, however, because
processing distortion (musical noise) had been introduced.

In the experiment described above the number of extracted components used in the
reconstruction was "xed at "ve for all the frames, but the number can also be changed frame
by frame. Figure 4 shows how the SDR changes with changes in the number of frequency
components extracted and used for reconstruction. We found that the number of
components should be increased when the S/N ratio of the signal is high and should be
decreased when it is low. In our experiments, the e!ects of noise were suppressed best when
5}10 sinusoidal components were extracted and used for reconstruction.

3. SPEECH REPRESENTATION BASED ON ACF ANALYSIS

The expression of a vowel can be based on the harmonic structure estimated from ACF
analysis [8]. So we conducted a series of experiments investigating the feasibility of using
ACF analysis to estimate the fundamental frequency from only a few dominant frequency
components and then using that estimate for sieving the harmonic components.



Figure 4. The noise reduction e!ect.

Figure 5. ACF example.
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3.1. SPEECH RECONSTRUCTION PROCEDURE

The speech sample we used was the same one used in the peak-picking experiments
described in section 2.1. When the frequencies of three dominant components picked out
were under 1 kHz, the frame was assumed to be a vowel frame. We estimated its
fundamental frequency by using the cyclic ACF of the components. Assuming the waveform
of the components extracted to be periodic, the ACF was obtained as the inverse Fourier
transform of the power spectrum record. To increase the precision with which the
fundamental frequency was estimated, we calculated the ACF by appending zeros to the
power spectrum record until the record length became 20 times the original length. Figure 5
shows an example of the ACF which estimates the vowel frame fundamental frequency.



Figure 6. (a) Speech signal; (b) frequencies extracted from vowel frames; and the corresponding fundamental
frequencies estimated.

Figure 7. The power spectrum of a vowel frame of the speech signal: (a) speech waveform; (b) power-spectrum
example for the frame length of 512; (c) power spectrum example for the frame length of 431.
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Figure 8. (a) original and (b,c) reconstructed speech signal spectrograms; (b) reconstructed using "ve compo-
nents; and (c) reconstructed from fundamental and harmonic frequencies.
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The frame length used in sieving the harmonic components by STFT (DFT) analysis was
adaptively selected between 257 and 512 points at every frame after estimating the
fundamental frequency for that frame [10]. Vowel frames were thus reconstructed using the
fundamental and the harmonic frequencies extracted by sieving. Frames were assumed to
be consonant frames when the frequencies of two dominant components picked out were
higher than 1 kHz. The waveforms in those frames were reconstructed using only
the components extracted by peak picking. As in our earlier work, a triangular window was
used in reconstructing the speech signal in order to smooth out any discontinuities [9].

3.2. RECONSTRUCTED SPEECH

An original speech waveform, the "ve frequencies extracted from frames that were
assumed to be vowel frames, and the corresponding fundamental frequencies estimated are
shown in Figure 6. The estimated fundamental frequencies were distributed between 150
and 350 Hz. The "ve major sinusoidal components extracted from the vowel frame of the
speech waveform shown in Figure 7(a) were in a low-frequency band and did not seem to
re#ect the original formants clearly. The extracted frequencies as shown in Figure 7(b) are
mostly distributed around the spectrum peaks because the analysis frame length is not
adjusted to the fundamental frequency. Figure 7(c) shows the power spectrum of Figure 7(a)
and also shows the fundamental and harmonic frequencies extracted. The time frame length



Figure 9. Variable peak-picking method for noise reduction.

48 M. KAZAMA AND M. TOHYAMA
for STFT power spectrum analysis, 431 data points, was selected to be equal to the period of
the frame fundamental frequency. As shown in Figure 7(c), the fundamental frequency can
be estimated accurately from the "ve extracted frequency components by using the
peak-picking method and ACF analysis.

The original and reconstructed speech spectrograms are shown in Figure 8. The
mid-frequency energy in Figure 8(c) is more intensive than that in Figure 8(b), and the
improvement in the speech quality was con"rmed by informal listening tests. Consequently,
we have con"rmed that the peak-picking method and ACF analysis can be used to identify
the fundamental frequency of a vowel frame and that the harmonics can be identi"ed in
a sieving procedure using frame lengths adjusted according to the fundamental frequencies.

