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There is an increasing interest in experimental analysis of in-operation structures where
a part of the boundary conditions is poorly known. This concerns particularly the case of
coupled systems where some complex physical phenomena make the behaviour of both the
system and its connectivity dependent on the functioning conditions. In this context, this
paper presents a new frequency approach for parametric structural updating in the vibration
and acoustic "elds. This methodology is developed here in the case of piping systems. It
follows the boundary conditions identi"cation method previously developed by the authors.
A boundary conditions error is presented and its e$ciency to translate structural parameters
error is shown. Thus, the proposed approach allows performing the identi"cation of some
unknown boundary conditions and, simultaneously, updating the model of the tested
structure. The pertinence of a frequency choice criteria based on the smallest singular value
of the solved system during the identi"cation of the boundary conditions is shown. It
speci"cally allows avoiding the bands of critical frequencies. The developed updating
technique is tested with two actual cases: a laboratory test case and an industrial example.

( 2001 Academic Press
1. INTRODUCTION

The vibration and acoustic control and fault diagnosis of piping systems require a con"dent
modelling of their dynamic behaviour. To make sense, such a model must be capable of
reproducing the system response under operating conditions. The strong mechanical
coupling often encountered in piping networks makes their behaviour dependent on these
conditions. It therefore becomes di$cult to make a purely analytical model of the physical
phenomena governing their behaviour. The physical knowledge has to be completed by
experimental investigations. The problem to be solved consists in computing
simultaneously a part of the response of a system (outputs) and a part of its inputs by
combining experimental data with the analytical model. This is an inverse problem as some
of the classic inputs of the system are estimated by using its classic output. It can also be
0022-460X/01/130373#27 $35.00/0 ( 2001 Academic Press
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considered as a hybrid problem since an experimental approach is combined with an
analytical approach so as to estimate more accurately the output of the system by reducing
the model and the measurement errors.

In this context, the purpose of this work is to develop some useful tools for the
experimental analysis performed on working systems. In many cases, this leads to
a situation where some of the boundary conditions are poorly known or even totally
unknown.

Initially, this problem was approached by the authors assuming that the dynamic
behaviour of the tested structure was well modelled. An inverse method of boundary
conditions identi"cation has been developed [1, 2]. It speci"cally allows estimating the
frequency spectra of generalized displacement and forces according to non-modelled
boundary conditions.

This paper presents the results of the second stage of this work where the problem of
improving the structure model has been addressed. The basic idea is that the identi"cation
of some well-known boundary conditions may provide a measure of the model accuracy
and may be used to improve it.

First, this idea was tested in the case where all boundary conditions are well modelled
[3, 4]. This consisted of a classic updating problem which has been widely treated during
the last two decades [5}12]. The same approach is then extended to a more general case
where only a part of the boundary conditions are de"ned. More recently, this kind of
problem, generally referred to as an &&in-situ'' or &&in-operation'' experimental analysis, has
been studied by several authors [13}18].

The method developed here addresses the problem of in-operation experimental analysis
and is based on a new parametric updating approach by minimizing a &&boundary
conditions error'' (BCE), in the frequency domain. The theoretical formulation is developed
in the case of one-dimensional structures because of the large application "eld that they
provide. Nevertheless, this approach may be applied to other kinds of structures.

The principle of the updating method is described in the "rst part; the BCE and its
sensitivity according to an updating parameter are detailed. In the second part, a critical
analysis is presented. Interest is focussed on the choice of the frequencies used for updating.
A criterion is established in order to characterize the critical frequencies that have to be
avoided. Its e$ciency is shown in several examples. In the "nal part, some results are
presented. The "rst example is a classic beam structure where the experimental data were
numerically synthesized. The second case is a laboratory test where Young's modulus of
a long steel pipe supported by poorly known supports and submitted to an unknown
excitation was identi"ed. The last example is an industrial one; it presents the result of an
experimental analysis performed on a suction circuit of an energy production plant.

2. PRINCIPLE

The parametric updating approach is basically related to the boundary conditions
identi"cation method developed by the authors in reference [1]. The method which
considers a part of a structure subjected to experimental analysis, consists in building and
inverting the transfer relation between the measured structure response and the boundary
conditions that have to be identi"ed (see Figure 1). It therefore requires a good knowledge
of the mechanical characteristics of the tested system. As an example, it is shown in reference
[2] that the accuracy of a force identi"cation acting on a straight beam is strongly a!ected
by a wrong estimation of the beam's Young's modulus. Indeed, the tested structure may be
seen as a generalized &&macro-sensor'' allowing an experimental assessment of unknown



Figure 1. Boundary condition identi"cation algorithm.
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boundary conditions. Like any measuring device, it has to be accurately calibrated. In other
words, the dynamic behaviour of this macro-sensor has to be con"dently reproduced by
a mathematical model providing the correct relation between direct observations (measured
response) and the unknowns addressed by the measurements (identi"ed boundary
conditions). Thus, as it is used to calibrate a measuring instrument by using a standard
device, the basic idea of the updating method presented here is to calibrate the model
idealizing the dynamic behaviour of the so-called &&macro-sensor'' by applying some
well-known boundary conditions to it. From a formal point of view, the updating is carried
out by minimizing an objective function expressed in terms of a set of structural parameters
(geometrical or mechanical). This function is a measure of the error made during the
identi"cation of a set of boundary conditions here called &&test boundary conditions''. It is
postulated here that this boundary condition error gives a mapping from structural
parameters space to boundary conditions space and that this mapping is injective. The
accuracy of the updated model is assumed to be characterized by this error: it reaches its
maximum when this error reaches its minimum.

This section begins with a short recall of the boundary identi"cation method and a basic
presentation of the boundary condition error. The detailed construction of this error and its
derivative with respect to an updating parameter is then presented. Finally, the particular
case where test degrees of freedom (d.o.f.s) and measured degrees of freedom are merged, is
detailed.

2.1. RECALL OF THE BOUNDARY CONDITION IDENTIFICATION METHOD

The method of boundary conditions identi"cation [2] is the starting point of the
updating approach presented in this paper. It is a frequency domain method. One-
dimensional structures composed of beams, #uid-"lled pipes and lumped elements
constitute its main "eld of application. Such structures are modelled by using continuous



TABLE 1

Boundary condition types for the problem of boundary conditions identi,cation

Boundary condition Generalized displacement Generalized force

Link Will be identi"ed: Mq
l
N Will be identi"ed: MQ

l
N

Imposed or clamped Model data: Mq
c
N Unknown: MQ

c
N

Free or source Unknown: Mq
f
N Model data: MQ

f
N
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elements connected by nodes which support all its degrees of freedom.s Unlike the "nite
element models, this formulation does not require a "ne mesh. Indeed, nodes are de"ned
only at points where there is a geometrical or mechanical singularity and at points where
the structure is linked to the exterior.

