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A study on the free-vibration analysis of plates and shells is described in this paper. In
order to determine the natural frequencies of plates and shells, a nine-node degenerated shell
element is developed by using the degenerated solid concept based on Reissner—-Mindlin
(RM) assumptions which allow the shear deformation and rotatory effect to be considered.
All terms required in the shell finite element (FE) formulation are defined in the natural
domain. In particular, assumed natural strains are derived to alleviate the locking
phenomena inherited in the RM shell elements. The natural constitutive equation is used in
conjunction with the natural strain terms. The proposed shell FE formulation offers
significant implementation advantages since it consistently uses the natural co-ordinate
system. Various numerical examples are carried out and its results are then compared with
the existing exact solutions and the numerical solutions calculated by other shell FEs.
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1. INTRODUCTION

In Engineering practice, it is often of vital importance to conduct a free-vibration analysis of
structures and to use the resulting information in the design process so that the resonant
behaviour of the structures can be prevented for the given loading conditions.

The vibration of thin shells was discussed in the early work of Love [1]. Since then many
researchers have dealt with shell vibration using classical thin-shell theory. In particular,
Donnell [2] used classical thin shallow-shell theory to understand the free-vibration
behaviour of shells and subsequent research has been reviewed by Leissa [3], Qatu [4] and
Liew et al. [5]. However, until the 1960s shell vibration research focused on individual types
of shell and the applications of shell theory were limited to specific geometries.

In order to investigate the vibration behaviour of complex shell structures, the FE method
was inevitably introduced and it has subsequently become the most popular method. In
particular, many shallow shell elements have been developed since the early work of Adini
[6]. As noted by Gallagher [7], the development of thin-shell FEs began with application to
aerospace vehicles. During the early 1960s, a large number of thin-shell elements were
therefore developed to meet the demands of the aerospace industry. In this period,
three-dimensional elements were also widely used to design thick-walled shell stuctures.
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However, an innovative approach, the so-called degenerated solid concept, was
introduced by Ahmad et al. [8]. Nowadays, the degenerated shell element based on this
concept is one of the most popular shell FE formulations. Generally, RM assumptions have
been adopted in the development of such elements and therefore the mass matrix includes
rotatory inertia effects. It has been shown that the accuracy of the frequency is improved by
the rotatory inertia terms in the mass matrix for thick shells as well as the inclusion of
transverse shear effects in the stiffness matrix. However, it is found that there are serious
defects such as locking phenomena in the degenerated shell element.

As an early remedy to locking phenomena inherited in the degenerated shell element
based on RM assumptions, the so-called reduced integration [9, 10] was used in the
transverse shear energy term. However, the shell elements with the reduced integration
suffered from the mechanism and later other methods, such as assumed strain methods [11]
and stabilization method [12], have been proposed by many researchers. The assumed
strain methods have been successfully used in stress FE analysis. However, in contrast, there
are few investigations on the performance of the assumed natural strain shell element in the
shell free-vibration analysis.

In this paper, therefore, the natural domain-based shell formulation is provided with
emphasis on the terms related to the stiffness and mass matrices. Then a set of bench-marks
are presented to show the application of the shell formulation to various types of shells
under free-vibration conditions.

Although a new shell element has been developed by means of calculating the natural
frequencies of shells, it is important to evaluate the performance of shell FE in the plate
situations, which may be considered as a special form of shells with no curvature. Recent
work on the free-vibration analysis of plate element can be found in open literature. In
particular, the plate vibration problems can be consulted in reference [13].

Note that the Lobatto integration rule [14] is adopted to evaluate the mass matrix and
the subspace iteration method [15,16] is employed in the calculation of the lowest
eigenvalues of shells. It should be noted that Gauss integration rule is used in the first
example to provide some comparative results with the Lobatto integration rule.

2. GEOMETRY AND KINEMATICS OF SHELLS

The geometry of degenerated shell element is represented by two vectors (Xg,, and Xp,,),
which are the position vectors of the original solid element as shown in Figure 1. The
degeneration of the solid element requires the use of the vector ¥5 which allows the top and
bottom nodes to be degenerated into the node at the shell mid-surface. The definition of the
shell geometry [8] can be written as

9 5 ha

g —a ELIA

X(E1, &2, E3) = D) Ny(&y, &) |:X + 5 V%:|, (1)
a=1

where x is the position vector of a generic point in the element domain, X* = %(xf’ap + X3ot)

denotes the position vector of node a in the mid-surface, h* is the thickness of the shell at

node a and ¥ is the unit vector through thickness direction at node a which is created using

X, — Xpot
i = e @
|X?0p - Xgot'

in which x3,, denotes the position vector of node a in the top surface and xj,, denotes the
position vector of node a in the bottom surface as shown in Figure 1.
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Figure 1. Degenerated solid concept illustrated by using a solid element.

