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1. INTRODUCTION

Phase-locked loops (PLLs) are used in a large number of electronic devices, for instance,
television sets, cellular telephones, synthesizers, oscillators, radar systems, to name a few.
There is a good number of references devoted to the subject of PLLs (see, e.g., references
[1}12] and the references therein).

A PLL is essentially a non-linear oscillator that locks its frequency and phase to those of
the input applied to it. A standard PLL is shown in Figure 1. The components of the PLL
are the phase detector (PD), loop "lter (LF), and voltage controlled oscillator (VCO). The
scalar-valued input to the PLL is
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for all t*0. The scalar-valued output of the PLL is
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for all t after a "nite time t*'0, where in this case the output frequency and phase are
locked to those of the input; and (2) achieve locking fast (small t*). It can happen that a PLL
does not achieve locking (stability problem) or achieves it after a long time. These are
certainly undesirable behaviors of PLLs which should be eliminated by careful design.

In this note, a novel PLL is proposed that outperforms the standard PLL in two respects:
it has a very large acquisition range and achieves locking very fast. The reason for the
superior performance of the proposed PLL is a non-linear "lter added to the loop.
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Figure 1. A standard PLL the components of which are: phase detector (PD), loop "lter (LF), and voltage
controlled oscillator (VCO). The input to the PLL is t>r(t) and its output is t> v(t).

514 LETTERS TO THE EDITOR
2. A MATHEMATICAL MODEL OF PHASE-LOCKED LOOPS

A "rst step to the study of a PLL is to obtain a mathematical model that describes its
dynamics. In particular, it is desirable to obtain a model for the evolution of a quantity of
interest called the frequency-phase error. This quantity is de"ned as
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for all t*0. Locking is achieved when /
e
(t)+0 for all t after a "nite time t*'0.

A mathematical model of a PLL can be obtained when the dynamics of its components
are known. In this section, the components of a standard PLL are described "rst. Then,
a useful mathematical model of the PLL is derived by which the evolution of the
frequency-phase error can be determined conveniently.

The components of the PLL in Figure 1 described in the following.

2.1. PHASE DETECTOR

A widely used phase detector (PD) is a multiplier. Having r ( ) ) and v( )) in equations (2) and
(3), respectively, the scalar-valued output of the phase detector is
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for all t*0, where K
d
'0 is the phase detector gain which depends on the input and output

amplitudes (see, e.g., references [1, 12]). The output u ( ) ) can be written as
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for all t*0. The "rst term in equation (7) is the low-frequency component of the phase
detector output and the last two terms are the high-frequency components of the output.

2.2. LOOP FILTER

The loop "lter (LF) is a single-input}single-output linear system that follows the phase
detector. This system should be a low-pass "lter in order to suppress the high-frequency
components of u( ))* the last two terms in equation (7). This is an important role of the LF:
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the more the high-frequency components of u( ) ) are suppressed, the better the PLL
performs. The output of the LF can be written as
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for all t*0, where h ( ) ) denotes the impulse response of the LF, * denotes the convolution
operator, and g( ) ) is the high-frequency component of the "lter output given by
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When the LF is an e!ective low-pass "lter, g( ) ) is negligible.
Commonly used LFs have the transfer functions (see, e.g., references [1, 12])
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for all s3C, where q
1
'0, q

2
'0, and K

f
'0 are parameters to be determined to make the

LF a low-pass "lter and achieve certain design objectives.
The state-space representation of the LF is
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for all t*0. In equations (11), for all t3R, the state vector of the "lter x(t)3Rn and the
input u(t) and the output y(t) are those in equation (6) and (8), respectively; the coe$cient
matrices of the "lter are A3Rn]n, b3Rn, c3R1]n, and d3R. As an example of the
state-space representation, consider that of H

3
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for all t*0.

2.3. VOLTAGE CONTROLLED OSCILLATOR

The voltage controlled oscillator (VCO) is a special component of PLLs. The input to the
VCO is y ( )) in equation (11b). Let
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for all t*0. With this de"nition, the output phase is

/
o
(t)"K

o
z(t), (14)

for all t*0, where K
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'0 is the VCO gain. The reason for equations (13) and (14) is that

there is an integrator in the VCO which generates the output phase. The output of the VCO
is v( ) ) in equation (3).
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Thus far the dynamics of the components of PLLs are described. Using equations (11), (6),
(13), and (14), a non-linear mathematical model of PLLs can be written as
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for all t*0. The mathematical model in equations (15) provides a useful and convenient
tool for simulating the dynamics of PLLs. By solving the system (15) (numerically), the
evolution of the frequency-phase error can be determined via
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for all t*0. As stated earlier, a PLL achieves locking when /
e
(t)+0 for all t after a "nite

time t*'0.

3. NOVEL PHASE-LOCKED LOOPS WITH NON-LINEAR FILTERS

The contribution of this note, which is the design of a novel PLL with enhanced locking
capabilities, is unveiled in this section. The proposed PLL is shown in Figure 2. This PLL is
essentially the same as that in Figure 1, except that the LF is followed by a non-linearity N.
The non-linearity N or the series connection of the LF with N is called the non-linear ,lter.
The PLL in Figure 2 is denoted by NPLL.

The non-linearity N is chosen as one of the following functions
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'0 and 0(e(1. The graphs of N in equations (17) are depicted in

Figure 3. It is straightforward to show that by decreasing e the slope of N at the origin
increases.
Figure 2. The NPLL in which the LP is followed by the non-linearity N.



