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Previous research into structural vibration transmission paths has shown that it is
possible to measure vibrational power transmission in simple beam and plate structures.
However, in many practical structures transmission paths are composed of more complex,
curved elements, therefore there is a need to extend vibrational power transmission analyses
to this class structure. In a companion publication [1] expressions were derived which
described vibrational power transmission due to predominantly flexural, extensional and
shear types of travelling wave in a curved beam where the neutral axis forms a plane curve of
constant radius of curvature. In this paper, a strategy to measure vibrational power
transmission in a curved beam is developed and applied to an experimental mild steel beam.
The experimental apparatus is described and the measurement method outlined. Results of
experimental measurements of the vibrational power transmitted along the beam are
presented and compared to corresponding values of the power input to the structure.
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1. INTRODUCTION

“Power flow” may be defined as the vibrational power per unit width of cross-section [2]. It
is a technique which enables power input to structures from a source via all degrees of
freedom and through a variety of paths to be assessed and ranked in order of importance.
Power transmission through a range of structural components by a variety of wave types
can also be examined in order to determine the dominant propagation mechanisms. For
example, it is impossible to compare translational and rotational transfer functions because
of conflicting units. However, the associated vibrational power transmission terms can be
compared directly. Thus, the main advantages of a vibrational power transmission
approach are: (1) being a vector quantity (magnitude and direction), power flow is a familiar
concept with a clear physical interpretation; and (2) vibrational power transmission
techniques can be used to locate and assess the strength and direction of sources and
subsequent transmission paths.

Previous research into structural transmission paths has shown that it is possible to
measure vibrational power transmission in simple beam and plate structures. More
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recently, transmission through pipes with bends, branches and discontinuities has been
studied [3], which has led to useful design rules concerning the position and size of pipe
supports for minimum power transmission. However, industrial applications have had
a slower development than the corresponding acoustic intensity methods. One of the
reasons for the lack of acceptance of such techniques is the difficulty of measurement in
practical situations, for example, where the structural transmission paths are through more
complex elements such as curved pipework.

In this paper, the results of experimental studies of vibrational power transmission along
a curved mild steel beam are reported where the centreline of the beam forms a plane curve
of constant radius of curvature. In a straight beam, flexural and extensional wave motions
are uncoupled. For a curved beam, however, there is interaction between the lateral and
longitudinal deformations leading to coupled lateral-longitudinal propagation.
A companion publication [1] contained an analysis of four different theories of
wave motion in a curved beam. Two can be classed as “simple bending” theories
and include extension of the centreline during flexural deformation. The first was based
upon a reduction of Love’s thin-shell equations and the second was based upon a similar
reduction of Fliigge’s thin-shell equations. The third theory included a correction of rotary
inertia and the fourth an additional correction for shear deformation. For each of the four
different theories, expressions were derived which described the vibrational power
transmission due to flexural, extensional and shear types of travelling wave in the beam. By
assuming sinusoidal wave motion, expressions were developed which related the
time-averaged power transmission to the travelling wave amplitudes. The results of
numerical studies were presented which showed that rotary inertia and shear deform-
ation effects are only important when the wavelength approaches the thickness of
the beam. Thus, at lower frequencies the “simple bending”-based equations provide an
adequate description of the vibrational power transmission. However, the vibrational
power transmission equations with the simplest form were those derived using the
Fliigge-based theory. Hence, in Section 2 of this paper finite difference approximations are
applied to the Fliigge-based expressions presented in reference [1] to produce a strategy to
measure the vibrational power transmitted along a curved beam. In Section 3, the
experimental apparatus used to measure transmitted power is described and the
measurement method outlined. In Section 4, the results of transmitted power measurements
are presented and compared with corresponding measurements of power input to the
structure.

2. THEORY OF VIBRATIONAL POWER TRANSMISSION ALONG A BEAM WITH
CONSTANT CURVATURE

Using the Fliigge-based expressions for stresses and displacements in a beam with
constant curvature, equations for vibrational power transmission were derived in reference
[1]. For a changing curvature beam, the radius of curvature, R, is no longer a constant but
is a variable dependent upon the circumferential distance, s. This more complex type of
structural element is not considered in this publication. It is also assumed in this study that
internal dissipation within the beam is negligible. Thus, an entirely real Young’s modulus, E,
is introduced. By analogy to vibrational power transmission in a straight beam, the
equations in reference [1] were expressed in terms of an extensional component, P,,
a bending moment component, Py, and a shear force component, P;,. A complete list of
notation is given in Appendix B. Rearranging these equations enables “straight” beam and
“curved” beam power components to be identified. The “curved” beam terms are those that
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include the radius of curvature, R, and the “
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straight” beam terms are the correspond-

ing expressions for purely extensional or purely flexural waves in a straight rod or beam.

Thus,
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where u(s, t) and w(s, t) are the longitudinal and lateral displacements of a wave travelling in
the circumferential direction along the beam as shown in Figure 1. Equations (1)-(3)
contain spatial and temporal derivatives of the longitudinal displacement, u(s, t) and the
lateral displacement, w(s, t). The temporal derivatives can be evaluated directly from
measured acceleration signals, whilst the spatial derivatives can be estimated using finite
difference approximations.

To apply finite difference approximations to the lateral acceleration, a,,, consider an array
of four accelerometer locations, sy, s,, 53 and s, each separated by a distance, 4, and
surrounding the measurement position, s,, as shown in Figure 2. Then, by applying finite
difference approximations [4] the acceleration, a,, at s, is given by

1
a,, = E [az + a3]. (4)
Similarly, the first spatial derivative is given by
da,, as—a,
P , 5
0s P ©)
the second spatial derivative by
%a, 1[a; —a, — a3 + a,] ©
os? 2 A% ’
and the third spatial derivative by
d3a, _ [as —3a3 + 3a, — al]. ™)

os* a3

The corresponding finite difference approximations for the longitudinal acceleration, a,,
and its first spatial derivative are given by

1
a, = 5 [auz + au3]» (Sa 9)
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Figure 1. Lateral and longitudinal displacements of a wave travelling around a beam with constant curvature.
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Figure 3. Schematic representation of the two measurement locations, s,, and s,; used to approximate the

longitudinal acceleration, a,, and its first spatial derivative at position s,.

where a,, and a,, represent acceleration signals from an array of two accelerometers at
positions s,, and s,, as shown in Figure 3. Substituting the finite difference approximations,
equations (4)-(9), into equations (1)—(3) gives the following expressions for instantaneous
vibrational power transmission in terms of the acceleration signals, ay, a,, as, a4, a,, and a,,,.