However, it should be noted that the shell normal can be created by using the
co-ordinates of the shell mid-surface. In most cases, the third axis of the local co-ordinate
system [ 17] is used as the shell normal at the nodal point. Therefore, the above equation can
be replaced by the following form:

9 _ é3ha N
X(€1, &5, E3) = Y, Nulér, &) X”+Td“ A3)
a=1

in which d* is established at node a by using

:zﬁl(éla 52) X i:‘fz(éla él)
X%, (1, Eo) X X, (Ey, )N

W

aa(fb éz) = (4)

Note that the vector d“ can be replaced with ¥4 if the co-ordinates of top and bottom shell
surface are available.

The displacement field u used in the present shell element having six degrees of freedom
per node can be defined as

° _ - &ht A
u(éy, &5, 83) = ) Nu(é1, &) [“a + %(R? - I3><3)da:|9 (%)
a=1
where the unit normal vector at node a, namely d¢, is defined using equation (4), I is the
identity matrix and the rotational matrix R§ has the form

1 —-05 05
R =| 05 1 — 09 (6)

—05 01 1

in which 0¢ denotes the rotations associated with the components of the shell normal d.
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For later use, the displacement field in equation (5) can be written in the following form:
9
u= Nu’, (7
a=1

where u® is the displacement vector at the node a and the shape function matrix
N, associated with the node a is

100 0 W(E)de  — h(Es)de
N,=N, [0 1 0 —hi(E)de 0 h{(&3)ds ®)
0 0 1 KA —h(E)de 0

in which h%(¢;) = £;h%/2 and d°, cff and d” are the components of the unit normal vector d* in
the global co-ordinate system.

3. SHELL FORMULATIONS

All terms used in the derivation of the present shell element are expressed in terms of the
natural co-ordinates. Therefore the natural strains and the constitute equation are used.

3.1. STRAIN DEFINITION

The linear terms of natural strains can be derived from the natural Lagrangian strains

[18]

1 <5uk % auk @xk> (9)

“=5\Gg ag, T ag, o,

In the discretized FE domain, the natural strain-displacement matrix B can be obtained
by using the following operation:

B =L[%, 2] (10)

in which &, = [&;4, €22, £12]" is the in-plane strain term and & = [¢;3, ;5] is the transverse
shear strain term and the partial differential operator L is

LT = {0/0us, 0/ous, 8/0us, 8/00°, 0/60%, /004 (11)

Because of the locking phenomena inherited in the degenerated RM shell element, the
standard strain-displacement matrix B? is substituted with assumed natural strains in this
study. The sampling points used in the formulation of assumed natural strains are presented
in Figure 2. The interpolation functions used in formulating the assumed strains are based
on Lagrangian interpolation polynomials as proposed by Huang and Hinton [19].
Consequently, the substitute assumed that natural strains 4 can be defined in the following
form:

2 3 2 3
51141 = Z z g]i(fl)gj(éz);?(ib 51242 = Z Z ?fi(fz)ﬂj(él)égz,
i=1j=1 i=1j=1
2 2
Ba= ) Y ZE)PiE)EL, (12)
i=1j=1

2 3 2 3
By= ) 2 2C)2(E)E Hy= ) Y P& 280,

i=1j=1 i=1j=1
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Figure 2. The sampling point for the natural assumed strains; left for £, , &, 3 centre for &,,, &,3 and right for &, ,.

in which 6 = 2(j — 1) + i denotes the position of the sampling point as shown in Figure 2
and the shape functions Z;(¢) and 2;(&) are

21 =31 +/38), 2,0 =31 - /3¢),
2, =3EE+1),  2,(0)=1-28, 2, =%E -1 (13)

The assumed natural strains 4 derived from equation (12) are used in the present shell
element instead of the strains & of equation (9) obtained from the displacement field.

3.2. CONSTITUTIVE EQUATION

The stress tensor for elastically isotropic materials can be written as
0ij = Dijuen = [40;j01 + w(0udj + 0ud )] eus, (14)

where o;; is the Cauchy stress, D;;,; are a fourth order isotropic material tensor and g is the
small strains. 4 and p are the Lame constant and ¢;; is the Kronecka delta.

An isotropic material is not direction dependent. However, a scaling factor has to be
introduced when elastic constants are formed in the natural co-ordinate domain. The
natural stress tensor can be written as follows:

&a3 = ﬁaﬂyégyé = jo [igaﬂgyé + :u(gotygﬁé + gaﬁgﬂv)] 5765 (15)
where the natural constitutive tensor is obtained from

5 g 06,060, 0

Doy = T, 522
b ? 0x; 0x; 0x; 0x;

Diju (16)

and J, = det[0x;/0¢,] and 2,5 = 0&,/0x;0E5/0x;.

