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A simple piston-constriction-pipe system is analyzed as a "rst step in the modelling of
a &&one cylinder cold engine''. For the pipe part it is assumed that linear acoustic theory
holds, while the source is modelled as non-linear. The interaction between the non-linear
source part in the time domain and the linear system part in the frequency domain is
examined. To this end, the forced oscillations of the model are calculated by using the
harmonic balance method. The assumptions used in the basic model are discussed and an
extended model is presented together with simulations showing the practical di!erence
between the two models.

( 2001 Academic Press
1. INTRODUCTION

In modern society a large number of machines contribute to the total noise pollution.
Among them, internal combustion engines are major noise sources due to the increasing
density of vehicles on the road. To improve the noise environment, a considerable amount
of research is put into areas such as silencers and mu%ers for cars, trucks, motorcycles, etc.

For many years the automotive industry has used linear frequency domain method to
predict the tailpipe noise. This approach does in some cases give satisfying results, but in
general, there are signi"cant discrepancies between the measured "nal results and the
predicted results. In reference [1] Desmons and Kergomard analyzed a simple engine
model based on three main assumptions. The source description is linear and
time-invariant, the volume velocity is of square signal type and an in"nite source impedance
is assumed for each cylinder. In the conclusions it is mentioned that the major origin of the
discrepancies between theory and experiment lies in these basic assumptions. It does,
however, not necessarily has to be the assumption of a linear time-invariant source
description alone that is violated.

But the linear frequency domain methods include a lot of knowledge since they have been
used for many years. It is therefore interesting to develop methods that take into account
the non-linear behaviour of the source but keep the linear description of the rest of the
0022-460X/01/140541#25 $35.00/0 ( 2001 Academic Press
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system. In this paper, a simple one-cylinder cold engine model is considered. This model is
chosen because it shows clear non-linear e!ects in spite of its simplicity. The aim is to
examine if the harmonic balance method, a particular case of Galerkin methods, is an
appropriate method for the coupling between a non-linear source description and a linear
pipe/mu%er system description, to extract solutions for di!erent unknowns and to do
parametric studies. Even if this application is a simple cold engine model, the methodology
presented is general and can be applied to any acoustic system.

In acoustic applications for engine intake and exhaust systems, three main approaches
exist: the linear frequency domain approach, time-variant or time-invariant, the non-linear
time-domain approach and the hybrid method approach (see, for example, reference [2] for
a review of methods). For very complex systems, it is di$cult to "nd a valid theoretical
model. In these cases, two possibilities exist, the use of complex computational programs or
measurements of source data. For the computational codes a coupling method has to be
applied to perform the interaction between the source and the rest of the system. In
measurement cases a source model that allows interaction has to be applied.

The non-linear time-domain methods are in general founded on various numerical
simulations of the unsteady #ow. The results agree fairly well with experimental results
but the methods are very time consuming. These methods also require a good knowledge
of engine modelling, such as the combustion process, mechanics of the valve openings,
exact knowledge of the complicated geometry, temperature gradients in the system and
so on.

In the literature, many di!erent methods have been proposed. Since there is no known
analytic solution of the full Navier}Stokes equations, all methods rely on di!erent
numerical techniques. For example the non-mesh method (method of characteristics) of
Jones and Brown [3], the mesh method proposed by Ferrari and Castelli [4],
a "nite-volume method from Sapsford et al. [5] and a MacCormack scheme method
derived by Payri et al. [6, 7]. Note that all methods mentioned above are one-dimensional.

On the other hand, the frequency domain, where harmonic solutions to linear systems in
the permanent regime are studied, features simple models with short calculation times. The
linear frequency domain model is thus interesting and widely used in the development
processes of for example exhaust and intake mu%ers [8, 9]. However, these methods are
based on pure acoustic theory: that is, the source is described as linear and time invariant.
The interaction between the engine manifold, the acoustic source, and the exhaust or intake
system is therefore poor. In the conclusions of Munjal [8] it is stated that one of the areas
where considerable research input is needed is the frequency domain characterization of the
engine exhaust source. Davies et al. [10] state that the frequency domain approach is a
good tool in the development and design processes, as long as a source/pipe-mu%er
interaction is appropriately included.

Many processes in the engine manifold are clearly non-linear, for example, combustion,
supersonic #ow in valve openings and large temperature gradients. Since the non-linearities
produce di!erent wave shapes for di!erent loads, di!erent exhaust and intake systems will
experience di!erent acoustic sources. In order to have a good accuracy in the linear
approximation, one therefore needs to determine the source data for each operation point of
the engine and for each exhaust and intake system used. Historically, this is done
experimentally [11] and it is of course time consuming. One of the advantages with the
linear approximation thus disappears. It is, though, very important to mention that even for
a simple approximation like this, one "nds interesting results [1]. Cases where the
prediction of sound in exhaust pipes is good [12}14] are also found.

Suppose that a measurement section is placed su$ciently away from the outlet of the
turbo. Then recent studies on the wave propagation in exhaust systems of turbo-charged
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diesel engines show that linear wave propagation is a good approximation, see for example
references [12}14]. For a cross-section closer to the turbo outlet linear propagation does
not hold. This does in general not imply and di$culties in truck applications since the
mu%ers in the exhaust systems are in general su$ciently away from the turbo outlet. To get
a complete description of the system one of course has to include non-linear propagation as
well. This has been done in references [10, 16, 17].

