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The natural vibration frequency of a torsion cylinder with varying cross section and an
adhesive mass is investigated in this paper. From the numerical solution of the governing
equation under the relevant boundary conditions we can de"ne a function which is called the
target function in this paper. It is proved that the problem for evaluating the natural
vibration frequencies is equivalent to "nding the zeros of the target function. An
improvement formulation of the target function is suggested in this paper. Without regard to
the number of the adhesive masses, the target function is obtained from a solution of one
particular initial boundary value problem of the ordinary di!erential equation. The zeros of
target function can be easily evaluated by the well known half-division technique. The
suggested method depends signi"cantly on the computer computation. It is proved that the
target function approach provides one more e!ective method in this "eld. Many numerical
results are carried out in this paper. The given numerical examples generally show that the
adhesive masses in#uence by lowering the vibration frequency of torsion cylinder in general.
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1. INTRODUCTION

Free vibration analysis of a torsion cylinder with varying cross-section and an adhesive mass
is carried out in the paper. The governing equation for the problem was formulated in
reference [1]. Since the computer was not available at the age of Timoshenko, the previously
obtained solutions were limited to a very elementary scale. For example, for the case of two
adhesive masses which are huge compared to the mass of cylinder, only the fundamental
vibration frequency was obtained approximately [1]. Evaluation of the bucking loading of
beam by using numerical solution of the di!erential equation has been introduced in an
earlier paper [2]. Exact solutions for the longitudinal vibration of non-uniform rods were
obtained in reference [3]. Recently, the target function method for evaluating the buckling
loading and the vibration frequency was suggested [4]. It is found that, the idea of target
function method is a general one, which can also be used in the present analysis.

The idea of target function can be described as follows. In this paper, the vibration
frequencies are equal to the zeros of a target function ¹ (u), where u is the vibration
frequency. Alternatively, the natural vibration frequencies can also be de"ned as the roots of
the following equation:

¹ (u)"0. (1)

In the previous investigation [4], if there are three adhesive masses, one should solve
three particular boundary value problems so as to obtain the target function. Probably, this
is ine$cient in the case of large number of adhesive masses. In this paper, we suggest a new
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approach in which the target function can be obtained from the solution of one boundary
value problem for any number of adhesive masses.

The studied target functions ¹(u) are generally obtained from the results of numerical
solution of relevant ordinary di!erential equation. In fact, it is necessary to compute these
functions for many given values of u, until equation (1) is satis"ed. Therefore, the suggested
method depends on the computer computation intensively. Comparatively speaking, the
numerical solution of the ordinary di!erential equation is easy by using the computer.
Therefore, the target function method is successful in solving the present problem.

2. ANALYSIS

The vibration problem of a torsion cylinder with varying cross-section and adhesive
masses is analyzed below. The governing equation for the twist angle / (x, t) is as follows
(Figure 1):

G
L
Lx AI (x)

L/
LxB"oI(x)

L2/
Lt2

(0)x)¸), (2)

where G is the shear modulus of elasticity, o is the mass density of materials, GI(x) denotes
the torsion rigidity of the cylinder at the position of x, and oI (x) is the rotary inertia per unit
length of cylinder at the position of x. In the case of the tapered con"guration, I (x) has the
expression

I(x)"I
0
g (x) (0)x)¸), (3)

where

I
0
"I (0)"

na4

2
, g(x)"A1#

mx

¸ B
4
, (4)

and m represents the degree of the taper (Figure 1).
It is assumed that there are two masses with the rotary inertia R

A
, R

C
adhered to the ends

of the cylinder, at x"0 and ¸ respectively (Figure 1). In addition, there are many adhesive
masses R

j
( j"1, 2,2, M) placed at the intermediate sections x"b

j
( j"1, 2,2,M). In

this case, the boundary conditions and the conditions at the section x"b
j
( j"1, 2,2,M)

take the form [1]
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j
, t)
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Figure 1. A tapered cylinder with many adhesive masses.
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In the following analysis, the adhesive rotary inertia R
A
, R

C
and R

j
are expressed by

R
A
"r

A
(oI

0
¸), R

C
"r

C
(oI

0
¸), R

j
"r

j
(oI

0
¸) ( j"1, 2,2, M). (8)

Clearly, r
A
, r

C
, r

j
( j"1, 2,2,M) represents the non-dimensional values.