Expressions for time-averaged power can be obtained by applying the following
relationships between the time-averaged product of the displacement and velocity of two

sinusoidal signals [5]:

Wi (). wa () = — <wa (). w1 (O,

which in terms of acceleration signals, a;, becomes

(s o) =~ [

(10)

(11)
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The following relationship given in reference [6] enables the time-averaged product of
velocity and displacement signals to be expressed in the frequency domain in terms of the
imaginary part of the single-sided cross-spectral density function, G(f):

<Ja1dz”a2 dtdt>t =(2nlf)3£o Im{G(ay, a)} df. (12)

Thus, the combined “straight” bending moment and shear force components can be
expressed in the frequency domain as

<(th + Psf)(Straight)>t

= A}(fiff [ — LOO Im{G(ay, as3)} df + 4 LOO Im{G(a,, as)} df + LOO Im{G(ay, as)} df:|,

(13)

and the combined “curved” bending moment and shear force components can be expressed
as

—2EI

(Pom + Ppleurved)y, = 2pan s

r Im {Glas, a)} df (14)

0

Similarly, the “straight” extensional component can be expressed as

. ES *©
(Pstraigh), = 730 [ (Gl ) o (15)
u 0

and the “curved” extensional component can be expressed as

—ES

{P,(curved)), = IRQn /) |:jOc Im {G(a,, a,,)} df

0 0 0

+ Jw Im{G(a,, a,,)} df + Jw Im{G(as, a,,)} df + Jw Im{G(as, a,,)} df:|.

(16)

Equations (13)-(16) represent a set of four equations which enable measurements of
transmitted power in a curved beam to be made using an array of six accelerometers.
The values a;, a,, as, a, represent signals from an array of four accelerometers mounted in
the radial direction and a,; and a,,, represent those from two accelerometers mounted in the
circumferential direction. For convenience, the time-averaged sum of the “straight” bending
moment and shear force component, equation (13), will be referred to as the “flexural
straight” component. This “flexural straight” component, equation (13), is identical to the
traditional four accelerometer “near-field” expression used to measure vibrational power
transmission due to purely flexural waves in a straight beam [6]. The time-averaged sum of
the “curved” bending moment and shear component, equation (14), will be referred to as the
“flexural curved” component. Likewise, the time-averaged “straight” extensional
component, equation (15), will be referred to as the “extensional straight” component. This
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“extensional straight” component is identical to the expression used to measure vibrational
power transmission due to purely longitudinal waves in a straight bar [6]. The final
component, the time-averaged “curved” extensional component, equation (16), will be
referred to as the “extensional curved” component.

The power input to the beam can be calculated from the real part of the point mobility of
the structure [7]. Thus,

Py(f) = Gre(f)Re{Y ()}, (17)

where Ggp(f)is the auto-spectral density function of the applied force and Y (f') is the point
mobility. Alternatively, the value of the power input to the structure can be calculated
directly from the cross-spectral density function between the force and response velocity
signals:

Piu(f) = Re{Gry([)}. (18)

3. EXPERIMENTAL APPARATUS AND METHOD

Measurements of transmitted power were made on the experimental curved beam shown
schematically in Figure 4. It was noted in references [1, 8] that for a beam with constant
curvature the ring frequency, Q = 1, is of great significance since at this frequency there is
a change in wave types. Above the ring frequency three wave types are possible: (1)
a predominantly flexural travelling wave: (2) a predominantly flexural near field wave; and
(3) a predominantly extensional travelling wave. Below the ring frequency the
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Figure 4. Schematic representation of the experimental apparatus: (a) side view; (b) top view.
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TABLE 1

Physical properties of the experimental beam

Density, p (kg/m?) 7850
Young’s modulus, E (N/m?) 207 x 10°
Radius of curvature, R(m) 1-0
Breadth, b (m) 0-05
Depth, d (m) 607x1073

predominantly flexural travelling and near-field waves still exist. However, the
predominantly extensional wave is now of a near-field type. Thus, it was decided to take
measurements of transmitted power on an experimental beam with a significant measurable
frequency range both above and below the ring frequency. Apart from the addition of
a small aluminium block at a position 0-6 m from the free end of the beam, this is the same
experimental apparatus as used in the study of point mobility characteristics reported in
reference [8]. The beam was made of mild steel. It was 5 m long and had a width of 50 mm.
The thickness of the beam was measured with a micrometer at six different locations along
its length and average of these readings was found to be 6:07 mm. The beam had a constant
radius of curvature of 1:0 m, thus, the ring frequency Q2 =1 occurred at 817 Hz. The
dimensions and material properties of the experimental beam are listed in Table 1. Figure 4
shows a schematic representation of the experimental apparatus. To obtain free conditions
at the end of the beam, the whole beam was suspended on thin wires at 1 m intervals from
underneath laboratory benches. It was assumed that no motion would occur in the plane of
the suspension system.

To obtain “semi-infinite” conditions one end of the beam was inserted into an anechoic
termination. This termination consisted of a 1 m long box filled with sand to dissipate the
energy of the wave motion. To attenuate lateral displacements, foam wedges were inserted
into the corners of the box to create a large triangular region of sand. For lateral
displacements this termination will be effective when the length of the beam within the box
is greater than one-half of the wavelength of the waves travelling in the beam. For purely
flexural waves in a straight Euler-Bernoulli beam of the same dimensions this would occur
at 13 Hz. For the experimental curved beam, it was assumed that this will occur at
approximately the same frequency. To attenuate longitudinal displacements, 40 thin
aluminium alloy strips of various lengths (50-100 mm) were attached at right angles to that
portion of the beam which lay in the sand box. Further details of the design of the anechoic
termination are given in reference [9], although specific measurements of the reflection
properties of the termination were not undertaken.