A hybrid method, taking the non-linearities of the source into account but keeping the
linear description of the exhaust and intake system, is therefore very attractive. This
approach increases the accuracy compared to that of the linear model by permitting
the source to react di!erently to di!erent exhaust and intake systems. Such hybrid models
have most of the advantages of the linear frequency domain models. The authors think that
the results are in general not as accurate as the results from non-linear computational #uid
dynamics methods, but substantially shorter calculation times are possible. Several di!erent
hybrid methods for predicting the exhaust and intake noise from internal combustion
engines have been proposed. Gupta et al. [15] have proposed a method for performing
the time}frequency domain coupling. Desantes et al. [16] as well as Davies et al. [10, 17]
have proposed hybrid methods for the wave propagation in the exhaust/intake pipes. Here,
we focus our attention on the source, i.e., the time}frequency coupling. The main reason for
this is that it is possible to use all research experience of linear systems if the pipe/silencer
system is considered linear.

Furthermore, recently developed linearity tests can be applied to the experimental source
data with only an output signal to determine the degree of non-linearity [18, 19]. These tests
can be used to check if a hybrid, or in worst cases, a non-linear method has to be used. In
some applications, it is surely found that a linear approximation is su$cient. In reference
[19] the proposed linearity tests are applied to loudspeakers, axial #ow fans, internal
combustion engines both for cars and trucks as well as intake and exhaust systems, and
compressors. The results show that the standard loudspeaker and the axial #ow fan behave
linearly, i.e., a linear source model gives good prediction in a large frequency range. In the
case of internal combustion engines, the results show a clear non-linearity in all types of
systems. But the prediction of sound is good for the dominating harmonics. According to
these results, a hybrid method would probably increase the accuracy. The compressor is
according to the linearity tests a non-linear source as well. A hybrid or fully non-linear
method should be applied.

One method that is particularly well suited for the time}frequency domain coupling is the
harmonic balance technique, a particular case of the Galerkin method. It has been
developed to determine the periodic response of non-linear systems in microwave circuits in
forced oscillations; see for example references [20, 21]. The method features a short
calculation time and it is easy to perform parametric studies.

More recently, the method has been successfully used on self-sustained oscillations in
single-reed woodwind instruments [22]. In reference [23] the method has been analyzed to
include the stability analysis of the periodic regimes obtained for free and forced oscillations
in microwave circuits. Here, the method is herein adopted to forced oscillations in
engine-like applications.

In this paper, a simple piston-restriction system, that is a "rst model of a simple cold
engine model, is analyzed with forced oscillations. The system is divided into two parts. One
part, regarded as the source part, consists of the piston and the constriction. For this part a
non-linear time-domain description is used. The rest of the system is considered as linear
acoustics in the frequency domain. The two domains are coupled by the harmonic balance
method, which is a specialized method to study time}frequency couplings of periodic
systems.
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The basic idea of the harmonic balance method is to select an appropriate unknown for
a convergence test. The next step is to rearrange the equations, linear or non-linear in the
time domain as well as in the frequency domain, in a so-called convergence loop. A new
value of the chosen convergence unknown is now calculated and compared to the original
value. If the convergence condition is satis"ed, one says that a solution has been found.
Otherwise, an increment of the convergence unknown is calculated and a new result is
calculated by using the de"ned convergence loop.

The harmonic balance method is found to be a very useful tool for time}frequency
domain couplings. It is easy to extend the equations to examine the e!ects of the
assumptions. Furthermore, a parametric study is easily performed and in this paper a lot of
results are presented, such as internal pressures, volume #ows, densities and so on. As
expected, the results show clear non-linear e!ects. Finally, the result from the simulations
are in some sense qualitatively compared to some other published results.

The assumptions used in the model are discussed and an extended model is presen-
ted. Furthermore, the parametric study of the basic model indicates more possible
extensions.

The outline of this paper is as follows. After a general introduction, the piston}
compressor model is described together with other existing models of cold and hot engines
given in the literature. Some possible extensions of the model are also given. The next
section is devoted to the harmonic balance method applied to the piston-constriction model
and the results from numerical simulations. Finally, a discussion and conclusions are given
in the last section. In the appendices, the time-domain solution method used to check the
results from the harmonic balance method, the di!erent convergence loops used in the
harmonic balance and a list of symbols are presented.

2. THE PISTON-CONSTRICTION AND COLD ENGINE MODEL

2.1. MODELS IN THE LITERATURE

A comprehensive review has been given in reference [2]. Non-linear engine models
have been used by Payri et al. [7] together with non-linear wave propagation in exhaust
pipes [6, 24]. In reference [7] a fundamental non-linear model has been used with a
thermodynamical description including mass exchanges and heat losses for each cylinder
[25]. Combustion has been simulated by use of a simple Watson law [26] which has
been "tted to experimental data. The calculation of #ow in ducts has been performed
fully non-linearly by a MacCormack "nite-di!erence scheme [6]; note though that only
the pulsating #ows was calculated, i.e., no mean #ow was considered. But for all so-called
singularities, viz., duct junctions, area changes, mu%ers and so on, a quasi-steady model
was used. The quasi-steady approach was also used for heat transmission
and friction losses in the pipes. In reference [7] a quasi-steady turbine model was also
included.

A similar approach has been used by Davies et al. [10, 17], where the engine is modelled
in the time domain with thermodynamics and non-linear gas dynamics. For the
intake/exhaust systems, quasi-linear acoustics was used. In reference [17] it was stated that
the analysis of the thermodynamic and non-linear gas components is best performed in the
time domain, with appropriate boundary conditions from the passive systems.