Only a part of the boundary conditions is modelled. Table 1 summarizes the types of
degrees of freedom. In addition to the classic &&source'' and &&clamped'' boundary conditions,
there is a new type referring to unknown boundary conditions denoted here by &&link degrees
of freedom'' and noted with the subscript l. In order to overcome the ill-conditioned nature
of the problem, some measurements of the structure response are made on the nodes or
inside the elements. By using a transfer matrix formulation, a global transfer relation,
expressing these measurements in terms of all degrees of freedom, is created.

The unknowns of the boundary conditions identi"cation problem are as follows: Mq
l
N:

generalized displacements at an unknown boundary; MQ
l
N: generalized forces at an

unknown boundary.
A condensation of all degrees of freedom having well-known boundary conditions is

performed, so that the model of the structure is reduced to link degrees of freedom Mq
l
N. For

each frequency, the following equations are obtained:

MC (u)N"[¹
s
(u)]Mq

l
(u)N#MCM (u)N, (1)

MQ
l
(u)N"[Z

l
(u)]Mq

l
(u)N#MQM

l
(u)N. (2)

Here MCN contains the experimental data, [Z
l
] is a dynamic sti!ness matrix and [¹

s
] is

the measurement transfer matrix. The terms MCM N and MQM
l
N are derived from the

condensation of the degrees of freedom having a known boundary condition (source and
clamped); they are expressed as functions of Mq

c
N and MQ

f
N. In order to obtain a full-ranked

system, the number of sensors must be equal or higher than the number of unknown
boundary conditions:

sizeMCN*sizeMq
l
N. (3)

Solving equation (1) leads to an assessment of the generalized displacements Mq
l
N,

Mq
l
N
(u)

"[¹
s
]`(MCN!MCM N), (4)

where [¹
s
]` is the generalized inverse of [¹

s
]. Substituting Mq

l
N into equation (2) leads to an

estimation of the generalized forces MQ
l
N:

MQ
l
N
(u)

"[Z
l
][¹

s
]`(MCN!MCM N)#MQM

l
N. (5)
sHere we deal with continuous models, so, in the literal sense, the number of degrees of freedom is in"nite. We
will use this denomination to refer to the boundary degrees of freedom which have a "nite number, thus continuous
sources are excluded.
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This task is performed for each frequency and characterizes the unknown boundary
conditions allowing the computation of the frequency response of the whole structure. A list
of nomenclature is given in Appendix B.

2.2. BOUNDARY CONDITIONS ERROR (BCE)

The principle of structural updating is based on the improvement of the tested structure
model being used for the identi"cation of the link boundary conditions. It is assumed here
that the precision of the model is correlated to the precision of the boundary conditions
identi"cation. It is proposed here to check and then to improve its quality by identifying
some given forces and/or displacements in areas where they are well known. The degrees of
freedom used for this purpose are here called &&test degrees of freedom'' and denoted Mq

t
N.

These degrees of freedom are a subgroup of the actually clamped and source (or free)
degrees of freedom: Mq

t
N"Mq

tc
q
tf
NLMq

c
q
f
N. The associated forces are denoted by

MQ
t
N"MQ

tc
Q

tf
N.

Globally, the structure's degrees of freedom are classi"ed as in Table 2. Equations (4) and
(5) therefore become

G
q
l

q
t
H
(p,u)

"[¹
s
(p,u)]`(MC(u)N!MCM (p,u)N), (6)

G
Q

l
Q

t
H
(p,u)

"C
Z

l
(p, u)

Z
t
(p, u)D [¹

s
(p, u)]`(MC(u)N!MCM (p, u)N)#G

QM
l
(p,u)

QM
t
(p,u)H . (7)

The identi"ed forces MQ
tf
N and displacement Mq

tc
N are explicitly dependent on the

parameters MpN of the analytical model. They should be compared with the well-known
forces MQK

tf
N and the well-known displacements MqL

tc
N. A complex error vector is then de"ned

as being the algebraic deviation between the identi"ed quantities and those known,

Me(p, u)N"G
MQ

tf
(u, p)!QK

tf
(u)N

Mq
tc
(u, p)!qL

tc
(u)N H , (8)

where x=
q
y is a displacement weighting matrix and x=

Q
y is a force weighting matrix, so as

to homogenize the dimensions and the orders of magnitude of the error vector components.
TABLE 2

Boundary conditions types for the problem of updating a structure having unknown boundary
conditions

Boundary condition Generalized displacement Generalized force

Link Unknown: Mq
l
N Unknown: MQ

l
N

Identi"ed Tested: Mq
tc
N"MqL

tc
N Unknown: MQ

tc
N

Test
Unknown: Mq

tf
N Tested: MQ

t
N"MQK

tf
N

Imposed or clamped Model data: Mq
c
N Unknown: MQ

c
N

Free or source Unknown: Mq
f
N Model data: MQ

f
N
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The error de"ned in equation (8) is calculated for a set of angular frequencies Mu
1
,2, u

n
N,

the objective function u (p) being de"ned as the norm of the global error vector obtained by
gathering the errors of all the angular frequencies Mu

1
,2, u

n
N,

u (p)"KK
Ee (p, u

1
)E[=

q
],[=Q

]

2

Ee(p, u
n
)E[=

q
], [=Q

] KK
*Wu+

, (9)

where x=
q
y is a displacement weighting matrix and x=

Q
y is a force weighting matrix, so as

to homogenize the dimensions and the orders of magnitude of the error vector components.
[=u] is a frequency weighting matrix.

The problem of parametric updating consists in looking for parameter values, p
up

,
verifying &&as closely as possible'' the following equation:

"nd p
up

such that u (p
up

)"0. (10)

p
up

are then called the updated parameters. Supposing the error u (p) takes into account all
the errors of the analytical model, the forces and displacements of the actually unknown
boundary conditions are computed by

G
q
l

q
t
H"[¹

s
(p

up
,u)]`(MCN!MCM (p

up
)N), (11)

MQ
l
N"[Z

l
(p

up
)][¹

s
(p

up
)]`(MCN!MCM (p

up
)N)#MQM

l
(p

up
)N. (12)

This procedure simultaneously allows the updating of the tested structure analytical
model and the identi"cation of its unknown boundary conditions.