The excitation force was obtained by striking the beam with an instrumented hammer
(BK8202). A series of tests was conducted using four excitation positions: (1) excitation in
the circumferential direction at the free end; (2) excitation in the radial direction at the free
end; (3) excitation in the circumferential direction at a point 0-6 m from the free end; and (4)
excitation in the radial direction at a point 0-6 m from the free end. To assist in obtaining
a purely circumferential force at the free end a steel triangular block was glued at the centre
of the cross-section of the end of the beam. Circumferential excitation at a position along
the beam was attempted by striking a similar triangular block glued to the top of the beam.
When exciting the beam in the radial direction care was taken to strike the centreline of the
beam. The applied force was measured with the instrumented hammer, whilst the response
acceleration was measured using two 11 gm accelerometers (BK4371). At the free end of
the beam longitudinal acceleration was measured using an accelerometer mounted on the
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cross-section of the beam just above the triangular block. Lateral acceleration was
measured using an accelerometer, mounted on the centreline of the side of the beam.

When exciting the beam at a point 0:6 m from the free end of the beam the response was
measured using a different configuration of accelerometers depending upon whether the
beam was excited in the circumferential or radial direction. In both cases lateral
acceleration was measured using a 17 gm BK4383 accelerometer mounted in the
radial direction on the centreline of the beam. For radial excitation of the beam,
longitudinal acceleration was measured using an 11 gm BK4371 accelerometer mounted
onto the rear of the triangular block. For circumferential excitation, the longitudinal
acceleration was measured using a 0:65 gm BK4374 accelerometer mounted onto the
centreline of the beam in the circumferential direction. Although the 0-65 gm accelerometer
has less dynamic range than the 17 gm accelerometer, its low weight enabled it to be glued
directly onto the side of the beam in the circumferential direction. The applied force and
resulting accelerations were recorded simultaneously on an HP3566A spectrum analyzer.
The point and cross-mobilities were calculated directly from a single measurement by
dividing the response velocities by the applied force. For the case of circumferential
excitation at a point 0-6 m from the free end the signal-to-noise ratio of the mobility data
was improved by forming an average of four separate measurements.

The transmitted power was measured at a point, s,, approximately 2 m from the free
end of the beam using an array of six accelerometers. The time-averaged bending
moment and shear force component, equations (13) and (14), was measured using the four
radially mounted accelerometers and the time-averaged extensional component measured
using the two circumferentially mounted accelerometers plus two radially mounted
accelerometers. A schematic representation of the transducer configuration is shown in
Figure 5. To minimize finite difference and phase mis-match errors the accelerometers were
spaced 0-2 of a wavelength apart [ 10]. For radial excitation of the beam it was assumed that
the majority of the beam displacement would be due to the predominantly flexural waves.
Thus, to measure the bending moment and shear force components of transmitted power,
equations (13) and (14), the radially mounted accelerometers, a;, a,, as, and a,, were
positioned 10 cm apart. Similarly, for circumferential excitation of the beam it was assumed
that the majority of the beam displacement would be due to predominantly extensional
waves. Thus, to measure the extensional components of transmitted power, equations (15)
and (16), the circumferentially mounted accelerometers, a,; and a,,, were positioned 1 m
apart. Ideally, additional radially mounted accelerometers positioned 1 m apart would be
used to measure the radial accelerometer signals, a,, as, in the “curved” extensional
component, equation (16). However, the spectrum analyzer was limited to eight
simultaneous measurement channels and, thus, the existing radially mounted
accelerometers, positioned 10 cm apart, were used to measure the “curved” extensional
component.

4,=1m
Ay a  a a, a, a3
° * X e °
Sy
-
4¢=10cm

Figure 5. Schematic representation of transducer configuration used to measure transmitted power.



MEASUREMENT OF VIBRATIONAL POWER TRANSMISSION 165

When considering purely extensional waves in a straight bar there will also be
a deformation of the cross-section in the lateral direction due to Poisson’s ratio. An analysis
of the magnitude of this effect is presented in reference [11], where it is shown that the ratio
of the greatest lateral displacement to the greatest longitudinal displacement is
approximately equal to the ratio of the thickness of the beam to the extensional wavelength.
For the frequency range considered in the current curved beam study this ratio is small.
Hence, the effect of Poisson’s ratio on lateral and longitudinal displacements has been
neglected.

4. DISCUSSION OF RESULTS

4.1. CIRCUMFERENTIAL EXCITATION AT THE FREE END

Structural testing consisted of two stages: first the power input to the beam per unit force
was calculated from measurements of the point mobility of the beam using a re-arranged
equation (17). These data were then compared with predictions of the real part of the point
mobility calculated from the theoretical models also described in Appendix A. In the second
stage of the test a value of total power input to the beam was calculated using equation (18).
Strictly, the term “power” should only be applied to a system under continuous excitation,
whereas, for the following experiments transient energy flow and not power was measured.
However, to convert from a quantity in units of energy to a quantity in units of power the
total energy of the signal should be divided by its duration. In all the following cases the
duration of the data acquisition was one second, and therefore, for convenience, units of
power have been retained.

The results of the first stage of the test are shown in Figure 6 which shows measured and
predicted values of the real part of the point mobility of the beam when excited
circumferentially at the free end. The frequency range is expressed in terms of the
non-dimensional frequency Q2 = wR/c,, where ¢, is the phase velocity of purely extensional
waves in a straight bar. The frequency axis extends over the non-dimensional frequency
range 2 = 0-1-10-0 which for the experimental beam represents a dimensional frequency

x 107

Velocity / force (m/s / N)

—4 1 TR R B B A | 1 |

1071 10° 10'
Non-dimensional frequency

Figure 6. Real part of the point mobility of the experimental beam when excited by a force acting in the
circumferential direction at the free end (predicted data marked with “O” symbols).
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range of 83 to 82 kHz. It can be seen that below the ring frequency, 2 = 1, the predicted
values of the real part of the point mobility are zero and, hence, indicate that no power
should be input to the structure. This is consistent with previous studies [1, 8], which show
that below the ring frequency only predominantly extensional near-field waves are to be
expected. However, the measured data indicate that some power was input to the beam
below the ring frequency. One explanation for this discrepancy is obtained by considering
the wavelength of predominantly extensional near-field waves. At these low frequencies the
near-field wavelength is greater than the length of the experimental beam. Thus, power is
being transmitted not by travelling waves but by near-field waves. Above the ring frequency,
Figure 6 indicates maxima in the input power data at Q = 1-6, 2-0 and 2-8. These frequencies
correspond approximately to the natural frequencies of a straight free—free rod of the same
dimensions and material properties as the experimental curved beam. Thus, the maxima in
Figure 6 are associated with the reflection of predominantly extensional travelling waves in
the beam. As expected the predicted value of the input power lies between the peaks and
troughs of the measured data. Above Q = 3-0 the measured data indicate poor
signal-to-noise ratio due to the upper frequency limit of the applied force.