In most applications to silencer systems, however, a linear description of the source has
been used [1, 8, 11}15]. In all these papers, the standard Thevenin or Norton circuits were
used. As an extension to the linear time-invariant source model a shape, somewhat close to a
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square for the volume velocity of the di!erent cylinder signals, was used in reference [1].
The noise was analyzed as a "rst order expansion of the deviation of the signal from
a square signal, the time overlap ratio of the cylinder signals and the length ratios of the
manifold pipe system.

In recent publications by Boonen et al. [27, 28] an extended linear source model is used
for a four-cylinder cold engine. They combined the linear source elements with four
switch-resistor combinations. This allows the source to be time-variant since the same type
of control sequence as the actual valves manages the switches.

The piston-restriction model is based on papers about piston compressors [29}32].
These papers include modelling of the valves as well, but here a simpler model is to be
studied.

2.2. THE BASIC MODEL

In this paper, a basic model of a piston-restriction system is used. The system is
considered as one-dimensional. It was developed by BodeH n [33, 34] to investigate
measurement techniques of time-variant sources. Approximately, similar models have been
developed in references [35, 36]. In both theses [35, 36], a model of a simple hot engine has
been presented. The basic equations used in these models are conservation of mass,
conservation of momentum and conservation of energy. Since a cold engine model is to be
studied here, the model is based on conservation of mass, conservation of momentum and
continuity in volume #ow. The actual system, used in the experiments [33], is depicted in
Figure 1. This is a piston compressor, where the valve has been removed.

As the valve of the compressor is removed, the piston generates a pulsating #ow through
the constriction. Note that there is no mean #ow, so the sign of the #ow alternates. This,
however, does not imply that the HBM cannot be used in situations with mean #ow. But
here, only the system without mean #ow is considered. The pipe is considered as linear, i.e.,
it can be described by an impedance or admittance in the frequency domain. The equations
of the rest of the system are written in the time domain and are not linearized. A principal
Figure 1. The compressor used in the model. A one-dimensional approximation is used. The source volume is
labelled volume 1, the constriction, volume 2 and the pipe, volume 3.



Figure 2. A principal sketch of the system given in Figure 1. The physical unknowns are written below each
corresponding section. Regions 1 and 2 are considered as compact, but region 3 can be long. The variables P
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are thus input variables of the &&pipe'' (region 3).
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sketch of the system is shown in Figure 2 together with the unknowns in each part. We
divide the system as shown in Figure 2 into three parts. In each part, the unknowns and
constants are indexed with the corresponding number.

The objectives are to calculate the pressure P
3
and volume #ow Q

3
at the entrance of pipe 3,

where the pipe, which can be a very complicated one, is described by an admittance>
3
in the

frequency domain. To this end, it is assumed that the constriction behaves like a sti! mass
plug, that is the density o

2
is constant (time independent), while the volume #ow Q

2
(t) is only

time varying. For the junctions, mass conservation and volume #ow are supposed to be
continuous. The densities o

1
(t) and o

3
(t) are assumed to be equal, uniform and have their

mean density equal to o
1
"o

3
"o

2
"1)23 kg/m3. The conditions are supposed to be

adiabatic, the #ow is assumed to form a jet at the out#ow and "nally the velocities are
assumed to be constant in propagation planes over the duct cross-section. The problem is
treated as one-dimensional.

In the rest of the paper, the time dependence is consistently omitted, but the frequency
dependence is explicitly included, i.e., P

3
(t)"P

3
but P

3
(u)"P

3
(u). (A list of symbols is

given in Appendix C.) Now, let <
1

be the volume of volume 1 in Figure 2, and B
1

the
boundary of <

1
. Note that the size of the volume changes in time according to the piston

movement. In each time step one thus integrates over di!erent volumes. Then conservation
of mass gives

d

dt P o
1
d<

1
"!Po

1
u
1
) ndB

1
, (1)

at every instant. Here n is the outward normal, u
1

is the velocity and o
1

the density. As
uniform density is assumed in volume 1 the integral on the left-hand side becomes
: o

1
d<

1
"m

1
. The only out#ow is o

2
Q

2
and equation (1) becomes

dm
1
/dt"!o

2
Q

2
. (2)

One-dimensional unknowns imply that the equation of conservation of momentum is

o Du
x
/Dt"!LP/Lx.

Here u
x
is the velocity is the x direction and P is the total pressure. The derivative D/Dt is

called the material derivative, which is the rate of change &&following the #uid''. Integration
between planes 1 and 21 de"ned in Figure 3 leads to

o
1P

Du
x

Dt
dx"!P

LP

Lx
dx. (3)

In evaluating these integrals it is assumed that u
x
"u

21
(t)h(x), which is a common

assumption for deriving acoustic end corrections. Note that the function h (x) is without



Figure 3. De"nition of calculation planes used in the derivation. Note that planes 1 and 21 are as close as
possible. The same holds for planes 22 and 3.
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dimension. Since one-dimensional unknowns are assumed, u
21

denotes the mean value of
the velocity in propagation plane 21, orthogonal to the x-axis. After integration, the
equation becomes

o
2

du
21

dt
d
1
#

o
1
2

(u2
21
!u2

1
)"P

1
!P

21
, (4)

where d
1

is the acoustic end correction with a typical value of 0)82d
2

for ba%ed pipes. The
velocities u

1
and u

21
are the mean #uid velocities at planes 1 and 21 and P

1
and P

21
are the

corresponding pressures. The densities o
1

and o
3

are de"ned in Figure 2.
Since the #ow alternates, the problem is divided into two subproblems. Upon assuming

that the #uid in the constriction is incompressible and equivalent to that caused by a piston,
(see Figure 4) the sound transmission through the constriction for u