In the natural vibration problem, it is assumed that

/ (x, t)"U(x) sin(ut#a), (9)

where u is the natural vibration frequency.
Substituting equation (9) into equation (2) yields the governing equation for the function

U(x):

d

dx AI (x)
dU

dxB"!

u2o
G

I(x)U(x) (0)x)¸). (10)

In addition, substituting equation (9) into equations (5)}(7) yields the boundary conditions
for the function U(x):

I (0)
dU
dx K

x/0

#

u2R
A

G
U(0)"0, (11)

I(b
j
) A

dU
dx K
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!

dU
dx K
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u2R
j

G
U(b

j
)"0 ( j"1, 2,2,M), (12)

I(¸)
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!

u2R
C

G
U(¸)"0. (13)

Obviously, the natural vibration problem is reduced to "nd a particular frequency u and
relevant function U(x) so as to satisfy equation (10) and conditions (11)}(13).

Below the target function method is introduced to solve the problem numerically. In fact,
for any given u, for equation (10) we can propose a boundary value problem with the
following conditions:

UD
x/0

"1,
dU

dx K
x/0

"!

u2R
A

GI(0)
,

dU

dx K
x/b`j

!

dU
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u2R
j

GI(b
j
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U (b

j
) ( j"1, 2,2,M).

(14a}c)

The relevant solution for the governing equation (10) under conditions (14a}c) is denoted
by

U"p(x, u) (0)x)¸). (15)

Here, the function p(x, u) (0)a)¸) is obtained in the form of a numerical solution, rather
than in the form of an analytical solution. That is to say, from the governing equation (10)
and the initial boundary conditions (14a, b) and condition (14c), we can obtain the values of
functions p(x, u), dp(x, u)/dx at the discrete points x"0, ¸/N, 2¸/N, 3¸/N,2,¸, where
N is the division number used in the integration of ordinary di!erential equation. The above
numerical solution can be easily obtained by using the well-known Runge}Kutta
integration rule [5, p. 290].
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After comparing conditions (14a}c) with equations (11) and (12), we see that conditions
(11) and (12) are satis"ed by the function p (x, u). Substituting function (15) into condition
(13) yields

¹ (u)"0, (16)

where

¹(u)"I (¸)p@(¸, u)!
u2R

C
G

p (¸, u). (17)

The function ¹(u) is called the target function in this paper.
Clearly, the investigated frequencies are equal to the zeros of the target function. The

zeros of the target function ¹ (u) can be easily obtained by using half-division method in
numerical computation.

3. NUMERICAL EXAMPLES

In the computation, the Runge}Kutta method with N divisions along the interval (0, ¸) is
used [5, p. 290]. Also, the well-known half-division technique is used for "nding the zeros of
the target function.

There are two groups of numerical examples. In the "rst group, there are three masses
with the rotary inertia R

A
, R

B
and R

C
are placed at the positions x"0, b and ¸ respectively

(Figure 2). The adhesive rotary inertia R
A
, R

B
and R

C
are expressed by

R
A
"r

A
(oI

0
¸), R

B
"r

B
(oI

0
¸), R

C
"r

C
(oI

0
¸). (18)

In computation, N"96 divisions is used in the numerical integration. Finally, the "rst six
natural vibration frequencies are obtainable, and they are expressed as

u"FArA , r
B
, r

C
, m,

b

¸B S
G

o
n
¸

. (19)

Five examples are presented to verify the e$ciency of the suggested method or to provide
some new results.

Example 3.1. In the ,rst example we assume that, (a) the cylinder has a constant section, i.e.,
m"0 in equation (4) and (b) the intermediate mass vanishes r

B
"0. In this case, the parameter
Figure 2. A tapered cylinder with three adhesive masses.



TABLE 1

¹he ,rst six normalized natural vibration frequency F1(rA
, r

C
) for the cylinder with two adhesive

masses (see Figure 2 and equation (20))

1st 2nd 3rd 4th 5th 6th

r
A
"0 r

C
"0 1)0000 2)0000 3)0000 4)0000 5)0000 6)0001

r
A
"0 r

C
"0s 1)0000 2)0000 3)0000 4)0000 5)0000 6)0000

r
A
"0 r

C
"2 0)5846 1)5329 2)5201 3)5144 4)5112 5)5092

r
A
"0 r

C
"4 0)5461 1)5167 2)5101 3)5072 4)5056 5)5046

r
A
"2 r

C
"2 0)3056 1)0921 2)0493 3)0334 4)0252 5)0202

r
A
"2 r

C
"4 0)2650 1)0706 2)0372 3)0251 4)0189 5)0152

r
A
"4 r

C
"4 0)2205 1)0482 2)0250 3)0168 4)0126 5)0101

sFrom the exact solution.