2.3. CALCULATION OF THE ERROR AND ITS JACOBIAN

The construction of the objective function u (p) uses a formalism similar to that developed
by the "rst author in reference [1]. As the structure is composed of elements connected by
nodes, two levels of construction are found, in the typically classic manner: the elementary
level and the global level.

Otherwise, as u(p) is generally not linear, its minimization is performed by using an
optimization method based on a quadratic approximation, as a Gauss}Newton method
[22]. This therefore is an iterative method requiring, for each frequency and each iteration,
the computation of the gradient of Me (p,u)N:

S (p,u)"
Le (p,u)

Lp
"G

LQ
tf

Lp

Lq
tc

Lp H . (13)

S(p, u) is called the sensitivity matrix.
As for the error construction, the algorithm used for the calculation of the sensitivity

matrix also comprises an elementary and a global level, both will be presented later in this
section.
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2.3.1. Elementary level

The elementary matrices computed at this level describe the dynamic behaviour of each
element by means of a dynamic sti!ness matrix. The transfer relation between each sensor of
the element and the generalized displacement of its extremities is also expressed similarly.
This yields:

G
Q

e
C

e
H
(u)

"C
Z

e
¹

se
D
(p,u)

Mq
e
N
(u)

, (14)

where Mq
e
N are the element's degrees of freedom, MQ

e
N are the associated generalized forces

(forces and moments applied to its extremities or acoustic #ux entering through its
extremities), [Z

e
] is the element dynamic sti!ness matrix and MC

e
N is the measurement

vector performed on the element at any location. The matrix [¹
se
] is derived from the

transfer matrix relating the sensor section state vector to the upstream element extremity.
For continuous curvilinear elements, equation (14) is expressed analytically and is derived
from the exact solution of the motion equation. Its di!erentiation relative to a mechanical
or a geometrical parameter p

k
is also obtained analytically. This leads to the exact partial

derivatives of [Z
e
] and [¹

se
].

2.3.2. Global level

The gathering of all the structure's elements is performed by expressing the continuity
and the conservation laws at each node. In a classic manner, that leads to an assembling
guide for each element like those used in a "nite element method. Therefore, a global
relation is obtained,

G
Q

CH
(u)

"C
Zg

TsgD(p,u)

Mq
e
N
(u)

, (15)

where xZgy is the dynamic sti!ness matrix of the whole structure, and x¹sgy is the
measurement global transfer matrix relating the measured response to all degrees of freedom.

In a strictly analogous manner and by using the same assembling guides, partial
derivatives of matrices xZgy and x¹sgy are obtained.

The boundary conditions are de"ned for each degree of freedom as shown in Table 2.
Degrees of freedom are sorted according to their type of boundary conditions so that
equation (15) becomes

G
Q

l
Q

t
Q

f
Q

c
C
H"

Z
ll

Z
lt

Z
lf

Z
lc

Z
tl

Z
tt

Z
tf

Z
tc

Z
fl

Z
ft

Z
ff

Z
fc

Z
cl

Z
ct

Z
cf

Z
cc

¹
sl

¹
st

¹
sf

¹
sc

G
q
l

q
t

q
f

q
c
H . (16)

The elimination of Mq
f
N and Mq

c
N leads to equations similar to equations (4) and (5) where

the subscript l is replaced by subscripts l and t, giving

Z
l

Z
t

¹
s

"

Z
ll

Z
lt

Z
tl

Z
tt

¹
sl

¹
st

!

Z
lf

Z
tf

¹
sf

[Z
ff

]~1[Z
fl

Z
ft
] (17)
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and

QM
l

QM
t

CM
"

Z
lc

Z
tc

¹
sc

Mq
c
N#

Z
lf

Z
tf

¹
sf

[Z
ff

]~1(MQ
f
N![Z

fc
]Mq

c
N). (18)

Recalling the composition of the test degrees of freedom Mq
t
Nt"Mq

tf
q
tc
Nt, the error vector

will therefore be written as

e (p,u)"G
[1

tf
0
tc
][Z

t
][¹

s
(p, u)]`(MCN!MCM N)#MQM

tf
N!MQK

tf
N

[0
l

0
tf

1
tc
][¹

s
(p,u)]`(MCN!MCM N)!MqL

tc
N H , (19)

where x1
tf

0
tc
y extracts Mq

tf
N from the test degrees of freedom Mq

t
N and x0

l
0
tf

1
tc
y extract

Mq
tc
N from the identi"ed degrees of freedom Mq

l
q
t
N. The terms intervening in the

computation of the sensitivity matrix de"ned in equation (13) are

G
LQ

tf
Lp H"[1

tf
0
tc
] C

LZ
t

Lp D [¹
s
]`(MCN!MCM N)

![1
tf

0
tc
] [Z

t
] [¹

s
]`

L[¹
s
]

Lp
[¹

s
]`(MCN!MCM N)

![1
tf

0
tc
] [Z

t
] [¹

s
]` G

LCM
LpH#G

LQM
tf

Lp H , (20)

G
Lq

tc
Lp H"![0

l
0
tf

1
tc
] [¹

s
]`

L[¹
s
]

Lp
[¹

s
]`(MCN!MCM N)

![0
t

0
tf

1
tc
] [¹

s
]` G

LCM
LpH (21)

with

LZ
t

Lp

L¹
s

Lp

"

LZ
tl

Lp

LZ
tt

Lp

L¹
sl

Lp

L¹
st

Lp

!

LZ
tf

Lp

L¹
sf

Lp

[Z
ff

]~1[Z
fl

Z
ft
]

#C
Z

tf
¹
sf
D [Z

ff
]~1

L[Z
ff

]

Lp
[Z

ff
]~1 [Z

fl
Z

ft
]

!C
Z

tf
¹
sf
D [Z

ff
]~1 C

LZ
fl

Lp

LZ
ft

Lp D (22)
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and

G
LQM

t
Lp

LCM
Lp H"

LZ
tc

Lp

L¹
sc

Lp

Mq
c
N#

LZ
tf

Lp

L¹
sf

Lp

[Z
ff

]~1MQ
f
!Z

fc
q
c
N

!C
Z

tf
¹
sf
D [Z

ff
]~1

LZ
ff

Lp
[Z

ff
]~1 MQ

f
!Z

fc
q
c
N

!C
Z

tf
¹
sf
D [Z

ff
]~1 G

LZ
fc

Lp
q
cH , (23)

where it should be recalled that LQM
tf

/Lp"[1
tf

0
tc
] LQM

t
/Lp and that the derivative of the

generalized inverse of a matrix [A] is obtained by using the relationship

L[A]`

Lp
"![A]`

L[A]

Lp
[A]`.