21
'0 is given by

P
21
!P

22
"

d

dt
(o

2
l
2
u
2
)"o

2
l
2

du
2

dt
, (5)

where the calculation planes are given in Figure 3. The length l
2

is the length of the
constriction; see Figure 2. The #ow is assumed to separate from the wall at the end of the
constriction forming a free jet. Then the very unstable free jet tends to break down into
vortex rings that are dissipated in the &&turbulent mixing zone''. After this zone, even if the
section area is much greater than the area of the constriction, no recovery of the pressure is
assumed to occur. Continuity in pressure thus gives P

22
"P

3
. The volume #ow Q

2
is

assumed to have only time dependence and consequently u
21
"u

22
"u

2
. This gives,

together with equation (5),

P
1
!P

3
"

o
1
2

(u2
2
!u2

1
)#o

2
(l
2
#d

1
)
du

2
dt

. (6)

For the case of u
2
(0 a similar procedure yields

P
1
!P

3
"!

o
3
2

(u2
2
!u2

3
)#o

2
(l
2
#d

3
)
du

2
dt

, (7)

where subscript 3 denotes quantities in volume 3.
To relate the density o

1
and the pressure P

1
a polytropic process is used, i.e.,

P
1
"P

0
(o

1
/o

0
)n. (8)

The constant n"1)4 is the polytropic index.



Figure 4. Detailed picture of the piston movement.
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Finally, acoustic equations are assumed to hold in the input of pipe 3. It is then
convenient to describe them by an impedance/admittance relation in the frequency domain.
This means of course that very complicated &&pipes'' such as complete exhaust systems can
easily be applied. Here,

Q
3
(u)">

3
(u)P

3
(u) (9)

Continuity in volume #ow in the junctions, equations (2, 6}9), gives the basic model used
in this paper. In summary, the equations giving the basic model of the piston-restriction
system are

P
1
!P

3
"G

o
2
2

Q2
3 A

1

S2
2

!

1

S2
1
B#

LQ
3

Lt

o
2

S
2

(d
1
#l

2
), Q

3
'0

!

o
2
2

Q2
3A

1

S2
2

!

1

S2
3
B#

LQ
3

Lt

o
2

S
2

(d
3
#l

2
), Q

3
(0

(10)

d

dt
(<

1
o
1
)"!o

3
Q

3
, P

1
"P

0
(o

1
/o

0
)n, (11, 12)

Q
3
(u)">

3
(u)P

3
(u). (13)

The oscillating volume <
1
(t) provides the driving force and is closely linked to the

movement of the piston. From the speci"cation of the piston movement the oscillating
volume is found to be

<
1
"S

1
¸
v
#S

1
¸
A1A1#cos (ut)#

¸
A2

¸
A1
C1!S1!A

¸
A1

¸
A2
B
2
sin2 (ut)DB , (14)
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where ¸
A1

and ¸
A2

are the lengths of the axis speci"ed in Figure 2, u is the angular
frequency, S

1
is the area of the pipe in volume 1 and ¸

v
is the minimum length from the

piston to the constriction; see Figure 2.
Several assumptions are made to simplify the calculations. Those assumptions are needed

to decrease the calculation time in the time-domain simulations and were used by BodeH n
[33, 34] to derive time-variant impedances. But when using the harmonic balance
technique, it is easy to incorporate more complicated models. Therefore an e!ort is made
here to replace the most questionable assumptions.

For example, the assumptions of continuous volume #ow and continuous mass #ow from
one side to the other side of volume 2 are redundant. In the assumptions it is stated that the
density in the constriction o

2
is constant while the densities o

1
in volume 1 and o

3
in volume

3 have time dependence. Then the assumption of continuity in volume #ow implies that
there is no time di!erence between the pressures P

1
and P

3
. But the sti! mass plug in the

constriction implies a time di!erence, and the assumptions are found to be contradictory.
An oscillating volume #ow of course implies that there is zero #ow at some speci"c times.

In such cases and for very low #ow velocity, no jet is formed at the outlet [37]. In the case
with jet formation, the diameter of the constriction will be a time dependent vena contracta [38].

Following the discussion above, it is desirable to extend the model to include more subtle
e!ects.

2.3. THE EXTENDED MODEL

Here the condition of continuous volume #ow in junctions is replaced. To this end,
equation (11) is rewritten as three separate equations,

d

dt
(<

1
(t)o

1
(t))"!o

2
Q

2
(t), (15)

o
1
(t)Q

1
(t)"o

2
Q

2
(t), o

2
Q

2
(t)"o

3
(t)Q

3
(t). (16, 17)

Note that the time dependence explicitly has been written to separate the constant density
o
2
form the time-varying quantities. The density o

3
(t) and the pressure P

3
(t) are furthermore

supposed to have an adiabatic #ow dynamical relationship, that is,

P
3
"P

0
(o

3
/o

0
)n. (18)

By combining these equations with conservation of momentum one obtains the extended
model:

P
1
!P

3
"G

o
1
2 C

o2
3
Q2

3
o2
2
S2
2

!

o2
3
Q2

3
o2
1
S2
1
D#

d
1
#l

2
S
2

d

dt
(o

3
Q

3
), Q

3
'0

!

o
3
2 C

o2
3
Q2

3
o2
2
S2
2

!