TABLE 2

¹he fundamental natural vibration frequency F
1
(r
A
, r

C
) for the cylinder with two adhesive

masses (see Figure 2 and equations (20) and (21))

r
A
"r

C
" 5 10 15 20 25 30 35 40

s 0)1980 0)1412 0)1156 0)1002 0)0897 0)0820 0)0759 0)0710
t 0)2013 0)1424 0)1162 0)1007 0)0900 0)0822 0)0761 0)0712

Error % A 1)66 0)83 0)56 0)42 0)33 0)28 0)24 0)21

sThis paper.
tFrom the approximate solution shown by equation (21) [1].
AError of the approximate solution.
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b/¸ is of no use. ¹he calculated results are expressed by

u"F
1
(r
A
, r

C
)S

G

o
n
¸

(r
B
"0, m"0). (20)

The calculated results are listed in Table 1. Timoshenko proposed an approximate
equation as follows [1]:

F
1
(r
A
, r

C
)"

1

nS
r
A
#r

C
r
A
r
C

(for r
A
A1 and r

C
A1). (21)

The equation is only valid in the case r
A
A1 and r

C
A1. For comparison, the calculated

results by the present method and by using equation (21) are listed in Table 2. From
Table 2 we see that, only if r

A
'10 and r

C
'10, the relative error for Timoshenko's

approximation is less than 1%.

Example 3.2. In the second example, we assume that, (a) the cylinder has a tapered
con,guration, i.e., mO0 in equation (4) and (b) the intermediate mass vanishes r

B
"0, and

r
A
"r

C
. In this case, the parameter b/¸ is of no use. ¹he calculated results are expressed by

u"F
2
(r
A
, m)S

G

o
n
¸

(r
B
"0, r

A
"r

C
). (22)



TABLE 3

¹he ,rst six normalized natural vibration frequency F
2
(r
A
, m) for the cylinder with two adhesive

masses (see Figure 2 and equation (22))

m 1st 2nd 3rd 4th 5th 6th

r
A
"r

C
"0

0)01 1)0000 2)0000 3)0000 4)0000 5)0000 6.0001
0)25 1)0150 2)0076 3)0051 4)0038 5)0031 6)0026
0)50 1)0482 2)0250 3)0168 4)0126 5)0101 6)0085
0)75 1)0890 2)0477 3)0322 4)0243 5)0195 6)0163
1)00 1)1318 2)0732 3)0498 4)0376 5)0302 6)0253

r
A
"r

C
"2

0)00 0)3056 1)0921 2)0493 3)0334 4)0252 5)0202
0)25 0)3680 1)1489 2)0847 3)0582 4)0442 5)0356
0)50 0)4146 1)2243 2)1421 3)1013 4)0780 5)0633
0)75 0)4494 1)2996 2)2142 3)1616 4)1281 5)1055
1)00 0)4777 1)3622 2)2874 3)2318 4)1914 5)1616

TABLE 4

¹he ,rst six normalized natural vibration frequency F
3
(r
A
, r

B
) for the cylinder with three

adhesive masses (see Figure 2 and equation (23))

r
B

1st 2nd 3rd 4th 5th 6th

r
A
"r

C
"0

0 1)0000 2)0000 3)0000 4)0000 5)0000 6)0001
2 1)0000 1)1692 3)0000 3)0659 5)0000 5)0402
4 1)0000 1)0921 3)0000 3)0334 5)0000 5)0202

r
A
"r

C
"2

0 0)3056 1)0921 2)0493 3)0334 4)0252 5)0202
2 0)3056 0)5300 2)0493 2)1412 4)0252 4)0745
4 0)3056 0)4410 2)0493 2)0965 4)0252 4)0500

r
A
"r

C
"4

0 0)2205 1)0482 2)0250 3)0168 4)0126 5)0101
2 0)2205 0)4786 2)0250 2)1188 4)0126 4)0623
4 0)2205 0)3820 2)0250 2)0732 4)0126 4)0376
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They are listed in Table 3. From Table 3 we see that, generally, if the taper parameter m is
higher, the relevant natural vibration frequency is elevated.