2.4. A SPECIAL CASE OF STRUCTURAL UPDATING WITHOUT UNKNOWN BOUNDARY

CONDITIONS

The only explicit constraint when choosing the test degrees of freedom is that their
number is limited by the fact that an overabundance of sensors is needed. This maximum
number is equal to the di!erence between the number of sensors and the number of link
degrees of freedom. When all the boundary conditions are modelled, this is again a classic
updating problem without any link degrees of freedom. The procedure of boundary
conditions identi"cation then concerns only the test degrees of freedom. Their number may
be equal to that of the sensors.

A special case which would be interesting to develop is when the sensors and the test
degrees of freedom are merged: Mq

t
N"Mq

tf
N"MCN.

In other words, q
tc

and q
l
do not exist and the measurements are made according to some

free degrees of freedom, and the identi"cation of associated external generalized forces (well
known and generally equal to zero), is used to build the objective function. This leads to
MQ

t
N"MQ

tf
N.

The matrix [¹
s
] is then an identity matrix and its derivative equals zero:

[¹
s
]"[1

t
], [L¹

s
/Lp]"[0

t
].

The error expression becomes

Me (p,u)N"MQ
t
N
(p,u)

!MQK
t
N"[Z

t
(p, u)]MC (u)N#MQM

t
(p,u)N!MQK

t
N (24)

with

[Z
t
]"[Z

tt
]![Z

tf
][Z

ff
]~1[Z

ft
],

MQM
t
N"[Z

tf
][Z

ff
]~1MQ

f
N#([Z

tc
]![Z

tf
][Z

ff
]~1[Z

fc
]) Mq

c
N. (25)

As the matrix [¹
s
] is an identity matrix, the computation of the objective function thereby

requires only the inversion of the dynamic sti!ness matrix xZ
ff
y. On the other hand, the
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estimation of the objective function is obtained without overabundant information, which
implies that at the stage of error computation, the measurement noise is not averaged. This
therefore will tend to show a strong sensitivity to measurement noise, especially when the
matrix xZ

ff
y is poorly conditioned. It is, however, worth noting that the experimental

information can be averaged during the minimization of the objective function.

3. CRITICAL ANALYSIS OF THE OBJECTIVE FUNCTION

Just as the modelled errors here are assumed well located, the choice of the test degrees of
freedom is also left to the user. It is quite evident that this choice is extremely important for
the success of the updating process. In fact, it is necessary for the test boundary conditions
to be sensitive to the value of the targeted updating parameter. This requires an advanced
understanding of the physics of the system and some expertise of the structure modelling.
These two choices are here assumed to be "xed and we turn towards the choice of
experimental data used for the structural updating.

It is well known that the more an objective function is regular and convex, the more
simple is its min}max investigation. These properties become crucial when solving a non
linear optimization problem by using a technique so that the search direction is obtained by
the gradient estimation and the step length is estimated according to a local approximation.
Close to some frequencies, some of the terms involved in the calculation of e (p, u) may
present large variations leading to frequency peaks that may be very sharp, especially when
the damping is weak. When these frequencies depend on the updating parameters, this
singular behaviour is associated with a parameter neighbourhood. The singularity of the
objective function observed on the frequency axis also becomes a singularity on the
parameter axis. The gradient of the objective function tends to in"nity.

3.1. CRITICAL FREQUENCY BANDS

Bearing in mind the expression of e(p), such behaviour can be observed only if the linear
system given by equation (16) becomes almost singular. Omitting the equations associated
with an unknown left-hand side member, and gathering the identi"ed boundary conditions
under the subscript u, one "nds that the system actually solved is

G
C

Q
f
H"C

¹
su

¹
sf

¹
sc

Z
fu

Z
ff

Z
fc
D G

q
u

q
f

q
c
H . (26)

Reducing the data Mq
c
N to the second member, give

G
C!¹

sc
q
c

Q
f
!Z

fc
q
c
H"C

¹
su

¹
sf

Z
fu

Z
ff
D G

q
u

q
f
H . (27)

Let ¹
suf

denote the matrix corresponding to this system.
The resolution of this system is decomposed in two stages. The "rst consists in expressing

Mq
f
N as a function of Mq

u
N, the second consists in solving the system obtained in Mq

u
N. The

determinant of the matrix ¹
suf

can therefore be written in the form of a product of the
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determinants of the submatrix Z
ff

and the condensed transfer matrix ¹
s
:

det(¹
suf

)"K
I
ss

¹
sf

0 Z
ff
KK
¹
su
!¹

sf
Z~1

ff
Z

fu
0

Z~1
ff

Z
fu

I
ff
K

"det(Z
ff

) det(¹
su
!¹

sf
Z~1

ff
Z

fu
) . (28)

hggiggj
/Ts

Let u
s
denote a pulsation near where the matrix ¹

s
tends towards a singular matrix and

u
f

a pulsation near where the matrix Z
ff

tends towards a singular matrix. With the
reservation that Z

fu
and ¹

sf
are not equal to zero and that the submatrix ¹

su
is "nite, one

"nds

lim
u?uf

¹
s
" lim

u?uf A¹su
!

1

det(Z
ff

)
[¹

sf
][Cofactor(Z

ff
)]T[Z

fu
]B

" lim
u?uf

1

det(Z
ff

)
[¹

sf
][Cofactor(Z

ff
)]T[Z

fu
]. (29)

This implies that

lim
u?uf

Ddet(¹
suf

)D" lim
u?uf

Ddet(Z
ff

) det(¹
su
!¹

sf
Z~1

ff
Z

fu
)D'0. (30)

From this, one can deduce that if Z
fu

and ¹
sf

are not identically equal to zero, the
matrix ¹

suf
does not tend towards a singular matrix near u

f
and that it becomes singular

only near u
s
:

lim
u?uf

det(¹
suf

)"0.

On the other hand, if Z
fu

or ¹
sf

are equal to zero, the singularity of the matrix
¹
suf

becomes synonymous with the singularity of Z
ff

or ¹
su

. Especially if the rank of ¹
su

is
equal to the number of identi"ed boundary condition, ¹

suf
becomes singular only near

frequencies u
f
:

if (¹
sf
"0 or Z

fu
"0) then lim

u?uf

det(¹
suf

)"0.

Two types of singularities can then be encountered: Type 1: [¹
s
] is singular; Type 2:

x¹
sf
y"[0] or xZ

fu
y"[0] and xZ

ff
y is singular.