4. REDUCING NOISE BY VARIABLE PEAK PICKING
AND HARMONIC-SIEVING

4.1. VARIABLE PEAK PICKING

The variable peak-picking method using ACF analysis to reduce noise is shown in
Figure 9. The noisy speech used in the present experiments was the same as that described
in section 2.2. If the energy of the signal in a frame was greater than a speci"ed threshold
value, the frame was assumed to be a speech frame, and we continued picking out peaks
until the energy of the residual frequency components had a distribution like that of the
Gaussian noise. The distribution of the power spectrum given by the squared sum of the real



Figure 10. Frequency components distributions: (a) clean speech signal; (b) number of extracted components; (c)
distribution of extracted components; and (d) distribution when "ve components were extracted.
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and imaginary parts of a Gaussian noise spectrum is exponential. Thus, we continued
peak-picking until the ratio of the residual components with energy higher than the average
energy to all the residuals became 0)3, and the maximum number of extracted components
was limited to 10. We could therefore expect that musical noise would not be produced
during the reconstruction because a nearly optimum number of components was extracted
from every frame without also extracting high-energy noise components. The vowel
and consonant frames were discriminated as described in section 3.1, and the reconstructed
speech signal of a vowel frame was synthesized from the fundamental frequency and the
harmonics by using the method described in section 3.1. The squared magnitudes of the
harmonics, however, were weighted by !6 dB/oct.

4.2. SPEECH RECONSTRUCTION RESULT

Figure 10(a) illustrates a clean speech signal, and Figure 10(b) shows the distribution of
the number of frequency components extracted. If one compare Figures 10(a) and 10(b), one
can see that the number of frequency components extracted decreases as the amplitude of
the speech signal decreases. The distribution of the frequency components extracted by
variable peak picking is shown in Figure 10(c), and the distribution obtained when "ve
components were always extracted is shown in Figure 10(d). The frequency components in



Figure 11. Fundamental frequencies estimated from clean (F
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Figure 10(c) are less scattered than those in Figure 10(d). We con"rmed by listening that the
scattered frequency components are one source of musical noise. Figure 11 shows the
fundamental frequencies estimated from clean and noisy speech samples. Figure 11(c) shows
the estimation errors derived from the di!erence between Figure 11(a) and 11(b) when the
fundamental frequencies of the clean and noisy speech signals could both be estimated. The
fundamental frequency could be estimated from a noisy sample to be within 5% whenever
the vowel frames could be identi"ed. Some vowels, however, were hidden by noise and not
identi"ed.

Samples of energy time-envelopes for the frequency components of noisy, reconstructed,
and clean speech signals are shown in Figure 12. For each frequency component we can see
the energy time-envelope recovered from noisy speech is almost the same as the energy
time-envelope of clean speech.

We con"rmed by listening that the speech reconstructed in this experiment sounded
better than that reconstructed in the experiment described in section 2.2 (i.e., reconstructed
from "ve sinusoidal components only) because it contained less musical noise. The noise
reduction in the two experiments, however, was similar: about 10 dB.



Figure 12. Energy-time envelopes for frequency components of noisy speech (top traces), reconstructed speech
(middle traces), and clean speech (bottom traces): (a) 250 Hz; (b) 500 Hz; (c) 1000 Hz; and (d) 2000 Hz.
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5. CONCLUSION

The method described here is based on picking peaks out of the power spectrum and on
harmonic analysis using the ACF. The fundamental frequency of even a noisy speech signal
can be identi"ed by using a few major sinusoidal components extracted by our variable
peak-picking method. And the harmonics can be extracted from a noisy signal by using
a STFT-based sieving procedure in which the frame length for STFT processing is adjusted
according to the fundamental frequency of the signal in that frame. Experimental results
con"rmed that this method reduces the noise level by 10 dB without introducing processing
distortion. After developing our proposed method for real-time-based processing, we shall
do a hearing test towards the speech enhancement in a hearing aid. It might be reasonable
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to do intelligibility tests with normal hearing subjects "rst, since informal quality judgments
and simple error measures cannot replace intelligibility tests.
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