Q2
3

S2
3
D#

d
3
#l

2
S
2

d

dt
(o

3
Q

3
), Q

3
(0

(19)

d

dt
(<

1
o
1
)"!o

3
Q

3
, Q

3
(u)">

3
(u)P

3
(u), (20, 21)

P
1
"P

0
(o

1
/o

0
)n, (22)

P
3
"P

0
(o

3
/o

0
)n, (23)
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where the time dependence once again has been omitted. Equations (19}23), now de"ne the
extended model.

3. THE SOLUTIONS OBTAINED WITH THE HARMONIC BALANCE

3.1. THE HARMONIC BALANCE METHOD (HBM)

3.1.1. ¹he method and some applications

The HBM is a technique used on systems including both linear and non-linear parts. The
fundamental idea of HBM is to decompose the system in two separate subsystems, a linear
part and a non-linear part. The linear part is treated in the frequency domain and the
non-linear part in the time domain. The interface between the subsystems consists of the
Fourier transform pair. Harmonic balance is said to be reached when a chosen number of
harmonics N satisfy some prede"ned convergence criteria. First, an appropriate unknown is
chosen to use in the convergence check, which is performed in the frequency domain. Then
the equations are rewritten in a suitable form for a convergence loop; see for example Figure 5.
One starts with an initial value of the chosen unknown, applies the di!erent linear and
non-linear equations, and "nally reaches a new value of the chosen unknown. If the
di!erence between the initial value and the "nal value of the "rst N harmonics satisfy the
prede"ned convergence criteria, harmonic balance is reached. Otherwise, an increment of
the initial value is calculated by using a generalized Euler method, namely the
Newton}Raphson method.

It should be mentioned that HBM is similar to other proposed coupling techniques, but
one advantage of HBM is the calculation of the increment of the initial value. The method
proposed by Gupta and Munjal [15] also includes an iterative process with a convergence
condition. The main di!erence between their method and the HBM is how the chosen
convergence unknown is treated. In HBM one calculates an increment which depends on
the di!erence of the value at the beginning of the convergence loop and the "nal value after
the loop. This implies a faster and more robust convergence. In the method of Gupta and
Munjal, the "nal value is entered as a new initial value, which easily leads to slower
convergence or divergence.

The method has been adopted successfully earlier for self-sustained oscillations of musical
wind instruments [22]. The method was found to be very convenient for showing the
modi"cations of the playing frequency and the spectrum when a physical parameter was
changed or a new term was introduced in the equations.

In the applications of Nakhla et al. [20] the HBM is used as a practical and e!ective
method to analyze the steady state regimes based on the use of voltage and current probes
of non-linear microwave circuits. The stability of the periodic solutions reached can be
studied as well [23].

To apply an inverse transformation, a sum of sines and cosines which converts the
frequency domain data to time-domain data was used. Let u be the fundamental angular
frequency and N the truncated number of harmonics considered.
If X (u)"F¹MxN"MC

k
N, where F¹ means the Fourier transform, then

x(t)"
N
+
k/1

C
k
e*kut"

N
+
k/1

[a
k
cos (kut)#b

k
sin (kut)]. (24)

The relation between a
k
, b

k
and C

k
is given by C

k
"(a

k
!ib

k
)/2.

In the "nal equations of the model, the equations adopted to the HBM convergence
loop, one has both integrals and derivatives. One of the advantages of the HBM is that
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it is very easy to integrate and derive. If the variable is given by equation (24), then the
integral is

P x(t) dt"P
N
+
k/1

[a
k
cos (kut)#b

k
sin (kut)] dt

"

N
+
k/1
C

a
k

ku
sin (kut)!

b
k

ku
cos (kut)D#C.

The constant C has to be determined by some appropriate condition. For the derivative one
obtains

dx

dt
"

d

dt

N
+
k/1

[a
k
cos (kut)#b

k
sin (kut)]

"

N
+
k/1

[!a
k
ku sin (kut)#b

k
ku sin (kut)].

This implies that the numerical values of the derivatives and integrals are as accurate as the
numerical value of the variable.

3.1.2. HBM applied to the cold engine model

To avoid numerical problems such as cancellation and di!erent magnitudes of the
unknowns, one can transform the equations to corresponding dimensionless equations. The
standard transformation for non-linear acoustics is used for the quantities with non-zero
mean values and for Q

3
a non-standard transformation is used. One has

P
1
"P

0
(1#M

a
P
1a

), P
3
"P

0
(1#M

a
P
3a

), o
1
"o

0
(1#M

a
o
1a

),

<
1
"<

1m
(1#M

a
<
1a

), Q
3
"<

1m
fM

a
Q

3a
,

where M
a
"u

a
/c

0
is the acoustical Mach number close to the piston and <

1m
is the mean

value of volume 1; see Figure 2. Here u
a
is set to the velocity of the piston. Equations (10}12)

are now rewritten in the new dimensionless unknowns and adopted to the chosen HBM
convergence loop. Note that the admittance relation is applied in dimensional variables.
Equations (10) becomes

P
3a
"G

P
1a
!AA

1

S2
2

!

1

S2
1
BQ2

3a
!B (d

1
#l

2
)
dQ

3a
dt

, Q
3a
'0

P
1a
#AA

1

S2
2

!

1

S2
3
BQ2

3a
!B (d

3
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2
)
dQ

3a
dt

, Q
3a
(0

(25)

where

A"u2o
0
<2
1m

M
a
/23n2P

o
and B"

u<
1m

o
0

2nP
0
S
2

.