The results of the second stage of the test, a comparison between the input and
transmitted power, is shown in Figure 7. Figure 7(a) shows the power input to the beam
calculated from equation (18). Comparing this figure with Figure 6, the real part of the point
mobility (or power input per unit force), it can be seen that there are differences between the
spectra above the ring frequency. This is due to the characteristics of the excitation force
which had a flat energy spectrum up to Q2 = 1-5 but thereafter decayed, becoming zero at
Q = 3-0. At low frequencies, below Q = 0-2, the input power data shown in Figure 7(a) are
negative. This is physically impossible and is likely to be an error caused by measuring
below the lower frequency limit of the measurement system.

The total power transmitted along the beam is shown in Figure 7(b). This is calculated by
adding together the “extensional straight”, “extensional curved”, “flexural straight” and
“flexural curved” components. It can be seen that above the ring frequency significant
transmitted power is indicated at frequencies Q = 1-6 and 20 associated with the
extensional resonances of the beam. Below the ring frequency the measured transmitted
power data indicate significant fluctuations in amplitude, including at some frequencies the
physically impossible situation of negative transmitted power. These fluctuations in
amplitude increase as the frequency decreases. There are a number of factors which may
give rise to errors in the measurement of transmitted power. These include: accelerometer
cross-sensitivity; amplitude and phase mis-match between transducers; and imperfect
transducer positioning. All of these factors may have contributed to the difficulty in
obtaining reliable results below the ring frequency.

An analysis of individual transmitted power components is shown in Figure 7(c)-(e).
Figure 7(c) shows the “straight” extensional component calculated using equation (15). It
can be seen that above the ring frequency transmitted power has been measured with the
amplitude of this component being approximately 3 of the amplitude of the total
transmitted power shown in Figure 7(b). Immediately below the ring frequency this
component is approximately zero, whilst below Q = 0-4 the measured signal is in error due
to the limitations of the measurement system. Figure 7(d) shows the extensional “curved”
component calculated using equation (16). Above the ring frequency transmitted power has
been successfully measured, although compared with the extensional “straight” component
the spectra show much greater amplitudes close to the ring frequency. An explanation for
this lies in the nature of the wave motion just above the ring frequency. In reference [1] it
was shown that predominantly extensional waves consist of coupled lateral-longitudinal
displacements, with the ratio of the lateral to longitudinal displacement being determined
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Figure 7. Time-averaged vibrational power transmitted along the experimental beam when excited by a force
acting in the circumferential direction at the free end: (a) input power; (b) total transmitted power; (c) “straight”
extensional component; (d) “curved” extensional component; and (e) “straight” flexural component.

by the frequency range. Close to the ring frequency the predominantly extensional wave
contains significant lateral displacement although this is rapidly dominated by the
longitudinal displacement as the frequency increases. Thus, the “curved” extensional
component which is measured using both circumferentially and radially mounted
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accelerometers, will record this coupled wave motion. It can be seen in Figure 7(d) that
below the ring frequency the measured signal is corrupted by the limitations of the
measurement system. Figure 7(e) shows the “straight” flexural component calculated using
equation (13). It can be seen that power was transmitted at frequencies corresponding
approximately to resonances associated with the reflection of predominantly flexural waves
due to the finite length of the “semi-infinite” beam. This may have been due to a slightly
off-axis excitation force being applied to the beam, thus giving rise directly to
predominantly flexural wave motion. The “curved” flexural component was calculated
using equation (14) which for this measurement was negligible and has not been shown.
Inspection of the coefficients in equation (14) shows that this is likely to be the case for most
situations. For example, given an accelerometer spacing 4,, of 10 cm and a radius of
curvature, R, of 1-0 m, the coefficient, — 2EI/R*4,»?, in equation (14) is only 2% of the
value of the coefficient, — 4EI/43w?, in the corresponding “a, — as” term in equation (13).

4.2. RADIAL EXCITATION AT THE FREE END

A comparison of the measured and predicted values of the real part of the point mobility
of the experimental beam when excited in the radial direction at the free end is shown in
Figure 8. It can be seen from the measured data that power was input at frequencies
corresponding approximately to resonances associated with the reflection of predominantly
flexural waves due to the finite length of the experimental “semi-infinite” beam. As expected,
the predicted values, which model a true “semi-infinite” beam, lie between the peaks and
troughs of experimental data. It is also apparent that the ring frequency had no significance
for radial excitation of the beam. Thus, for radial excitation at the free end the experimental
curved beam responded as if it were a straight beam.

A comparison of the measured input and transmitted powers is shown in Figure 9.
Figure 9(a) shows the power input to the beam calculated from equation (18). Figure 9(b)
shows the “straight” flexural component, equation (13), which indicates that transmitted
power is being measured at identical frequencies to the input power data shown in
Figure 9(a). However, the amplitudes of the transmitted power data are slightly less that the
corresponding amplitudes of the input power data. In the previous section, it was noted that
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Figure 8. Real part of the point mobility of the experimental beam when excited by a force acting in the radial
direction at the free end (predicted data marked with “O” symbols).