Figure 3. The graphs of the non-linearity N in equations (17). By decreasing e the slope of N at the origin
increases.
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The behavior of the NPLL can be determined quantitatively by simulating its
mathematical model. This model, which is obtained from equations (15), is

xR (t)"Ax(t)#bK
d
[sin (u

i
t#/

i
(t))#n

i
(t)] cos (u

o
t#K

o
z(t)#/

n
(t)), x(0)":x

o
, (18a)

y (t)"cx(t)#dK
d
[sin (u

i
t#/

i
(t))#n

i
(t)] cos (u

o
t#K

o
z (t)#/

n
(t)), (18b)

zR (t)"N (y(t)), z(0)":z
0
"/

o
(0)/K

o
, (18c)

for all t*0. Simulation of the system (18) provides evidence that, due to the non-linearity
N, the NPLL outperforms the standard PLL: (1) the NPLL has a large acquisition range,
i.e., it can achieve locking in situations where the standard PLL cannot; and (2) The NPLL
achieves locking much faster than the PLL.

It should be pointed out that non-linearities somewhat similar to those in equations (17)
were introduced in control laws that achieve robust and simultaneous tracking (locking) for
a group of systems in "nite time (see reference [13]). Such non-linear control laws were
successfully used to control biaxial (also known as XY) positioning tables (see reference
[14]).

4. PERFORMANCE OF NPLLS

In this section, the performance of the NPLL is examined carefully for di!erent
conditions and is compared to that of the standard PLL.

An example of the standard PLL is chosen from reference [1], where the LF is H
3
(s) in

equation (10). To this PLL the non-linearity in equation (17a) is added in order to make the
NPLL. Using the state-space representation of H

3
(s) in equations (12), the mathematical
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models of the PLL and NPLL are obtained as

xR (t)"K
d
[sin (u

i
t#/

i
(t))#n

i
(t)] cos (u

o
t#K

o
z(t)#/

n
(t)), x(0)": x

0
, (19a)

y (t)"A
1

q
1
Bx(t)#A

q
2

q
1
B K

d
[sin (u

i
t#/

i
(t))#n

i
(t)] cos (u

o
t#K

o
z(t)#/

n
(t)), (19b)

for PLL: zR (t)"y (t), z(0)":z
0
"/

o
(0)/K

o
, (19c)
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for all t*0, where equations (19a) and (19b) are standard by both the standard PLL and
NPLL.

The parameters of the PLL, which are chosen from reference [1], are
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The parameters of the non-linearity N are chosen as
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Having the system (19)} (21) set-up, several (numerical) tests are carried out.
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depicted in Figure 4. It is evident that the frequency-phase error of the NPLL locks to zero
much faster than that of the PLL.
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e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 5. It is evident that the frequency-phase error of the NPLL locks to zero
where as that of the PLL cannot do so.



Figure 4. The time histories of the frequency-phase error t>/
e
(t) in Test 1. The NPLL achieves locking much

faster than the standard PLL.

Figure 5. The time histories of the frequency-phase error t>/
e
(t) in Test 2. The NPLL can achieve locking

where as the standard PLL cannot do so.
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¹est 3: Let
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for all t*0. With this set-up and the initial conditions x
0
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(19)}(21) are solved numerically to obtain the time histories of the frequency-phase error
t>/

e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 6. It is evident that the frequency-phase error of the NPLL locks to zero
much faster than that of the PLL.
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0
"0 and z

0
"0)01 s V, equations

(19)}(21) are solved numerically to obtain the time histories of the frequency-phase error
t>/

e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 7. It is evident that the frequency-phase error of the NPLL locks to zero
where as that of the PLL cannot do so.

¹est 5: Let
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for all t*0. With this set-up and the initial conditions x
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(19)}(21) are solved numerically to obtain the time histories of the frequency-phase error
Figure 6. The time histories of the frequency-phase error t>/
e
(t) in Test 3. The NPLL achieves locking much

faster than the standard PLL.



Figure 7. The time histories of the frequency-phase error t>/
e
(t) in Test 4. The NPLL can achieve locking

where as the standard PLL cannot do so.

Figure 8. The time histories of the frequency-phase error t>/
e
(t) in Test 5. The NPLL achieves locking much

faster than the standard PLL.
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t>/
e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 8. It is evident that the frequency-phase error of the NPLL locks to zero
much faster than that of the PLL. It should be added that for the output frequency
u

o
"6291 rad/s, the frequency-phase error of the NPLL locks to zero where as that of the

PLL cannot do so.
¹est 6: Let

frequencies: u
i
"6280 rad/s, u

o
"6200 rad/s, (27a)

input phase: /
i
(t)"0)1 sin 10t, (27b)



Figure 9. The time histories of the frequency-phase error t>/
e
(t) in Test 6. The NPLL can achieve locking

where as the standard PLL cannot do so.
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input noise: n
i
(t)"0)01 sin 100t, (27c)

phase noise: /
n
(t)"0)001 sin 1000t, (27d)

for all t*0. With this set-up and the initial conditions x
0
"0 and z

0
"0)01 s V, equations

(19)}(21) are solved numerically to obtain the time histories of the frequency-phase error
t>/

e
(t) for the standard PLL and NPLL via equation (16). These time histories are

depicted in Figure 9. It is evident that the frequency-phase error of the NPLL locks to zero
where as that of the PLL cannot do so.

5. CONCLUSIONS

In his note, a novel PLL is introduced. The proposed PLL, denoted by NPLL,
incorporates a nonlinear "lter in its loop. The NPLL outperforms the standard PLL: (1) it
has a large acquisition range, i.e., it can achieve locking in situations where the standard
PLL cannot; for instance, when the input and output frequencies are very di!erent from
each other; and (2) it achieves locking much faster than the PLL. The superior performance
of the NPLL is due to the non-linear "lter in its loop. Results of many tests, only six of
which are reported in this note, show the superior performance of the NPLL.
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