For equations (11) and (12) one obtains

o
1a
"!

u
2n (1#M

a
<
1a

) P Q
3a

dt!
1

M
a

, and P
1a
"

(1#M
a
o
1a

)n!1

M
a

. (26, 27)
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The convergence loop is given in Figure 5. The chosen convergence unknown is the
pressure P (j )

3a
(u) just after the outlet of the restriction, where the superscript j denotes that it

is iteration number j. The equations are applied according to Figure 3; see Appendix B1 for
more details. Finally, a new value of the convergence unknown is calculated, i.e.,
F [P (j)

3a
(u)]. This value is compared with P ( j )

3a
(u) for the "rst N harmonics in the frequency

domain. If the di!erence satis"es the speci"ed convergence criteria, the solution is obtained.
Otherwise, an increment to the initial vector P (j )

3a
(u) is calculated by

P ( j`1)
3a

(u) "P ( j )
3a

(u) !J~1
P3a

MP (j )
3a

(u)!F [P ( j )
3a

(u)]N,

where J
P3a

is the Jacobian matrix of the function P (j )
3a

(u)!F[P ( j )
3a

(u)]. The calculation
process is now repeated by calculating F [P (j`1)

3a
(u)] from the new initial vector P ( j`1)

3a
(u),

until convergence is reached.

3.1.3. Comparison with time-domain simulations

It is of course important to check the results from the harmonic balance method with
results of alternative methods. To this end the solution obtained by using one of Matlab's



Figure 6. The volume #ow Q
3
(t) and the di!erence between the time-domain simulation and the harmonic

balance method dQ
3
(t) for driving frequency f"20 Hz, ¸

v
"0)36 m, ¸

2
"0)02 m and an in"nite acoustic load

pipe.
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ordinary di!erential equation solvers in the time domain has been calculated; see Appendix A
for further details. The comparison case is chosen to be an in"nite pipe since one does not
have to calculate a convolution integral in that case. Thus, only the characteristic
impedance is considered. As seen in Figure 6 the results from the harmonic balance method
are almost equivalent to the time-domain simulation results for the case with an in"nite
pipe. Note that the "gure on the left-hand side is the HBM solution and that the Figure on
the right shows the di!erence between the HBM and the time-domain solutions (the
di!erence is always less than 0)1%). The time required for calculating the solution by using
the time-domain method on a portable Pentium 166 MHz is several hours. With the HBM,
the corresponding calculation takes around 1 min on the same PC.

3.2. RESULTS FROM THE HBM AND DISCUSSION

3.2.1 Results from the basic model

The convergence criteria used in the presented numerical simulations give a correct
spectrum interval of 80 dB. This means that the limit of the correct spectra is 80 dB below
the highest peak.

Figure 7 is an example of the results obtained by the HBM. It is easy to extract the
wanted unknown when the solution has converged. The sound pressure level of P

3
as

a function of the harmonic number, as well as the acoustic pressure P
3

are plotted. It is clear
that the wave shapes include several other harmonic frequencies compared to the oscillating
volume. This is a sign of the non-linearities in the system equations. Note that the sound
pressure level is plotted as a function of harmonics in the frequency domain. From HBM
one always gets harmonics of the fundamental frequency, which is f"10 Hz in Figure 7.
To include for example, half harmonics a fundamental frequency of twice the harmonic
frequency has to be applied. Then all half harmonics are found as well.

In the engine model of Boonen [27, 28] the pressure at the outlet of the engine manifold is
calculated. Figure 8 shows the pressure P

3
(t) for a certain parameter con"guration. The

in-duct pressure P
3

then corresponds to the induct pressure of Boonen just after the engine
manifold. A comparison of this "gure to corresponding "gures in references [27, 28] shows
that this simple piston restriction model can approximate the sound pressure of an engine. If
the parametric study of a system would take a long time and be a heavy process, the



Figure 7. The sound pressure level (SP¸) of P
3
as a function of the harmonic number, the pressure P

3
, the volume

#ow Q
3
, the density o

1
and the volume<

1
as functions of time plotted for two periods. The model parameters used

are ¸
v
"0)06 m, ¸"1)1 m, d

2
"0)013 m, l

2
"0)02 m and f

0
"10 Hz.
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possibility to "nd suitable parameters of the system would be limited. But the HBM is a fast
and simple method to "nd appropriate parameters for certain wave shapes or some other
required properties that are shown in Figure 7.

As stated above, one major advantage with the HBM is the possibility to perform
parametric studies very easily. Here some examples of parametric studies are presented to
show the ability of the method and to draw conclusions about the model used. In Figure 9,
the internal pressure P

3
plotted as a function of time as well as the sound pressure level of

the same variable are shown. Only the length ¸
v
, viz., the minimum length from the piston

to the constriction, is varied.



Figure 8. The in-duct sound pressure P
3
(t) for comparison with results from Boonen.

Figure 9. The sound pressure level of P
3

as a function of the harmonic number and the pressure P
3

as a function
of time. Here only the distance ¸

v
is varied; see Figure 1. The di!erent distances are ¸

v
"0)01 m (00),

¸
v
"0)10 m (} } } }), ¸

v
"0)20 m () ) ) ) ) ) and ¸

v
"0)40 m (} ) } ) } ) }). The parameters used are d

2
"0)03 m,

l
2
"0)02 m, ¸"1 m, f

0
"30 Hz.
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It is obvious that the choice of ¸
v
is crucial to the sound generated in the pipe. Note that

the case with minimum distance to the constriction does not give largest pressure. In
Figure 10 only the diameter d

3
of the pipe is varied.