MEASUREMENT OF VIBRATIONAL POWER TRANSMISSION

169

%1077 x 1077
1-0 1-0
(@) (b)
05 0-5
3 z
§ 0 § 0
£ £
_05 - _05 -
-1-0 1 [ A A | 1 I A A _10 1 [ A | L FE B A A I
107 10° 10’ 10™ 10° 10'
Non-dimensional frequency Non-dimensional frequency
x 1077 x 1077
10 T 1-0
© (@)
0-5H 051
| :
§ 0 § 0
£ £
-05F -0-5
_10 1 1 L1 a1l 1 1 [N _10 1 1 L1
107 10" 10' 10 10'

Non-dimensional frequency Non-dimensional frequency

Figure 9. Time-averaged vibrational power transmitted along the experimental beam when excited by a force
acting in the radial direction at the free end: (a) input power; (b) “straight” flexural component; (c) “straight”
extensional component; and (d) “curved” extensional component.

the “curved” flexural component, equation (14), is likely to be negligible in comparison with
the “straight” flexural component. This is also the case for radial excitation of the beam and,
hence, this component has not been shown. Figures 9(c) and (d) show the “straight”
extensional and “curved” extensional components respectively. It can be seen that above the
ring frequency, Q = 1-0, no transmitted power has been detected. Below the ring frequency
the data are in error due to the limitations in the measurement system. The total transmitted
power should be calculated by adding together all the transmitted power components.
However, this value was distorted by the erroneous data in the extensional power
components. Thus, for radial excitation at the free end the most accurate measurement of
transmitted power was obtained by using the “straight” flexural component only and
disregarding the “straight” extensional and “curved” extensional components.

4.3. CIRCUMFERENTIAL EXCITATION AT A POINT 06 M FROM THE FREE END

A comparison of the measured and predicted values of the real part of the point mobility
of the experimental beam when excited circumferentially at a point 0-6 m from the free end
is shown in Figure 10. Above the ring frequency the measured the predicted data indicate
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Figure 10. Real part of the point mobility of the experimental beam when excited by a force acting in the
circumferential direction at a point 0-6 m from the free end (predicted data marked with “O” symbols).

a maxima in the input power at a frequency Q2 = 1-6 associated with the reflection of
predominantly travelling extensional waves from the free end of the beam. Below the ring
frequency both the measured and predicted data indicate that power was input to the beam,
with resonant effects associated with the reflection of near-field waves from the free end.

A comparison of the measured input and transmitted powers is shown in Figure 11.
Figure 11(a) shows the power input to the beam calculated using equation (18). Above the
ring frequency power was input to the structure in the frequency region Q = 1-0-2-0.
However, below the ring frequency although some input power was to be expected, the data
show only measurement noise. The total power transmitted along the beam is shown in
Figure 11(b). This was calculated by adding together the “straight” extensional, and
“curved” extensional components. It can be seen that above the ring frequency the
transmitted power spectra reflects closely the input power spectra shown in Figure 11(a).
However, below the ring frequency the transmitted power data are corrupted by the limitations
of the measurement system and, hence, do not reliably indicate any transmitted power.

In Figure 11(c)-(e) the total transmitted power is separated into its three components.
Figure 11(c) shows the “straight” extensional component where it can be seen that above the
ring frequency transmitted power has been measured, the amplitude of this component
being greatest at 2 = 1-6. Below the ring frequency the “straight” extensional component is
dominated by measurement noise. Figure 11(d) shows the “curved” extensional component.
Above the ring frequency, transmitted power has been successfully measured with the peak
of the spectra, at Q = 1-2, being much closer to the ring frequency than the “straight”
extensional component. Figure 11(e) shows the straight flexural component which was
negligible above the ring frequency and in error due to limitations in the measurement
system below the ring frequency. Hence, the “straight” flexural component was not included
in the summation for total transmitted power shown in Figure 11(b). The “curved” flexural
component was negligible and was not included in the summation.

4.4. RADIAL EXCITATION AT A POINT 0-6 M FROM THE FREE END

A comparison of the measured and predicted values of the real part of the point mobility
of the experimental beam when excited radially at a point 0-6 m from the free end is shown
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Figure 11. Time-averaged vibrational power transmitted along the experimental beam when excited by a force
acting in the circumferential direction at a point 0-6 m from the free end: (a) input power; (b) total transmitted
power; (c) “straight” extensional component; (d) “curved” extensional component; and (e) “straight” flexural
component.

in Figure 12. The measured data indicate that power was input at frequencies associated
with the reflection of predominantly flexural waves in the beam. However, in contrast to
radial excitation at the free end, as shown in Figure 8, the point mobility due to radial
excitation at a point along the beam, shown in Figure 12, exhibits broad maxima and
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Figure 12. Real part of the point mobility of the experimental beam when excited by a force acting in the radial
direction at a point 0-6 m from the free end (predicted data marked with “O” symbols).

minima due to waves reflected from the free end. It is also apparent that the ring frequency
has no significance.

A comparison of the measured input and transmitted powers is shown in Figure 13.
Figure 13(a) shows the power input to the beam calculated using equation (18). Figure 13(b)
shows the “straight” flexural component which indicates that transmitted power was
measured at frequencies corresponding to the input power data shown in Figure 13(a). As
expected, the amplitudes of the transmitted power data are slightly lower than the
corresponding amplitudes of the input power data. The “curved” flexural component was
negligible and has not been shown. Figure 13(c) and (d) show the “straight” extensional and
“curved” extensional components respectively. For both components no transmitted power
has been measured above Q =0-5, whilst below this frequency distortions in the
measurements due to the limitations of the measurement system are apparent. In principle,
the total transmitted power should be calculated by adding together all the transmitted
power components. However, this value was distorted due to the errors in the extensional
power components. Thus, the measurement of transmitted power was made using the
“straight” flexural component only, and the “straight” extensional and “curved” extensional
components were discarded.

5. SUMMARY OF FINDINGS

This paper has reported measurements of the power transmitted along an experimental
“semi infinite” beam with a constant radius of curvature. Previously derived equations for
vibrational power transmission in a curved beam were introduced which by analogy with
power transmission in a straight beam, were represented in terms of extensional, bending
moment and shear force components. These equations have been reformulated in terms of
“straight” beam and “curved” beam components and by using finite difference
approximations a measurement strategy has been devised. Analysis of the transmitted
power data in terms of these “straight” and “curved” components leads to the following
findings which depend upon the excitation location and direction.