Example 3.3. In the third example we assume that (a) the cylinder has a constant section, i.e.,
m"0 in equation (4), (b) r

A
"r

C
and (c) the intermediate mass is placed at the position x"b

with b/¸"0)5. ¹he calculated results are expressed by

u"F
3
(r
A
, r

B
)S

G

o
n
¸

(r
A
"r

C
, b/¸"0)5, m"0). (23)

They are listed in Table 4. In all investigated cases we see that, generally the adhesive
mass can lower the relevant vibration frequencies. However, if the immediate mass is placed



TABLE 5

¹he ,rst six normalized natural vibration frequency F
4
(r
A
, b/¸) for the cylinder with three

adhesive masses (see Figure 2 and equation (24))

r
A
"r

B
"r

C
1st 2nd 3rd 4th 5th 6th

b/¸"1
4

2 0)2905 0)6427 1)4308 2)7156 4)0227 4)1090
4 0)2095 0)4640 1)3830 2)6916 4)0114 4)0553
6 0)1722 0)3815 1)3667 2)6834 4)0076 4)0371

b/¸"1
3

2 0)2981 0)5761 1)5950 3)0318 3)1151 4)5335
4 0)2150 0)4154 1)5490 3)0160 3)0587 4)5168
6 0)1768 0)3415 1)5330 3)0107 3)0394 4)5112

b/¸"1
2

2 0)3056 0)5300 2)0493 2)1412 4)0252 4)0745
4 0)2205 0)3820 2)0250 2)0732 4)0126 4)0376
6 0)1813 0)3140 2)0167 2)0494 4)0084 4)0252
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at the node of the vibration de#ection, the natural vibration frequency is not changing. For
example, in r

A
"r

C
"2 case, the third natural vibration frequency is always equal to 2)0493.

Example 3.4. In the fourth example we assume that, (a) the cylinder has a constant section, i.e.,
m"0 in equation (4), (b) r

A
"r

C
"r

B
and (c) the position of the intermediate mass is subjected

to change, from b/¸"1
4
, 1
3

to 1
2
, respectively. ¹he calculated results are expressed by

u"F
4ArA ,

b

¸B S
G

o
n
¸

(r
A
"r

C
"r

B
, m"0). (24)

They are listed in Table 5.

Example 3.5. In the ,fth example we assume that, (a) the cylinder has a tapered con,guration,
i.e., mO0 in equation (4), (b) r

A
"r

C
"r

B
and (c) the intermediate mass is placed at the position

x"b"0)5¸. ¹he calculated results are expressed by

u"F
5
(r
A
, m)S

G

o
n
¸

(r
A
"r

C
"r

B
, b/¸"0)5). (25)

The calculated results are listed in Table 6.
In a particular case, m"0)25, r

A
"r

C
"r

B
"4, and b/¸"0)5, we let

S( f )"S
1
( f )/c, where S

1
( f )"¹(u)"¹A fS

G

o
n
¸B, c"constant. (26)

The S ( f ) variation with respect to the augment f is shown in Figure 3. From Figure 3 the
relevant non-dimensional eigenvalues f"0)2669 and 0)4843 can be found. From the
calculated result we "nd that, if the u values are varying within a wide range, the ¹ (u)
values are also changed in a wide range. In this case, it is suitable to display the ¹(u) values
in the vicinity of a particular eigenvalue.



TABLE 6

¹he ,rst six normalized natural vibration frequency F
5
(r
A
, m) for the cylinder with three

adhesive masses (see Figure 2 and equation (25))

m 1st 2nd 3rd 4th 5th 6th

r
A
"r

C
"r

B
"2

0)00 0)3056 0)5300 2)0493 2)1412 4)0252 4)0745
0)25 0)3661 0)6635 2)0782 2)2289 4)0405 4)1253
0)50 0)4109 0)8068 2)1155 2)3586 4)0615 4)2082
0)75 0)4457 0)9433 2)1599 2)5183 4)0885 4)3253
1)00 0)4750 1)0627 2)2088 2)6873 4)1217 4)4707

r
A
"r

C
"r

B
"4

0)00 0)2205 0)3820 2)0250 2)0732 4)0126 4)0376
0)25 0)2669 0)4843 2)0413 2)1227 4)0210 4)0644
0)50 0)3027 0)6017 2)0647 2)2014 4)0335 4)1095
0)75 0)3313 0)7243 2)0947 2)3081 4)0500 4)1764
1)00 0)3549 0)8438 2)1305 2)4367 4)0709 4)2668

Figure 3. The S ( f ) (or ¹(u)) dependence for a particular adhesive mass case (see equation (26)).
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In the second group, there are two masses with the rotary inertia R
A

and R
C

placed at the
positions x"0 and ¸ respectively (Figure 1). The adhesive rotary inertia R