In Figure 11, only the diameter d
2

of the constriction is varied and one can see a large
di!erence between the curves. Following the discussion about the assumption at the end of
section 2.2 a model including the time-varying diameter of the constriction would probably
signi"cantly in#uence the results.

The parametric study of the variation of the constriction length in Figure 12 shows that
the in#uence of the length l

2
is less than the in#uence of the diameter d

2
. But one can still see

signi"cant di!erences between the solutions of system with di!erent lengths of the
constriction. Since it is easy to include additional terms in the HBM with only a minor
increase of calculation time, it would be possible to include this e!ect as well.

The non-linear e!ects of the system are clearly shown when only the amplitude is varied.
If the system were linear, a variation of amplitude would only change the amplitude of the
results. In Figure 13 the relative amplitude is varied from 1 to 1)3; see Figure 2 and
equation (14) for a detailed description of the piston movement. In all three quantities, viz.,



Figure 10. The sound pressure level of P
3

as a function of the harmonic number, the pressure P
3

and the density
o
1

as functions of time. Here only the diameter d
3

of the pipe is varied, see Figure 1. The di!erent diameters are
d
3
"0)07 m () ) ) ) ) ), d

3
"0.05m (00) and d

3
"0)04m (} } } }). The parameters used are d

2
"0)03 m, ¸

v
"0)10 m,

l
2
"0)02 m, ¸"1 m, f

0
"10 Hz.
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the internal pressure P
3
(t), the volume #ow Q

3
(t) and the density o

1
(t), the di!erence is clear.

When the amplitude is increased, the amplitudes and the shapes of the curves change. Thus
it is shown that the source part is allowed to vary non-linearly while using the HBM with
a linear acoustic load system given by an impedance/admittance.

3.2.2. Results from extended models

In this section the results from the two di!erent source models are compared by using the
HBM. The basic source model given by equations (10}13) and the extended source model
given by equations (19}23) are used in the HBM with exactly the same parameters for three
di!erent parameter sets. The "rst set represents a system with a small non-linearity. That is,
a restriction with large diameter is used, the amplitude of the driving piston is reduced to
half of its value compared to the actual piston and the oscillating volume has a large mean
value. The second set represents a medium non-linearity. Here, the restriction diameter is
reduced, the amplitude of the piston is restored and the mean value of the oscillating volume
is reduced. Finally, the third set is chosen to create quite a large non-linearity in the system.
To this end, the diameter of the restriction as well as the mean value of the oscillating
volume are reduced even further.

Figure 14 shows that for almost linear systems we have a very small di!erence between
the basic model and the extended model. It is therefore suitable to use the basic model for
almost linear systems. Maybe it is even possible to use the linear time-invariant source



Figure 11. The sound pressure level of P
3

as a function of the harmonic number, the pressure P
3

and the density
o
1

as functions of time. Here only the diameter d
2

is varied; see Figure 1. The di!erent diameters are d
2
"0)02 m

(00) and d
2
"0)02/J2 m (} }} }). The parameters used are ¸

v
"0)10 m, l

2
"0)02 m, ¸"1m, f

0
"10 Hz.
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model. For the medium non-linearity given in Figure 15 as well as for the large non-linearity
given in Figure 16 there are clear discrepancies between the basic and the extended model.

For these cases, a better description is gained by using the extended source model. An
even better description would be possible if a time-varying constriction diameter, viz., vena
contracta [38], as well as the fact that the #ow does not form a jet at the outlet for all cases
[37], were taken into account in the model.

4. CONCLUSION AND DISCUSSION

The proposed method for calculating the time}frequency domain coupling is found to
have several advantages. One can easily perform parametric studies by varying one speci"c
parameter at a time; see Figure 13. The calculation time is short and it is easy to extract the
behaviour of the required unknown when the speci"c parameter is varied. By changing the
fundamental frequency compared to the driving frequency of the oscillator, one could
include half order, on third orders and so on.

The main disadvantage with the HBM is that only periodic solutions are studied. One
cannot "nd any transient solutions, which are of great interest in industry applications. The
method is, however, useful in a lot of industrial applications, since it permits the sound
source to respond di!erently to di!erent applied pipe/mu%er systems. HBM could be used
together with commercial linear acoustic simulation programs, for example SID [39], to
provide the coupling between the source and the exhaust and intake systems.



Figure 12. The sound pressure level of P
3

as a function of the harmonic number, the pressure P
3
, the volume

#ow Q
3

and the density o
1

as functions of time. Here only the length of the constriction l
2

is varied; see Figure 1.
The di!erent lengths are l

2
"0)10m () ) ) ) )), l

2
"0)06m (00) and l

2
"0)01m (} } } } ). The parameters used are

d
2
"0)015m, ¸

v
"0)05 m, ¸"0)65 m, f

0
"50 Hz.
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This paper is a "rst step in the modelling of a &&one-cylinder cold engine''. The emphasis
has therefore not been to tune the model, i.e., the equations, but to "nd an appropriate
method, which can be used for the coupling between the time domain and frequency
domain. Since the HBM was found to be an e$cient tool for the periodic regimes, the next
step is to improve the engine model, and "nally to conduct some measurements. This is,
however, out of the scope of this paper.

Further research is needed in areas of di!erent coupling methods and source models to be
used with the linear simulation codes of the industry. It would also be interesting to further
develop the linearity tests proposed in reference [19]. The objectives would be to "nd
a simple test from which it can be determined qualitatively which required the degree of
complexity for the source model. That is, if the linear model is su$cient, if a hybrid model or
if a fully non-linear model is needed.