When exciting the beam circumferentially at the free end, the ring frequency had great
significance. Above the ring frequency, 2 = 1-0, measurements of transmitted power were
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Figure 13. Time-averaged vibrational power transmitted along the experimental beam when excited by a force
acting in the radial direction at a point 0-6 m from the free end: (a) input power; (b) “straight” flexural component;
(c) “straight” extensional component; and (d) “curved” extensional component.

made by summing the “straight” extensional and “curved” extensional components,
equations (15) and (16). The “straight” flexural component, equation (13), was use-
ful in detecting off-axis excitation, but for purely circumferential excitation was
disregarded. Below the ring frequency measurements of transmitted power were
limited by the accuracy of the measurement system and good experimental results were
difficult to obtain. Over the entire frequency range the “curved” flexural component,
equation (14), was negligible in comparison to the other transmitted power components and
was neglected.

When exciting the beam circumferentially at a point away from the free end, the
frequency response of the curved beam was divided into two regions separated by the ring
frequency. Above the ring frequency power was input to the beam and transmitted by
a predominantly extensional travelling wave. Hence, measurements of transmitted power
were made by summing the “straight” extensional and “curved” extensional components.
Below the ring frequency the real part of the point mobility indicated that power was input
to the beam. This was probably due to the interaction of the predominantly extensional
near-field wave with the free end of the beam. Hence, in principle, measurements of
transmitted power should be made by summing the “straight” extensional and “curved”
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extensional components. Unfortunately, the measured data were corrupted by noise in the
measurement system and, hence, did not reliably indicate any transmitted power.

When exciting the beam in the radial direction, whether at the free end or at any point
away from the free end, the curved beam responded as if it were straight. Thus, power was
input to the structure and was transmitted by predominantly flexural travelling waves.
Hence, measurements of transmitted power should be made by summing the “straight”
flexural and “curved” flexural components. However, the “curved” flexural component was
small in comparison to the “straight” flexural component and, thus, neglected. The
“straight” extensional component and “curved” extensional component were both in error
due to limitations in the measurement system and, thus, were disregarded.

6. CONCLUSIONS

Given the findings noted in Section 5, the following conclusions can be drawn regarding
the measurement of vibrational power transmission in curved beams.

(1) For radial excitation, when predominantly flexural waves are the main energy
carrying mechanism, then the traditional four accelerometer technique used to
measure vibrational power transmission due to purely flexural waves in a straight
beam should be used.

(2) For circumferential excitation, when predominantly extensional waves are the main
energy carrying mechanism, then measurements of transmitted power should be
made by summing the “straight” extensional and “curved” extensional components.
However, below the ring frequency the method is limited by the accuracy of the
measurement system and reliable measurements of transmitted power were not
obtained.
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APPENDIX A: POINT MOBILITY OF A ‘SEMI-INFINITE” BEAM
WITH CONSTANT CURVATURE

In this appendix, the response of a curved “semi-infinite” beam when excited at its free
end or at a point along the beam is developed by considering the propagating and
evanescent waves which travel in both directions along the beam. This method has
previously been used to analyze the harmonic response of straight beams on periodic [12]
and non-periodic supports [13]. In Section A.1, the response due to circumferential
excitation at the free end is developed. Theoretical and experimental data for this type of
structure have already been published in reference [8]. However, for completeness the
theoretical derivation is repeated here. In Section A.2, the response of the beam when
subjected to a radial excitation force at the free end derived. In Sections A.3 and A4, the
response of the beam when excited at a position some distance from the free end is
considered.

A.1. RESPONSE DUE TO CIRCUMFERENTIAL EXCITATION AT THE FREE END

Assume that a “semi-infinite” beam with constant curvature is excited at its end by
a point harmonic force, F,e'”, acting in the circumferential direction as shown in Figure Al.
At a given position along the beam the total lateral displacement, w (s, t) or longitudinal
displacement, u. (s, t) will be given by the sum of the displacements of the three possible
waves in the beam [1]. For example, above the ring frequency the total lateral displacement
will be the sum of the lateral displacements due to a predominantly flexural travelling wave,
a predominantly flexural near-field wave, and a predominantly extensional travelling wave.
Thus, the total lateral displacement is given by

wi(s) = A e ™+ Ay 070 4 Ay e (A1)
z w,(0,7)
A
F ei(ut
5
u, (0,0

oo

Figure Al. Diagram of the response of a “semi-infinite” beam with constant curvature when excited by a force
acting in the circumferential direction at the free end.
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where 4 ., A,+ and A5, represent the unknown wave amplitudes in the lateral direction
and kq, k, and k; the respective wave numbers. For clarity of notation the harmonic term
¢'" has been omitted. The corresponding longitudinal displacement is given by

u+(S) == Bl +e_ikls + Bere_ikzs + B3+e_ik3s. (A2)

To determine the response of the structure the boundary conditions and applied loads at
the free end of the beam, s = 0, need to be evaluated. Fliigge-based expressions for the
resultant forces were derived in reference [ 1]. For circumferential excitation the axial force
must be equal to externally applied force. Thus,

N (0) = ES <w+(0) N 6u+(0)> N EI <w+(0) 62w+(0)> _F. (A3)

R 0s R\ R2 0s?

Substituting the lateral and longitudinal displacements, equations (A1) and (A2), into the
axial force, equation (A3), gives

1 1 1
ES [(R — k151i>A1+ + <R - k252i>A2+ + <R - k353i>A3+:|

EI[[ 1 1 1
+?|:<F_k%>/h+ +<F_k%>A2+ +<F_k%>A3+:|:FS’ (A4)

where 6; = B;/A;is the longitudinal to lateral wave amplitude ratio, which for a given wave
can be determined from the equations of motion of the system [1]. Similarly, for purely
circumferential excitation the bending moment must be zero. Thus,

(A5)

M, (0) = —EI<W+(0) 62W+(0)> —0.

R? + 0s?

Substituting the lateral and longitudinal displacements, equations (A1) and (A2), into the
bending moment, equation (AS), gives

1 1 1

(A7)

0 (w0 PO,
R? 0s? o

Substituting the lateral and longitudinal displacements, equations (A1) and (A2), into the
shear force, equation (A7), gives

Kk k k
<R—12 — k?>A1+ + <R—22 — k%>A2+ + <R—3; — k§>A3+ =0. (A3)

Equations (A4), (A6) and (AS8) represent a set of three simultaneous equations in the
unknown wave amplitudes A, ., 4, and A;,. For a given excitation frequency, w, the
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Fliigge-based equations of motion given in reference [1] can be solved to find the three
possible wavenumbers, k;, and the respective longitudinal to lateral displacement ratios, ¢;.
Substituting these values into equations (A4), (A6) and (A8) and assuming unit force, Fy = 1,
enables the wave amplitude ratios (4 +: 4, : Az ) to be evaluated.