The corresponding frequencies are called here &&critical frequencies''. The "rst type of
singularity corresponds to a con"guration where the sensors do not allow the observation
of the identi"ed displacements Mq

u
N. Near the corresponding frequencies, the experimental

data become linearly dependent. This is a problem concerning a lack of information on
which to base the optimization of sensor placement or the use of overabundant sensors. In
addition, as the couples (p, u) near where this kind of singularity occurs depend also on the
choice of the test degrees of freedom, another solution can be the reduction of their number
so as to remove the singularity.

The second type of singularity occurs near the couples (p, u) where u is an eigenfrequency
of the structure, parameterized by current MpN, clamped at all identi"ed degrees of freedom
Mq

u
N. In fact, xZ

ff
y is the dynamic sti!ness matrix of the current structure having Mq

f
N as
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only generalized co-ordinates. At the corresponding eigenmodes, a slight variation in the
identi"ed displacement Mq

u
N results in a major change in the identi"ed forces MQ

u
N. To

explain this, it is enough to recall that an eigenmode may be excited by imposing on
clamped degrees of freedom a given harmonic #uctuation of the pulsation equal to the
corresponding eigenfrequency. This type of singularity is notably encountered if the sensors
are merged with the test degrees of freedom (cf. section 2.4) or if the measurements are
explicitly expressed (without condensation) as a function of link and test degrees of freedom
only. It is clear that the singularity of the objective function is all the more bothersome as
the measurements become noisy. In both cases presented above, the use of additional
measurements allows the reduction of the e!ects of measurement noise. In fact, in the "rst
case, this will increase the number of rows of matrix [¹

s
] and, in this way improve its

ranking. In the second con"guration (where the dimension of Mq
u
N equals the number of

measurements), this allows an increase in the number of test degrees of freedom which shifts
critical frequencies towards the higher ones.

Otherwise, as with all behaviour associated with a resonance, the presence of damping
#attens the peaks of the objective function around the critical couples (p,u) thereby
softening the singularity and at the same time widening its spectrum.

3.2. EXAMPLES

So as to illustrate these singularities, consider the simple case of a straight beam of length
unity, joined to the ground by two transverse slides at its extremities (see Figure 2). It is
excited by a transverse force at abscissa 0)4, two transverse displacement sensors are
simulated at abscissas 0)4 and 0)6.

3.2.1. First type of critical frequency band

To highlight the "rst type singularity, the transverse displacements at abscissas 0)68
and 1. were chosen as test degrees of freedom. The upper graph of Figure 3 presents
the determinant of matrices x¹

suf
y, [¹

s
] and xZ

ff
y versus frequency. There is a

clearly visible simultaneous drop in both determinants of x¹
suf
y and [¹

s
] whereas the

drop in the determinant of xZ
ff
y does not induce any singularity in system (27). The graph

below presents the corresponding smallest singular values and con"rms the results shown in
the upper one. Remember that the smallest singular value constitutes a measure of the
distance between a matrix and the nearest ill-ranked matrix. In the vicinity of 24 Hz, xZ

ff
y

suddenly approaches a singular matrix whereas the matrices x¹
suf
y and [¹

s
] show no

particularity. However, in the vicinity of 57 Hz, they tend simultaneously towards singular
matrices.

One can now observe the behaviour of the objective function. Consider as updating
parameters Young's modulus of the part downstream the excitation, called here p

1
and

Young's modulus of the upstream part called p
2
. The upper graph of Figure 4 shows the
Figure 2. Schematic of the beam used to illustrate the critical frequency bands.



Figure 3. Determinant (upper) and smallest singular value (lower) of linear systems solved during computing
the boundary condition error*Z

ff
(circle); ¹

suf
(lozenge); ¹

s
(cross).

Figure 4. The norm of the vector error e (upper) and the corresponding SSV of ¹
s
(middle) and Z

ff
(lower)

according to the second parameter (Young's modulus of the right part) and the frequency. The sensors are located
at abscissas 0)6 and 0)4 and the test degrees of freedom are the transverse displacements at abscissas 0)68 and 1. The
"rst parameter (Young's modulus of the left part) is 20% erroneous.
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evolution of the error vector norm when the parameter p
2

is maintained erroneously at
!20%:

Ee(p
1
3[0)1 p

1ex
2p

1ex
], u, p

2
"0)8p

2ex
)E.

The graph below this "gure shows the inverse of the smallest singular value of [¹
s
] as

a function of p
1

and u. So as to better display the phenomenon to be observed, a large
domain of parameters@ variations is examined. The examination of the objective function
highlights two regions of high gradient. The "rst region is parallel to the parameter axis, the
gradient of the objective function relative to the updating parameter therefore remains "nite
and the objective function remains regular. The corresponding frequency (24 Hz) is an
eigenfrequency of the tested structure; the peak of the objective function is caused by the
peak of the measured frequency response. The second region is that observed in the band of
frequencies [35}55] Hz. This region is not parallel to the parameter axis which results in
a singular behaviour of the objective function. The examination of the smallest singular
value of [¹

s
] shows clearly that this region may be identi"ed by where [¹

s
] tends towards

a singular matrix. On the other hand, the examination of the smallest singular value of
xZ

ff
y shows clearly that there is no correlation between the singularity of the objective

function and that of the matrix xZ
ff
y.

3.2.2. Second type of critical frequency band

In order to illustrate the second type of singularity, one can merge the test degrees of
freedom with the measured ones. The matrix [¹

su
] becomes equal to identity. The result is

shown in Figure 5 where p
2

is now taken as its exact value. A logarithmic scale is used so as
to discern simultaneously the valleys and the ridges of the objective function. It must be
noted that this type of representation accentuates the downward slopes towards zero and
reduces those mounting towards in"nity. A ridge parallel to the parameters axis is found,
corresponding to the eigenfrequency of the reference structure. Additionally, two bands are
discerned where Ee(p, u)E increases abruptly. The "rst starts at 20 Hz and "nishes at 70 Hz,
Figure 5. The norm of the vector error e (upper) and the corresponding SSV of Z
ff

(lower) according to the
second parameter (Young's modulus of the right part) and the frequency. The sensors and the test degrees of
freedom are merged and located at abscissas 0)6 and 0)4. The "rst parameter (Young's modulus of the left part) is
not erroneous.
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the second starts at 45 Hz and reaches the limit of the frequency range for a variation of p
1

of 150%. The examination of the smallest singular value of xZ
ff
y shows that the regions of

singularity of the objective function are identi"ed as being the bands (p,u) where xZ
ff
y

tends towards a singular matrix.
In other respects, the logarithmic scale representation also highlights the behaviour of the

objective function in the vicinity of the solution. As the parameter p
2
is equal to its reference

value, this allows to ascertain that the objective function is cancelled when p
1

is also equal
to its reference value, even when crossing critical frequency areas.