Another interesting future subject is to include the e!ects of mean #ow in the model. This
would make it possible to use the model together with HBM as a design tool to balance the
requirements for good #ow performance and low noise.

The results from the HBM can furthermore be used as an input to a perturbation method
for including non-linear wave propagation in the pipes.
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Figure 13. The sound pressure level of P
3

as a function of the harmonic number, the pressure P
3
, the volume

#ow Q
3

and the density o
1

as functions of time. Here the relative amplitude is varied from 1 () ) ) ) ) ) to 1)3 (00).
Here ¸

v
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2
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APPENDIX A: TIME-DOMAIN SOLUTIONS

For the time-domain simulation, equations (10}12) of the basic model are rewritten in
a suitable form for using the Matlab prede"ned odesolver &&ode45'' with a variable
steplength. Because of the hypothesis of an in"nite pipe, equation (13) is only an equation of
proportionality. That is, >

3
does not depend on the frequency (characteristic admittance

only). The solver &&ode45'' is a solver for non-sti! problems with medium accuracy, but as an
option one can de"ne small error tolerances to increase the accuracy. One de"ne y

1
"o

1
<
1

and y
2
"Q

3
and keep the rest of the notations as above. The equations then become as

follows. For y
1

one gets the di!erential equation

dy
1

dt
"!o

0
Q

3
.
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For Q
3
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'0,
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and for Q
3
"y

2
(0 one gets
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)
.

The ordinary non-linear di!erential equation system for the vector

y"A
y
1

y
2
B

is now solved by using &&ode45''. The results are given in Figure 4.

APPENDIX B: THE CONVERGENCE LOOPS FOR THE DIFFERENT SOURCE MODELS

B.1. THE BASIC MODEL

The convergence loop for the basic model, given by equations (10}13) is

P
3
(u) %26!5*0/(13)&&&&" Q

3
(u) %26!5*0/(24)&&&&" q

3
(t) %26!5*0/(11)`V1(t)&&&&&&" o

1
(t) %26!5*0/(12)&&&&" p

1
(t),

q
3
(t)

p
1
(t)H %26!5*0/(10)&&&&" F[p

3
(t)] FFT&&" F[P

3
(u)].

Note that all frequency domain variables are written with uppercase letters while the
time-domain variables are represented by lowercase letters.

This convergence loop following Figure 5 is written as follows. The superscript j denotes
that it is the iteration number j and the subscript a denotes that the dimensionless equations
are used. The time dependence is omitted, but in the case of frequency dependence this is
explicitly written. The initial value is chosen to be P (j )

3
(u). The linear admittance

relation (13) is applied to "nd Q (j)
3a

(u), that is,

Q(j)
3

(u)">
3
(u)P (j )

3
(u).

Now, the non-linear equations have to be applied in the time domain, so the sum in
equation (24) gives

q ( j )
3a

"

N
+
k/1

[a
k
cos (kut)#b

k
sin (kut)].
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Equation (26) together with the input variable <
1a

(t) gives

o( j)
1a
"!

u
2n (1#M

a
<
1a

) P q( j)
3a

dt!
1

M
a

,

equation (27) gives

p(j )
1a
"

(1#M
a
o ( j)
1a

)n!1

M
a

.

Equation (25) gives

p ( j )
3a

"G
p ( j )
1a

!AA
1

S2
2

!

1

S2
1
B (q ( j )

3a
)2!B (d

1
#l

2
)
dq ( j )

3a
dt

, q ( j )
3a

'0

p ( j )
1a

#AA
1

S2
2

!

1

S2
3
B (q ( j )

3a
)2!B (d

3
#l

2
)
dq ( j )

3a
dt

, q ( j )
3a

(0

and "nally by a Fourier transform one "nds F[P ( j )
3a

(u)].

B.2. THE EXTENDED MODEL

For the extended model, given by equations (19}23), a slightly di!erent convergence loop
has to be used. Here one has

P
3
(u) %26!5*0/(21)&&&&" Q

3
(u) %26!5*0/(24)&&&&" q

3
(t)

P
3
(u) %26!5*0/(24)&&&&" p

3
(t) %26!5*0/(23)&&&&" o

3
(t) H %26!5*0/(20)`V1(t)&&&&&&" o

1
(t) %26!5*0/(22)&&&&" p

1
(t),

p
1
(t)

q
3
(t)

o
1
(t)

o
3
(t)H %26!5*0/ (19)&&&&" F[p

3
(t)] FFT&&" F[P

3
(u)].

APPENDIX C: NOMENCLATURE

Each variable x is written x(t) or x in the time domain and x(u) in the frequency domain.
P
0
"105 atmospheric pressure

P
1
(t) pressure in volume 1

P
3
(t) pressure in volume 3

Q
1
(t) volume #ow in volume 1

Q
2
(t) volume #ow in volume 2

Q
3
(t) volume #ow in volume 3

o
0
"1)23 density of air

o
1
(t) density in volume 1

o
2
"1)23 density in volume 2

o
3
(t) density in volume 3
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d
1

diameter of pipe 1
d
2

diameter of pipe 2
d
3

diameter of pipe 3
S
1

area of pipe 1
S
2

area of pipe 2
S
3

area of pipe 3
¸
A1

length of axis in piston, see Figure 2
¸
A2

length of axis in piston, see Figure 2
<
1
(t) oscillating volume

n"1)4 polytropic index
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