A
and R

C
are

expressed by

R
A
"r

A
(oI

0
¸), R

C
"r

C
(oI

0
¸). (27)

In addition, there are 99 adhesive masses with rotary inertia R
j

placed at the positions
x"b

j
( j"1, 2,2, 99). As before, the adhesive rotary inertia R

j
are expressed by

R
j
"r

j
(oI

0
¸) ( j"1, 2,2, 99). (28)

In computation, N"400 divisions is used in the numerical integration. Finally, the "rst six
natural vibration frequencies are obtainable, and they are expressed as

u"HS
G

o
n
¸

. (29)



TABLE 7

¹he ,rst six normalized natural vibration frequency H for the cylinder with many adhesive
masses (see Figure 1 and equations (29) and (30))

1st 2nd 3rd 4th 5th 6th

Case (a)
r
A
"0 r

C
"0 0)1600 0)3094 0)4584 0)6072 0)7557 0)9039

r
A
"0 r

C
"2 0)1554 0)3006 0)4454 0)5900 0)7345 0)8789

r
A
"0 r

C
"4 0)1512 0)2927 0)4343 0)5764 0)7189 0)8619

r
A
"2 r

C
"0 0)1501 0)2846 0)4169 0)5515 0)6900 0)8315

r
A
"2 r

C
"2 0)1462 0)2773 0)4063 0)5372 0)6717 0)8092

r
A
"2 r

C
"4 0)1425 0)2707 0)3971 0)5255 0)6577 0)7935

r
A
"4 r

C
"0 0)1407 0)2642 0)3935 0)5313 0)6741 0)8191

r
A
"4 r

C
"2 0)1373 0)2578 0)3834 0)5171 0)6557 0)7966

r
A
"4 r

C
"4 0)1342 0)2521 0)3746 0)5054 0)6415 0)7807

Case (b)
r
A
"0 r

C
"0 0)1585 0)2794 0)4095 0)5392 0)6687 0)7979

r
A
"0 r

C
"2 0)1432 0)2664 0)3871 0)5067 0)6267 0)7480

r
A
"0 r

C
"4 0)1378 0)2536 0)3679 0)4852 0)6065 0)7304

r
A
"2 r

C
"2 0)1383 0)2550 0)3678 0)4789 0)5902 0)7036

r
A
"2 r

C
"4 0)1335 0)2436 0)3507 0)4591 0)5708 0)6860

r
A
"4 r

C
"4 0)1291 0)2335 0)3349 0)4397 0)5509 0)6677
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Example 3.6. In the example, the r
A

and r
C

values are varying from 0, 2 to 4, and two cases are
assigned for b

j
, r

j
( j"1, 2,2, 99) values

r
j
"j/100 (at the position x"b

j
"j (¸/100) j"1, 2,2, 99 (case (a)), (30a)

r
j
"sin( jn/100) (at the position x"b

j
"j (¸/100) j"1, 2,2, 99 (case (b)).

(30b)

The calculated rsults for H values are listed in Table 7.
The validity of the calculated results can be veri"ed by the following ways. We make two

cases of computation, for example, under the conditions
(a) r

A
"2, r

j
"0)01, 0)02,2, 0)99 (at the position x"b

j
"j (¸/100)), r

C
"4.

(b) r
A
"4, r

j
"0)99, 0)98,2, 0)01 (at the position x"b

j
"j (¸/100)), r

C
"2.

It is easy to see the "nal results for the eigenvalue should be the same for two cases. In
fact, we have found the same result for the two cases.

4. REMARKS

Previously, when the computer were not available as nowadays, investigators paid
attention to the solution which can be performed by hand or very elementary computation.
On the contrary, the present study mainly depends on the successful numerical solutions
and computer computation. This can be seen from the following facts. It has been shown
that, the numerical solution of ordinary di!erential equation and searching zero of a given
function are two key points in the present study. It is well known that the numerical
solution of ordinary di!erential equation by using computer is rather easy, and successful
accuracy can be achieved by using Runge}Kutta method. Secondly, it is also easy to "nd
the zeros of the target function, for example, if the half-division technique is used.
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It is proved that the target function method is a general one in the "eld of evaluating the
natural vibration frequency in one-dimensional case. Meantime, all the problems for "nding
the natural vibration frequency of bars in longitudinal vibration, in bending vibration and
in torsion vibration, can be easily solved by the target function method.
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