4. RESULTS

4.1. BEAM STRUCTURE WITH SYNTHESIZED MEASUREMENT

The "rst example is a classical test case in which synthetic measurements obtained by
a simulation of the response of a rigid jointed beam structure are used. The principal
mechanical and geometrical characteristics of the tested structure are speci"ed in Figure 6.
Its nodes O

1
and O

2
are clamped, its "rst four eigenfrequencies are (41}83}128}165 Hz). It

is excited by a force F"F
x
e
x
#F

y
e
y
at point C. Bi-axial sensors were simulated at nodes

C and D as well as within the elements O
1
A, AB, BC, DC and O

1
D. Young's modulus is

updated here for the horizontal bars O
1
B and O

2
C (parameter p

1
) and the inclined bars

O
1
D and AC (parameter p

2
).

Table 3 presents the various tested con"gurations. The identi"ed degrees of freedom are
maintained the same for all con"gurations: Mq

u
N"Mu

C
v
C

u
D

v
D
N.

The excitation at C is considered unknown in con"gurations 2, 3, 5, 6 and 7, being

Mq
l
N"Mu

C
v
C
N, Mq

t
N"Mu

D
v
D
N.

It is considered perfectly known and the corresponding degrees of freedom are used as
test ones in con"gurations 1 and 4, being

Mq
t
N"Mq

u
N"Mu

C
v
C

u
D

v
D
N.

Otherwise, in con"gurations 1}3 the sensors are merged with the identi"ed degrees of
freedom; in con"gurations 3 and 6 the updating process crosses an area of critical
frequencies and in con"guration 7 two overabundant sensors are used to take out
a singularity of the matrix [¹

s
].
Figure 6. Schematic of the synthesized beam structure test.



TABLE 3

¸ist of test con,gurations for the beam structure test

Critical freq.?
Con"g. freq. bands Test d.o.f. Link d.o.f. Sensors

1 No/ u
C
}v

C
}u

D
}v

D
* Four sensors merged with

[50 : 2 : 60] identi"ed d.o.f.
[155 : 2 : 165]

2 No/ u
D
}v

D
u
C
}v

C
Four sensors merged with

[50 : 2 : 60] (excitation) identi"ed d.o.f.
[155 : 2 : 165]

3 Yes/ u
D
}v

D
u
C
}v

C
Four sensors merged with

[65 : 5 : 100] (excitation) identi"ed d.o.f.

4 No/ u
C
}v

C
}u

D
}v

D
* S

5
}S

6
}S

7
}S

8
[20 : 2 : 30]

[165 : 2 : 175]

5 No/ u
D
}v

D
u
C
}v

C
S
5
}S

6
}S

7
}S

8
[20 : 2 : 30] (excitation)

[165 : 2 : 175]

6 Yes/ u
D
}v

D
u
C
}v

C
S
5
}S

6
}S

7
}S

8
[80 : 5 : 100] (excitation)

7 No/ u
D
}v

D
u
C
}v

C
S
5
}S

6
}S

7
}S

8
}S

9
}S

10
[80 : 5 : 100] (excitation) (Two overabundant sensors)

Figure 7. Smallest singular value of matrix Z
ff

in con"gurations 1}3 where test degrees of freedom were merged
with measured ones. Parameters are varying in a range of $25% (p

1
: upper, p

2
: lower).
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Figure 7 highlights the zones of critical frequencies for the "rst three con"gurations. The
SSV of matrix xZ

ff
y are superposed as a function of the frequency for a variation of the two

parameters within the limits of $25%. It can be seen clearly that the band of critical
frequencies showing a major drop of SSV (ratio of 10~2) is approximately [65}130 Hz].
Figure 8 shows the convergence of the two parameters. The hollow symbols show Young's



Figure 8. Convergence graph in the cases where test degrees of freedom were merged with measured ones*
excitation is modelled and critical frequencies are avoided (con"g. 1: circle) Excitation is unknown and critical
frequencies are avoided (con"g. 2: lozenge); Excitation is modelled and critical frequencies [65}100 Hz] are
included (con"g. 3: square).

Figure 9. Smallest singular value of matrix ¹
s
in con"gurations 4}6 where test degrees of freedom were not

merged with measured ones. Parameters are varying in a range of $25% (p
1
: upper, p

2
: lower).
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modulus for the horizontal beams which have been initialized with 23% error (2)16]105

instead of 2)16]105 MPa), and the "lled symbols show Young's modulus for the inclined
bars initialized with !23% error (1)6]105 instead of 2)16]105 MPa). By avoiding the
band of critical frequencies it is clear that both parameters converge towards their reference
values. The updating process is rapid and e$cient even in the presence of unknown
boundary conditions. It should particularly be noted that both parameters convergence is
virtually identical for con"guration 1 (circle) and 2 (square). In con"guration 3, the use of
a set of frequencies including some critical frequencies has clearly compromised the success
of the updating process. This result is as expected: on the one hand, it highlights the
importance of the frequency choice; on the other, it shows, in this example, the e$ciency of
a frequency choice criteria based on the evolution of the SSV of xZ

ff
y.

Figure 9 highlights the critical frequency zones for con"gurations 4}6 corresponding to
a sudden drop of the SSV of [¹

s
]. Several critical frequency bands can be observed between

60 and 145 Hz. Figure 10 shows the convergence of both parameters. The statement made
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earlier when commenting on the results obtained in the case where the sensors and the test
degrees of freedom are merged remains valid here. It can particularly be noted that the fact
of supposing the exciting force to be unknown does not at all alter the updating process. In
con"guration 6, the choice of a band of frequencies containing the critical frequencies
[80}100 Hz] leads to an oscillation of the "rst parameter and a false convergence of the
second. This behaviour is typical of the singularity of the objective function described in
section 3. In fact, the use of critical frequencies leads to an objective function having
a multitude of local minima. In the parameters space, it locally has the shape of a dish which
may be very steep in one direction and very #at in another. The use of an optimization
method of type Gauss}Newton method, leads to an oscillation of the parameter
corresponding to the steep slope and a false convergence towards the hollow of the local
minima of the parameter corresponding to the easy slope.

So as to remove the singularity from the objective function, two overabundant sensors
were added in con"guration 7. The matrix [¹

s
] becomes a rectangular matrix with six rows

and four columns. Figure 11 shows its SSV. It is easy to see that the band of frequencies
Figure 11. Smallest singular value of matrix ¹
s
in con"guration 7 where overabundant sensors were used to

remove critical frequencies. Parameters are varying in a range of $25% (p
1
: upper, p

2
: lower).

