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Laminated composite plates are being increasingly used in the aeronautical and aerospace
industry as well as in other fields of modern technology. To use them effeciently a good
understanding of their structural and dynamical behaviour is needed. The Classical
Laminate Plate Theory [[1] which ignores the effect of transverse shear deformation becomes
inadequate for the analysis of multilayer composites. The first order theories (FSDTs) based
on Reissner [2] and Mindlin [3] assume linear in-plane stresses and displacements,
respectively, through the laminate thickness. Since FSDTs account for layerwise constant
states of transverse shear stress, shear correction coefficients are needed to rectify the
unrealistic variation of the shear strain/stress through the thickness and which ultimately
define the shear strain energy. In order to overcome the limitations of FSDTs, higher order
shear deformation theories (HSDTs) that involve higher order terms in Taylor’s expansions
of the displacement in the thickness co-ordinate were developed. Hildebrand et al. [4] were
the first to introduce this approach to derive improved theories of plates and shells. Kant
[5] was the first to derive the complete set of variationally consistent governing equations
for the flexure of a symmetrically laminated composite plate incorporating both distortion
of transverse normals and effects of transverse normal stress/strain by utilizing the complete
three-dimensional generalized Hooke’s law and presented results for isotropic plate only.
Later Mallikarjuna [6], Mallikarjuna and Kant [7] and Kant and Mallikarjuna [8, 9]
presented a set of higher order refined theories and presented formulations and solutions for
the free vibration analysis of general laminated composite and sandwich plate problems
based on finite element methods. In this investigation, analytical solutions for the free
vibration analysis of laminated composite and sandwich plates based on two higher order
refined theories already developed by the first author for which analytical formulations and
solutions were not reported earlier in the literature are presented. After establishing the
accuracy of the present results with three-dimensional elasticity solutions for isotropic,
orthotropic and composite plates, benchmark results and comparison of solutions using
various theories are presented for multilayer sandwich plates.

The displacement models under various theories considered in the present investigations
are listed below [10-14]:

Model—1 (Kant and Manjunatha, 1988):

u(x, y, 2) = uo(x, y) + z04(x, y) + 22u§ (x, y) + z°0%(x, y),
D(x7 ys Z) = UO(X: y) + Zey(x7 y) + ZZU?){(X, y) + Zse;k(xy y),
w(x, v, 2) = wo(x, ) + 20.(x, p) + 22w§(x, y) + 2°0F(x, y). (1)
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Model—2 (Pandya and Kant, 1988):

u(x, Vs Z) = Uo(x, y) + ZHX(X, y) + Zzu?;(xa y) + ngj(xa y))
U(X, Y, Z) = UO(xs y) + Zey(xa y) + szz)k(xa y) + Z3G;<(X, y)a
W(X, Vs Z) = WO(xa .V) (2)

Though the above two theories were already reported in the literature and numerical results
were presented using finite element formulations, analytical formulations and solutions
have been obtained for the first time in this investigation and so the results obtained using
the above two theories are referred to as present in all the tables. In addition to the above,
the following higher order theories and the first order theory developed by other
investigators and reported in the literature for the analysis of laminated composite and
sandwich plates are also considered for the evaluation. Analytical formulations and
numerical results of these are also being presented here with a view to have all the results on
a common platform.
Model—3 (Reddy, 1984):

42\ awo
u(x, v, z) = uo(x, y) + 2 [Gx(x, V-3 <;> {Bx(x, »+ V:CH

2 3 o
v(x, y, z)=vo(x,y)+z[9y(x, y)_g<%> {gy(x,y)Jra_vi}],

W(X, Vs Z) = WO(xa y) (3)
Model—4 (Senthilnathan et al., 1987):

uix, y, z) = uolX, y z ax 3h2 axa

0. 7.2) = volx ) — 2 0 A 008
dy  3h* oy
w(x, y, z) = wo(x, y) + wo(x, y). 4)
Model—5 (Whitney and Pagano, 1970):
u(x, y,2) = uo(X, y) + z0x(x, y)
v(xX, y, 2) = vo(X, y) + z0,(x, y)
w(x, y, 2) = wo(X, y). )
The definitions of parameters in equations (1)-(5) are not being repeated here for
the sake of brevity. A simply (diaphragm) supported square plate is considered through-

out as a test problem. The composite structures studied in this investigation
are fibre-reinforced laminated composite and sandwich plates. The equations of
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motion of all the displacement models are derived using Hamilton’s principle. Solutions are
obtained in closed-form using Navier’s solution technique and by solving the eigenvalue
problem.