The cross receptance, o.p(w) can now be calculated by evaluating the lateral
displacement, equation (A1), at the excitation location. Thus,

0 A4 A A
OCzFS(CU)=W}()= 1+ + ;++ 3+ (A9)

Using the longitudinal to lateral wave amplitude ratios, é;, the point receptance, o, (w), can
be calculated by evaluating the longitudinal displacement at the excitation location. Thus,

_ u(0) _ B+ + B+ + Bs.
F, F '

s N

%sr, () (A10)

From the driving point receptance of the beam, equation (A10), the power supplied by
a point force can be readily evaluated. This power is due to the product of the force and
resultant velocity in the direction of the applied force and is a purely real quantity [10].
Thus,

P,, = [Re{F,e"}][Re{u, ], (A11)

In terms of the point mobility of the structure the power input per unit circumferential force
can be expressed as

Pin
G = Re{YSFS}' (AIZ)

FF,

s s

A.2. RESPONSE DUE TO RADIAL EXCITATION AT THE FREE END

The response due to radial excitation at the free end can be calculated in a similar manner
to that of circumferential excitation described in Section A.1. Assume a “semi-infinite” beam
with constant curvature is excited by a point harmonic force, F.,e'”, acting in the radial
direction as shown in Figure A2. The total lateral and longitudinal displacement is given by

F eiwt
Z
z w, (0,0
A

u, (0,1

(=)

Figure A2. Diagram of the response of a “semi-infinite” beam with constant curvature when excited by a force
acting in the radial direction at the free end.
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equations (A1) and (A2) respectively. However, the boundary conditions and applied loads
at the free end, s = 0, now reflect the radial excitation of the beam. Thus, the axial force is
Ze10:

N, (0)=0. (A13)
Similarly, the bending moment is zero:

M . (0) = 0. (A14)
Likewise, the shear force is equal to the externally applied force. Thus,

0.(0)=F.. (A15)
Substituting the lateral and longitudinal displacements, equations (A1) and (A2), into the
above boundary conditions and applied loadings leads to a set of simultaneous equations

which can be solved numerically to find the point receptance (lateral displacement per unit
radial excitation force). Thus,

w (0) :A1+ + Ay + Az
F, F, ’

z z

% (0) = (A16)

The cross-receptance (longitudinal displacement per unit radial excitation force) is given by

0) Bi.+B>s +B
asF,(w)J}(): K ;”L o (A17)

The input power is the product of the radial force and the resultant lateral velocity. Thus,
P, = [Re{F.e}][Re{w,e}]. (A18)

In terms of the point mobility the power input per unit radial force is

P
o =Re(Y.p). (A19)

F.F,

A.3. RESPONSE DUE TO CIRCUMFERENTIAL EXCITATION AT A POINT ALONG THE BEAM

Assume a “semi-infinite” beam with constant curvature is excited by a point harmonic
force, F,e'®, acting in the circumferential direction at a position, s,, some distance from the
free end of the beam, as shown in Figure A3. The response at any position, s,, along the
beam will be due to (1) the forced waves generated by the external force; and (2) the free
waves reflected from the boundary at the free end. Thus, the total lateral displacement to the
right of the force is given by

Wi () =Lyse % 4+ Ly e ™% 4 Ly e

+A1+eik1(srisl/)i+A2+eik2(srisl/)i+A3+eik3(srisl/)i’ (A20)
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Figure A3. Diagram of the response of a “semi-infinite” beam with constant curvature when excited by a force
acting in the circumferential direction at a point, s,, along the beam.

where L, 4, L, and L3, are the unknown lateral displacements of the waves reflected from
the free end and A4, ,, 4, and A5 are the lateral displacements of corresponding waves in
an infinite curved beam excited by a point harmonic force acting in the circumferential
direction. The corresponding longitudinal displacement to the right of the force is given by

Uy(s,) =0Lyse ™5 4 5,0, e % 4 §3L5 670

(s < s,) o e o
r 0 + B, e ky (s, SO)1+B2+e ka (s, SO)’+B3+G ks (s, S,,)t, (A21)

where B, 1, B, and Bs; are the longitudinal displacements of the corresponding waves of
the infinite curved beam system. The lateral displacement to the left of the force is
constructed by taking account of the left going nature of the waves due to the applied force.
Thus,

W_(Sr) = Ll +e*k1s,l + L2+e*k2s,l + L3+e*k3s,t

(s <'s.) o . o
r 0 +A1,ek‘(s" s')l+A2,ek2(s° Sr)l+A37ek3(Sn Sr)l, (A22)

The corresponding longitudinal displacement to the left of the force is given by

u_(s,) =61Ly e % 4+ 5,1, 67 % + 5315 7%

(s < 5p) L e o
PN LB, ksl B gkl 4 B ksl s)i (A23)

where By _, B, _ and B;_ are the longitudinal displacements of the corresponding waves of
the infinite curved beam system.

The value of the unknown free wave coefficients, L;,, can be found by satisfying the
boundary conditions at the free end of the beam. For a free end it is assumed that all
resultant forces are zero. Thus, the extensional force is zero:

(A24)

R 0s R\ R? 0s?

N.(0) = ES<W_(0) N 614_(0)) N ];;I <w_(0) ﬁw_(0)> _o.