Figure 10. Convergence graph in the cases where test degrees of freedom were not merged with measured
ones*excitation is modelled and critical frequencies are avoided (con"g. 4: circle) Excitation is unknown and
critical frequencies are avoided (con"g. 5: lozenge, almost merged with the circles); Excitation is modelled and
critical frequencies [80}100 Hz] are included (con"g. 6: square).



Figure 12. Convergence graph in the cases with (con"g. 7: triangle) and without (con"g. 6: square)
overabundant sensors.

Figure 13. Schematic of the laboratory test Camelia.
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[80}100] is no longer containing critical frequencies. The updating result is shown in
Figure 12. The convergence of the parameters in con"guration 7 is compared to that in
con"guration 6. It can be observed that both parameters converge towards their reference
values. Otherwise, this result shows that when the sensors are not merged with the identi"ed
degrees of freedom, only the singularity of [¹

s
] induces a singularity of the objective

function which remains regular even though xZ
ff
y is singular. This result also shows the

e$ciency of using overabundant sensors to overcome the singularity of an objective
function.

4.2. EXPERIMENTAL RESULTS OBTAINED ON A SPECIFIC TEST BENCH

Here are presented the results obtained for the updating of the mechanical characteristics
of a steel pipe with unknown supports and excitation conditions. The experimental results
were obtained on a laboratory test bench (see Figure 13). The tested pipe had a length of
2)895 m, it was made in stainless steel, with a diameter of 38 mm and a wall thickness of



Figure 14. Objective function (upper) and smallest singular value of matrix ¹
s
obtained for Camelia laboratory

test. Parameters are varying in a range of $25% (p
1
: middle, p

2
: lower).
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2 mm. It was supported at its extremities by two #exible and dampened supports. An
electrodynamic shaker, placed 2)22 m from its left end, applied a transverse force and
thereby imposed a #exure motion on the pipe. Several accelerometers were placed along the
pipe. The presented test used four sensors situated at abscissas M0)31, 1)01, 1)81, 2)51 mN. The
exciting force was also captured and was used only for comparison with the force
identi"cation results obtained after updating. In the updated model, the pipe was divided
into three parts: ([0}0)68 m]; [0)68}2)22 m]; [2)22}2)895 m]). Young's modulus for the two
extreme parts was virtually supposed to be di!erent from Young's modulus of the central
part. These two moduli were initially estimated with a deliberately exaggerated error. The
"rst was initialized at p

10
"2)3]105, the second at p

20
"1)6]105 MPa. Only the

transverse displacement at the connection of the two "rst parts was used as a test degree of
freedom. The transverse displacements corresponding to end supports and shaker force
were considered as being link degrees of freedom. In other words, the supports were not
modelled and the excitation was supposed to be completely unknown.

The identi"cation of Young's moduli p
1

and p
2

is the subject of the updating procedure
presented here. Figure 14 presents the evolution of the objective function and the SSV for
a limit of parameter variation of 25%. A critical frequency band [150}200 Hz] is observed.
The updating was then performed considering the frequencies [20 : 10 : 80 Hz] and
[300 : 10 : 350 Hz]. The convergence curve is presented in Figure 15. It is shown that both
parameters converge towards values near 1)8]105 MPa which is a good estimation for
a stainless-steel Young's modulus.

4.3. INDUSTRIAL CASE

In order to validate the approach on an industrial example, the parametric updating of
the suction piping circuit presented in Figure 16 was done. The network was connected to



Figure 15. Convergence graph in the Camelia test case. Young's modulus of the end parts (hollow circle);
Young's modulus of the middle parts (solid circle).

Figure 16. Suction circuit.
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the reference by a pump attached to a table at its base and with a tank at the top. The total
length of the tested part is about 20 m. A series of tests was done during a block stop, at cold
conditions with static #uid inside. The loading was provided by a force F

x
following the

x-axis, applied just above the valve. The structure was equipped with piezoelectric
accelerometers in 10 locations regularly spread over the circuit. Accelerations were collected
according to the x direction on the frequency band [0}35 Hz] sampled at steps of
0)0488 Hz. The "rst "ve eigenfrequencies, corresponding to eigenmodes outside the plane
(yz), are (2)65, 6)46, 8)84, 10)17, 26)42 Hz). The structure was initially modelled by using some
straight Timoshenko beams (external diameter of 660)4 mm, wall thickness of 12)7 mm) and
circular elbows (same external diameter, wall thickness of 14 mm, curve radius of 0)9906 m,
central angle of 653). The #exibility of the elbow is corrected by dividing their inertias by
a coe$cient k

f
. Only the inertia of the #uid inside the tubes is taken into account by

modifying their linear density. Otherwise, the valve is modelled by a 2961 kg lumped mass
with an eccentricity of 0)95 m relative to x-axis. The pump and the table are modelled as
shown in Figure 17, by a lumped mass (311]103 kg) and three lumped sti!nesses kp

x
, kphy and



Figure 17. Schematic of the pump connection and of its simpli"ed model.

Figure 18. Schematic of the tank connection and of its simpli"ed model.

Figure 19. Convergence graph in the suction circuit case. Sti!ness of the pump connection (triangle). Sti!ness of
the tank connection (circle). Elbow #exibility (square).
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kphx . The connection circuit/tank was done by welding the pipe to the bottom of the tank (see
Figure 18). It is also modelled by three lumped sti!nesses kb

x
, kbhy and kbhx . In all results

presented here, kb
x
, kp

x
, kbhy and kphx were assumed to be in"nite.

The superposition of the frequency responses measured by sensor 2 and obtained by the
initial model is shown in the upper graph of Figure 20. A preliminary criterion based on the
coherence function between captured signals and the spectrum amplitude of each of them
allowed to select 197 frequencies around the various eigenfrequencies. This number was
automatically reduced for each iteration if the neighbourhood of a critical frequency
appears.

The knowledge of the manufacturing problem and the conception of the various parts of
the piping network allowed the choice of the following parameters: p

1
and p

2
associated



Figure 20. Suction circuit case*comparison between measured and computed responses corresponding to
sensor 2. Before updating (upper). After updating (lower).
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with kphy and kbhy so that

kphy"
p
1

1!p
1

kbhy init , kbhy"
p
2

1!p
2

kbhyinit , kphyinit"kbhyinit"2)83]108 Nm,

p
3

with the inertia of the four elbows so that

I"p
3
I
init

, I
init

"1)486]10~3 m4.