The non-dimensionalized natural frequencies @ of general rectangular isotropic,
orthotropic, composite and sandwich plates are considered for comparison.
Natural frequencies with the percentage error with respect to three-dimensional
elasticity solutions [15] for a thick square isotropic plate (v =0-3) are given in
Table 1. A shear correction factor of 5/6 is used in computing results using
Whitney-Pagano’s theory. Comparison of results show that the theory of
Kant-Manjunatha which takes into account both the transverse shear and transverse
normal deformation, predicts the natural frequencies with the same degree of
accuracy as that of (3-D) three-dimensional elasticity solutions at lower as well as at
higher modes. In all the other theories where the transverse normal deformation is
neglected the error is quite considerable both at lower and higher modes especially when
plates are thick.

Results obtained for a single-layer square orthotropic plate are given in Table 2. The
following elastic constants are used [16]:

Cyy =232x10°psi (160GPa), C;, = 541 x 10° psi (37-3 GPa),
C13 = 025x10°psi (1-72GPa), C,, = 12:6 x 10° psi (86:87 GPa),
Cps = 228 x 10°psi (1572 GPa), Csy = 12:3 x 10° psi (84-81 GPa),
Cas = 610 x 10° psi (42:06 GPa), Css = 619 x 10°psi (42:68 GPa),
Cos = 371 x 10° psi (25-58 GPa).

Comparison of results indicates that the percentage of error with respect to
three-dimensional elasticity solutions [16] is almost nil in the case of Kant-Manjunatha
theory whereas in the case of other models the error is quite significant. The
non-dimensionalized natural frequencies of three-, five- and nine-layer symmetric cross-ply
laminate with layers of equal thickness are given in Table 3.

The orthotropic material properties of individual layers in all the above laminates
considered are E;/E, =open, E, = E;, Gy, = G35 =006E,, G553 =05E,, v{, =v{3=
v,3 = 0-25. Three-dimensional elasticity solutions given by Noor [17] is considered
for comparison. For a three-layer symmetric laminate where the effect of
transverse deformation is more pronounced the percentage error with respect to 3-D
elasticity solutions is less in Kant-Manjunatha theory compared to other theories
for all ranges of E/E,. The percentage error in all the theories increases with the increase in
the degree of anisotropy. For the range of E,/E, from 10 to 40, the percentage error in
predicting the natural frequencies using the theory of Senthilnathan et al. is very high
compared to other theories, the maximum being 9-48 per cent at E; /E, = 40. As the number
of layer increases, the error in the results obtained using the different theories decreases
significantly.

The results of a five-layer sandwich plates with antisymmetric cross-ply faces are shown
in Tables 4 and 5. Both thin and thick laminates are considered. The following material
properties are used for the face sheets and the core [18]:



Natural frequencies & = wh

TaBLE 1

p/G of an isotropic plate with v = 0-3, a/h = 10 and a/b = 1

Present
Model-1

3
=

0:0932 (0-0)*
02226 (0:0)
0-3421 (00)
04172 (0-02)
0-5240 (0-02)
06573
0-6892 (0-04)
07515 (0-05)
0-8992
09275 (0-08)
10102
1-0899 (0-0)
1-1416

W RN = WER WRE NN =
NP U BDWRWWNNDE

Present
Model-2
0-0930 (— 0-21)
02220 (— 0-27)
0-3406 (— 0-44)
04151 (— 0-48)
0-5208 (— 0-59)

0-6525

0-6839 (— 0-73)
07453 (— 0-77)
0-8908
09186 (— 0-88)
1-0000
1-0784 (— 0-96)
1-1291

Reddy®
00930 (— 0-21)
02220 (— 0-27)
03406 (— 0-44)
04151 (— 0:48)
05208 (— 0-59)
06525

06839 (— 0-73)
07454 (— 0-76)
0-8908
09187 (— 0-87)
1-0000
10784 (— 0-96)
1-1291

Senthilnathan et al.t

0:0930 (— 0-21)
02220 (— 0-27)
03406 (— 0-44)
04150 (— 0-50)
0-5208 (— 0-59)
06524
0-6839 (— 0-73)
07453 (— 0-77)
0-8908
09186 (— 0-88)
1-0000
1-0784 (— 0:96)
11292

Whitney-Pagano’

00930 (— 0-21)
02220 (— 027)
0-3406 (— 0-44)
04149 (— 0-53)
0-5206 (— 0-63)
06520

0-6834 (— 0-80)
07447 (— 0-85)
0-8896
09174 (— 1-01)
09984
10764 (— 0:96)
1-1269

3-D elasticity

0-0932
0-2226
0-3421
04171
0-5239
0-6889
0-7511

0-9268

1-0889

TResults using these theories are computed independently and are found to be the same as the results reported earlier in various references.
#Numbers in parentheses are the percentage error with respect to 3-D elasticity values.
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TABLE 2

p/ciy of a single-layer square orthotropic plate with a/h = 10 and c;, = 23-2 x 10° psi (160 GPa)