180 S.J. WALSH AND R. G. WHITE

Substituting the lateral and longitudinal displacements, equations (A22) and (A23), into

equation (A24) gives
1 ElI[/ 1
|:ES (R k 511) R (RZ k1>:|L1+
1 1
) S
1 . 1
sl ko) 2 (5 k)
{[ES( i ,> (L]
1 EI 1
1 EI[/ 1
+ [ES <§ + k353i> + R <F — k%)]/%}, (A25)

where J;_ is the longitudinal to lateral wave amplitude ratio for left going waves, ie.,
0; = B;_/A;_. Because of the symmetry of left and right going waves the modulus of 6; and
0;— will be equal, however, they may have opposite phase. Similarly, the bending moment is
zero. Thus,

M, (0)= — EI (WI‘QEO) n %) —0. (A26)

Substituting the lateral and longitudinal displacements, equations (A22) and (A23), into
equation (A26) gives

1 1 1
(RZ - k%>L1+ + (RZ - k%>L2+ + (RZ - k§>L3+
1 2 1 2 1 2
— F_kl Ay~ + F_kz Ay- + F_k3 As— . (A27)

Likewise, the third boundary condition is that the shear force is zero. Thus,

0.(0)= — EI10 <W‘(0) + 62W‘(0)> —0. (A28)

0s\ R? 0s?

Substituting the lateral and longitudinal displacements, equations (A22) and (A23), into
equation (A28) gives

1 1 1
—kll<R2 k%>L1+ —k21<F—k%>L2+ —k3l<F—k§>L3+
. 1 2 1 2 1 2
= — lkl R2 k Al— + lkz k Az_ + lk3 k A3_ . (A29)
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Equations (A25), (A27) and (A29) represent a set of three simultaneous equations in the
unknown wave amplitudes L, ., L, and Ls.. For a given excitation frequency, w, these
equations can be solved to find the free wave amplitude ratio, (Lq 4 : L, + : L3 +). The point
receptance can now be calculated by evaluating the longitudinal displacement, equation
(A23), at the excitation locations, s = s,. Thus,

Mf(SO —kys,i —kys,i
agr, (@) = F ) ={0;Ly+e "% 4+ §,L, 0%
+ 3Lz %% + By~ + B,_ + B;_}/F,. (A30)

Similarly, the cross-receptance can be calculated by evaluating the lateral displacement,
equation (A22), at the excitation location, s = s,. Thus,

w_(0 L o ny
%ap, (@) = F( ) ={Lyse M5 4 L, e7 ksl 4 Ls.e ks,i
N

+A_+ A, + A;_)}/JF,. (A31)

A.4. RESPONSE DUE TO RADIAL EXCITATION AT A POINT ALONG THE BEAM

Assume now a “semi-infinite” beam with constant curvature is excited by a point
harmonic force, F,e'™, acting in the radial direction at a position, s,, some distance from the
free end of beam as shown in Figure A4. By analogy with the previous section, the response
at any position, s,, along the beam will be due to (i) the forced waves generated by the
external force, and (ii) the free waves reflected from the boundary at the free end. The lateral
displacement to the left of the force is constructed by taking account of the left going nature
of the waves due to the applied force. Thus,

Wf(Sr) — Ll+efkls,i + L2+eszs,i + L3+efk3s,i
(5. <'s,) (s — i s — i ls )i
+ Ay el g, ehabemsl g g, halsoms)i (A32)
The corresponding longitudinal displacement to the left of the force is given by

u_(S,) = 51L1 +eik18ri + 52L2+eikzs’i + 53L3+e*k3s,i

(s <'s.) o Iy o
r ° + B, et L B gl g B kalsms)i (A33)

it
z Foe

w, (s,,1)

u, (5,0

o0

Figure A4. Diagram of the response of a “semi-infinite” beam with constant curvature when excited by a force
acting in the radial direction at a point, s,, along the beam.
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Although these expressions are identical in appearance to equation (A22) and (A23) the
forced wave amplitudes 4;_ and B;_ in equations (A32) and (A33) are those of the infinite
curved beam system excited by a point force acting in the radial direction.

The value of unknown coefficients L, ,, L, and L3, in equations (A32) and (A33) are
found by satisfying the boundary conditions at the free end. At the free end it is assumed
that the resultant forces are zero. Thus, substituting the displacements, equations (A32) and
(A33), into the resultant forces, equations (A24), (A26) and (A28), gives a set of three
simultaneous equations which can be solved to find the free wave amplitude ratio
(Li+:Ly4+:Lsy). The point receptance, o.p(w), is calculated by evaluating the lateral
displacement, equation (A32), at the excitation location, s,. Thus,

w- SU) —kys,i —kjs,i —k3s,i
op () = F( ={Lyse % 4 Ly, e™™% 4 Ly, ek
+ Ay + Ay- + As_}/F.. (A34)

Similarly the cross-receptance, o, (w), is calculated by evaluating the longitudinal
displacement, equation (A33), at the excitation location, s,. Thus,

U-1S, —kys,i —kss,i —kas,i
o () = F( )={51L1+e sl 4 931,y e % 4 §3L 5 e

+B,_ +B,_ +B,;_}/F.. (A35)

APPENDIX B: NOMENCLATURE

lateral displacement of a given wave

longitudinal displacement of a given wave

Young’s modulus

magnitude of externally applied force acting in circumferential direction
magnitude of externally applied force acting in radial direction
single-sided spectral density function

second moment of area of cross-section of beam

lateral displacement of wave reflected from free end
bending moment on cross-section of beam
circumferential force on cross-section of beam

bending moment component of transmitted power®
extensional component of transmitted power

input power

shear force component of transmitted power

shear force on cross-section of beam

radius of curvature

cross-sectional area of beam

mobility

longitudinal acceleration

lateral acceleration

radially mounted accelerometer signal

circumferentially mounted accelerometer signal
wavespeed of purely extensional waves in a straight bar
frequency in Hz

wavenumber
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"The term “power flow”, although not physically accurate, has gained widespread acceptance. In this paper the
term “transmitted power” will be used to denote the power (in W) flowing through a beam.
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s co-ordinate in circumferential direction
So transmitted power measurement position
Sy response position along beam
Su circumferentially mounted accelerometer position
t time
u displacement at centreline in circumferential direction
w displacement at centreline in radial direction
z co-ordinate in radial direction
yip distance between radially mounted accelerometers
A, distance between circumferentially mounted accelerometers
Q non-dimensional frequency
o(w) receptance
14 longitudinal to lateral displacement ratio of a given wave
w radian frequency
Special symbols
Im{ } imaginary part
Re{ } real part
<o time average
° time derivative
Subscripts
+ positive direction

— negative direction
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