All boundary conditions are modelled and the test degrees of freedom were merged with
sensors. Figure 19 shows the resulting convergence graph. For the pump, the updating
result was an in"nite value for the lumped sti!ness kphy (p

1
"1~). This implied that the

piping was clamped to the pump. For the connection with the tank, the identi"ed sti!ness
kbhy was intermediate between freedom and clamped rotation. This sti!ness corresponded to
the #exural sti!ness of a plate modelling the bottom of the tank. The four elbows were
assumed identical in the updating procedure and the coe$cient of #exibility obtained for
these elbows was 5)5. The French reglementation guide RCC-M suggested a coe$cient of
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#exibility of 12)43. Bearing in mind that this value is overestimated for the behaviour
outside the plane, the value found is realistic.

The comparison of the measured results and the results calculated from the updated
model is shown in the lower graph of Figure 20. The resonances identi"ed on the updating
model were 2)4, 6)8, 8)5, 10)3 and 28)3 Hz. The "rst four modes were therefore accurately
found. The updated frequencies error were respectively !6, #6)5, #3.8, #1.3 and
#7.4%. Apart from the amplitude of the "rst eigenmode which was not well measured due
to the very poor coherence at low frequencies, the other amplitudes were almost exact.

5. CONCLUSION

A new approach of parametric updating is presented in this paper. It is based on the
measurement of modelling error formulated as a boundary conditions error (BCE). This
error is especially well suited to be applied in cases of in-operation structures having
unknown boundary conditions such as non-modelled connections or poorly known
excitations.

In its principle, the method is based on the choice of a set of degrees of freedom associated
with perfectly known boundary conditions. By solving an inverse problem, we therefore
construct an image of a modelling error in the form of an error in these boundary
conditions. This choice is here supposed to be made in a judicious manner so that the image
becomes bijective. This point has not been treated in this paper, but has simply been
supposed veri"ed. Of course, this represents a central point when establishing the updating
problem, which can not be realized without a well-developed understanding of physics and
a minimum knowledge of the tested structure. Another important choice for the e$ciency of
the objective function is that of the experimental data used for its construction. This point
has been treated here. The pertinence of a criteria based on the smallest singular value of the
solved system during the identi"cation of the boundary conditions is shown. This criterion
depends on the choice of the number and the location of the sensors and the choice of
frequencies. The examples presented here show that for a given choice of sensors, this
criterion allows determining, and so avoiding, the bands of critical frequencies.

Taking the criterion into account, the e$ciency of this new updating technique is shown,
allowing identi"cation of the structure parameters in two actual test cases: a laboratory test
case and an industrial example.
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APPENDIX A: AN EXAMPLE OF CONTINUOUS ELEMENT TRANSFER AND DYNAMIC
STIFFNESS MATRICES AND THEIR DERIVATIVES

One particularity of the method developed in this paper is the use of continuous elements.
This allows an exact analytical formulation of the elementary matrices and their derivatives
and leads to a small size numerical problem. In order to provide an example of these
elementary matrices (see equation (14)), the case of the longitudinal vibrations of a straight
beam is detailed here.

Consider a x-axis beam of length l, cross-section area S, density o and Young's modulus
E. The transfer matrix is derived from the momentum conservation equation and the
constitutive law:

LN

Lx
!oS

L2u

Lt2
"0, N!ES

Lu

Lx
"0.

Solving these equations leads to the transfer matrix ¹
long :

G
u
2
"u (x"l )

N
2
"N (x"l )H"[¹

long] G
u
1
"u(x"0)

N
1
"!N(x"0)H
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with

[¹
long](u)

"[D][¹adim][D]~1"C
1 0

0 ESkDC
cos kl !sin kl

!sin kl !cos klDC
1 0

0 ESkD
~1

.

Here the external force convention is used at both extremities of the beam, k"uJo/E is
the wave number and u is the angular frequency. ¹adim is the dimensionalless transfer
matrix. The dynamic sti!ens matrix Z

long may be computed from the transfer matrix above
provided that sin(kl)O0:

Z
long(u,E)"ESk

cot kl
!1

sin kl

!1

sin kl
cot kl

,

As an example the updating parameter is assumed to be Young's modulus E. The
derivative of the transfer matrix with respect to this parameter is

¹
,E
"D

,E
¹adimD~1#D¹adim

,E
D~1!D¹adim

,E
D~1D

,E
D~1,

where X
,p

denotes the derivative of X with respect to p, with

¹adim
,E

"k
,E
¹adim

,k
"

!uJp

2EJE C
!l sin kl !l cos kl

!l cos kl !l sin klD
and

D
,E
"

0 0

0
Su
2 S

o
E

.

The derivative of the dynamic sti!ness matrix with respect to Young's modulus E is

Z
,E
"

SuJo

2JE

cot g kl
!1

sin kl

!1

sin kl
cot kl

#

Su2o
2E

l

sin2 kl

!l cos kl

sin2 kl

!l cos kl

sin2 kl

l

sin2 kl

.

APPENDIX B: NOMENCLATURE

u angular frequency
f frequency
MpN updating parameters
EuE

A
quadratic norm of vector MuN according to a weighting matrix [A]

MqN generalized co-ordinates (linear or angular position, acoustic pressure, etc.)
MQN generalized forces (forces and momentum, acoustical #ow, etc.)
Mq

l
N degrees of freedom having an unknown boundary condition

Mq
t
N test degrees of freedom

Mq
c
N clamped degrees of freedom

Mq
f
N free degrees of freedom

MQ
l
N unknown generalized forces corresponding to an unknown boundary condition

MQ
t
N generalized forces corresponding to test degrees of freedom

MQ
c
N reacting generalized forces associated with clamped d.o.f.
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MQ
f
N modelled excitation, generalized forces associated with free d.o.f.

MCN measured response
[¹] transfer matrix
[Z] dynamic sti!ness matrix
SSV smallest singular values
X

,p
derivative of X with respect to p


	1. INTRODUCTION
	2. PRINCIPLE
	Figure 1
	TABLE 1
	TABLE 2

	3. CRITICAL ANALYSIS OF THE OBJECTIVE FUNCTION
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	4. RESULTS
	Figure 6
	TABLE 3
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20

	5. CONCLUSION
	REFERENCES
	APPENDIX A: AN EXAMPLE OF CONTINUOUS ELEMENT TRANSFER AND DYNAMIC STIFFNESS MATRICES AND THEIR DERIVATIVES
	APPENDIX B: NOMENCLATURE