Present
Model-1

3
=

0-0474 (0-0)*
0-1033 (0-0)
0-1188 (00)
0-1694 (0-0)
0-1888 (0-0)
02181 (0-05)
0-2476 (0-04)
02625 (0-04)
0-2969 (0-0)
0-3319 (00)
0-3320 (0-0)
0-3476 (0-0)
0-3707 (0-0)

B WA R WND W NN =
N PR WHERNDWERWRN =N =

Present
Model-2

0-0476 (0-42)
0-1041 (0-77)
0-1189 (0-08)
0-1698 (0-24)
0-1906 (0-95)
02181 (0-05)
02487 (0-48)
02626 (0-08)
0-2995 (0-88)
03319 (0-
0-3326 (
03495 (
0-3707 (0-

0)
0-18)
0-55)
0)

Reddy®

0-0476 (0-42)
0-1041 (0-77)
0-1189 (0-08)
0-1698 (0-24)
0-1906 (0-95)
02181 (0-05)
02487 (0-48)
02626 (0-08)
0-2995 (0-88)
0-3320 (0-03)
0-3326 (0-18)
0-3495 (0-55)
0-3708 (0-03)

Senthilnathan et al.t

0-0478 (0-84)
0-1049 (1-55)
0-1198 (0-84)
0-1726 (1-89)
0-1919 (1-64)
02197 (0-78)
02533 (2:34)
02677 (2:02)
0-3012 (1-45)
0-3340 (063)
03414 (2.83)
0-3558 (2:36)
0-3775 (1-83)

Whitney-Pagano’

0-0476 (
0-1041 (
0-1188 (0-
0-1698 (
0-1905 (
02178 (—
02485 (
02623 (—
02994 (
0-3340 (
03321 (
03491 (
03698 (—

042)
077)
0)
024)
0-90)
0:09)
0-40)
0:04)
0-84)
0-63)
0:03)
043)
0-24)

3-D elasticity

0-0474
0-1033
0-1188
0-1694
0-1888
0-2180
0-2475
0-2624
0-2969
0-3319
0-3320
0-3476
0-3707

Note: For 1,  see footnotek to Table 1.
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Non-dimensionalized fundamental frequencies & =

TABLE 3

(wb?/h)/p/E, for a simply supported cross-ply square laminated plates with a/h = 5

Lamination and
No. of layers Source
3-D elasticity
Present (Model-1)
(0/90), Present (Model-2)
Reddy?
Senthilnathan et al.,}
Whitney-Pagano*

3-D elasticity
Present (Model-1)
Present (Model-2)

Reddy*
Senthilnathan et al.}
Whitney-Pagano?*

(0/90/0),

3-D elasticity
Present (Model-1)
Present (Model-2)

Reddy*
Senthilnathan et al.,}
Whitney-Pagano?*

(0/90/0/90/0),

EL/E,
3 10 20 30 40

66185 82103 9:5603 102723 107515

65712 (— 0-71)" 81696 (— 0-50) 92513 (— 3-23) 9-8595 (— 4:02)  10-2686 (— 4-49)
6:5523 (— 1-00) 81508 (— 0-72) 92335 (— 3-42) 9-8428 (— 4-18) 102529 (— 4-64)
6:5527 (— 0-99) 81510 (— 0-72) 92348 (— 3-40) 9-8474 (— 414) 102631 (— 4-54)
6:6003 (— 0-27) 85731 (4-41) 10-1516 (6-18) 11-1132 (8:19) 11-7710 (9-48)
6:5630 (— 0-84) 81847 (— 031) 92774 (— 2:90) 98851 (— 377) 102894 (— 4-30)
66468 85223 9948 10785 11-3435

6:6033 (— 0-65) 84382 (— 0-99) 9-8246 (— 1-24) 106437 (— 1:31)  11-1957 (— 1:30)
6-5842 (— 0-94) 84186 (— 1-22) 9-8062 (— 1-43) 106270 (— 1-46)  11-1806 (— 1-44)
6:5850 (— 0-93) 84308 (— 1:07) 98413 (— 1:07) 106856 (— 092) 112617 (— 0-72)
6:6003 (— 0-70) 85731 (0-60) 10-1515 (2-05) 11-1132 (3-04) 117710 (3-77)
65844 (— 0:94) 84201 (— 1-20) 9-8265 (— 1-22) 10-6785 (— 098) 112671 (— 0-67)
666 8608 10-1368 11:0525 11-6698

66143 (— 0-69) 85422 (— 0-76) 10-0546 (— 0-81) 109643 (— 0-80)  11-5811 (— 0-76)
6:5952 (— 097) 85228 (— 0-99) 10-0368 (— 0-99) 109487 (— 094)  11-5676 (— 0-88)
6:5959 (— 0-96) 85311 (— 0-89) 10-0598 (— 0-76) 109866 (— 0-60)  11-6198 (— 0-43)
6:6003 (— 0-90) 85731 (— 0-41) 10-1516 (0-15) 11-1132 (0-55) 11-7710 (0-87)
6:5940 (— 0-99) 85196 (— 1:03) 10-0366 (— 0-99) 109544 (— 0-89)  11:5787 (— 0-78)

TNumbers in parentheses are the percentage error with respect to 3-D elasticity values.
*Results using these theories are computed independently and are found to be the same as the results repored earlier in various references.
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TaBLE 4

Natural frequencies & = (wb?/h)\/(p/E,); of unsymmetric (0/90/core/0/90) sandwich plate
with a/h =10, a/b =1 and t. = t, = 10

Present Present
m n Model-1 Model-2 Reddy’ Senthilnathan et al." Whitney-Pagano®
Considering G5 and G,5 of stiff layers
1 1 4-8594 4-8519 7-0473 7-0473 13-8694
1 2 80187 7-9965 11-9087 119624 30-6432
1 3 117381 11-6809 173211 17-3698 50-9389
2 2 10-2966 10-2550 15-2897 15-2897 41-5577
2 3 13-4706 13-3889 19-8121 19-8325 583636
3 3 16:1320 16-:0039 23-5067 23-5067 71-3722

Neglecting G5 and G, of stiff layers

1 1 1-5617 15602 1-8237 1-8237 1-4473
1 2 2:4938 2:4921 3-0801 3-0808 2:2941
1 3 3-5424 3-5409 4-8053 4-8058 3-2469
2 2 3-1623 3-1604 40417 4-0417 2:9032
2 3 40411 40394 5-5754 5-5756 37024
3 3 47599 47582 6:9098 6:9098 4-3573

Note: for T see footnote to Table 1.

Face sheets (Graphite-epoxy T300/934):
E; =19x10°psi (131 GPa), E, = 1-5x 10°psi (10-34 GPa),
E, = Es,
Gy, = 1x10°psi (6:895GPa), G,3 =090 x 10° psi (6:205 GPa),
G,3 = 1 x10°psi (6:895 GPa),
vy, =022, vi3 = 022, vy3 = 049
p = 0057 1b/in® (1627 kg/m?).
Core properties (isotropic):
E, = E, = E; =2G = 1000 psi (6:89 x 10~ * GPa),
Gy = Gy3 = G,3 = 500 psi (345 x 107> GPa),
Vi = Vi3 = Vp3 =0,
p = 03403 x 10”2 1b/in* (97 kg/m?).

The effect of transverse shear rigidities of stiff layers and side-to-thickness ratio on the
natural frequencies are studied. It is seen that both for thick and thin plates the results of
Kant-Manjunatha and Pandya-Kant are in good agreement. For thick plate with the
transverse shear moduli (G,3 and Gq3) of stiff layers included, the difference in predicting
the natural frequencies between the theory of Kant—-Manjunatha and the theories of Reddy
and Senthilnathan et al. increases with the increasing mode number. The first order theory



326 T. KANT AND K. SWAMINATHAN
TABLE 5

Natural frequencies & = (wb?/h)\/(p/E,); of unsymmetric (0/90/core/0/90) sandwich plate
with a/h = 100, a/b =1 and t. = t;, = 10

Present Present
m n Model-1 Model-2 Reddy’ Senthilnathan et al." Whitney-Pagano®
Considering G5 and G,5 of stiff layers
1 1 15-5093 15-4646 159521 159521 162175
1 2 39-0293 389232 42-2271 42-3708 447072
1 3 72-7572 72-5925 83-9982 84-4251 94-9097
2 2 547618 546330 60-1272 60-1272 64-5044
2 3 83-4412 83-2699 96-3132 96-7159 1089049
3 3 105-3781 105-1807 124-2047 124-2047 1437969
Neglecting Gz and G, of stiff layers
1 1 112025 11-1855 119838 119838 10-8311
1 2 21-2525 21-2333 23-5260 237778 20-2688
1 3 32:2823 32:2630 36:3449 36-6482 30-5730
2 2 279082 27-8879 311132 311132 26-5301
2 3 37-0027 369802 41-6740 41-8358 35-0181
3 3 44-2389 44-2121 50-0225 500225 41-7761

Note: for T see footnote to Table 1.

very much overestimates the frequency values at lower as well as at higher modes From the
results of natural frequencies of thin laminate shown in Table 5, it can be concluded that the
effect of transverse shear moduli of stiff layers is more pronounced in thick laminates than
for thin laminates. The idea behind this entire investigation is to bring out clearly the
accuracy of the various shear deformation theories in predicting the natural frequencies so
that the claims made by various investigators regarding the supremacy of their models are
put to rest.
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