The above equation can be reduced using the generalized plane stress condition 63 = 0
with the assumption that the effect of variation of natural constitutive parameters in the
thickness direction can be neglected as follows:

Dopys = Jo[A8up@ys + 1(Z8ps + Luspy)]s (17)

where 1 is the reduced Lamé’s constant for the generalized plane stress—strain relationship,
J, and g,; are calculated using J, and g,; at 3 = 0.



610 S.J. LEE AND S. E. HAN

Now the natural stresses can be rewritten in matrix form

&) [DF 07z
-5 Sl

where &, =[G4, G122, 01,]" is in-plane stress term and & = [G43, 5,3]" is the transverse
shear stress term and the natural in-plane and transverse shear rigidity matrices D}, D¥ are

28 B811822 + 281, g11812
ﬁ: =J,| P&11822 + 281> %83, 2812822 )
%811812 812822 ﬁgﬁ + (g811822 + g%z
va _ «70 |:ks:u ?11%33 kgu %12%33} (19)
kpug12833 kot 822833
in which the parameters « and f§ are
4u(2 + E 2ul vE
x 2+ 2u -2 p A42n 1 -2 29

and k, is the shear correction factor which is taken as 2 for an isotropic material and v is the
Poisson ratio.

3.3. EQUILIBRIUM EQUATION

In the absence of external loads and damping effects, the dynamic equilibrium equation
based on the principle of virtual work (or more precisely virtual power) can be written as

j [6g, D&, + 0gf D,g,]dQ = J [ou]” pii dQ. (21)
Q Q

For a discretized FE domain, the displacement field can be expressed in terms of the
nodal displacements u® and the global shape functions N, [ 14] which are constructed from
local shape functions N, and the accelerations can be also written in the same way:

u= Z Na(él, ¢2, E3)ul, i = Z Na(fb &,y &3, (22)
a=1 a=1

where np is the total number of the node in the discretized domain and the virtual terms
associated with the displacement and acceleration are

a=

du= Y N, & E)ou, i = Z No (&1, &, &3)0i, (23)

The strain—displacement and virtual strain-displacement relationships can then be
written as
np R np N
e= )Y B, de= ) B (24)
a=1 a=1
where B® is the global strain-displacement matrix which is constructed from local
strain-displacement matrix B“.
Substituting equations (22)—(24) into equation (21) yields

Su™[Ku — Mii] = 0. (25)
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Since the virtual displacement du are arbitrary, the above equation may be written as
Ku — Mii = 0. (26)
A general solution to equation (26) may be written as
u = 0, (27)
Substituting equation (27) into equation (26) yields
[K — oiM] ¢, =0, (28)

where ¢, is a set of displacement-type amplitude at the nodes otherwise known as the modal
vector and wy is the natural frequency associated with the kth mode and K = A2¢ ; K and
M = A" M@ are global stiffness and mass matrices which contain contributions from the
element stiffness and mass matrices formulated in the natural domain which, can be written
as

Kb — f [BUDAE + BIDFB] A0, Mo — f ANIN, dO, (29)

Q Q

where the constitutive matrices D¥ and D are given in equation (19). The matrices B¥ and
B} are the in-plane and transverse shear strain-displacement matrices obtained from
equation (12). Note that the explicit form of the mass matrix is dependent on the
displacement field of the shell elements and the consistent mass matrix linking nodes a and
b of an n-node shell element can be written as

NN, 0 0O 0 0 0
O NN, O 0 0 0
NN, O 0 0

ab ~ab ~ab
0 023 Q12 013

—ab ab —ab
Q12 0O13 Q23
~ab ~ab ab
0 Q13 023 Q12

dQ, (30)

-

53

=

I
{QI>

Bt
o O o O
oS O o O

where p is the density of the element material, 0% = (£3h°h”)[d¢d? + d4d%]/4 and
0% = — (£3h*h*d¢d%)/4 and N, is the shape function at node a.

It should be noted that the stiffness components associated with drilling degrees of
freedom will be zero for the shell FEs having six degrees of freedom at each node if adjacent
elements are coplanar or nearly coplanar. For this reason, the drilling degrees of freedom
will be “linked” to the in-plane twisting mode of the mid-surface with a fictitious spring
coefficient serving as a penalty parameter. From this concept, the torsional stiffness term
was formed as described in reference [17] and added to the stiffness term in equation (29).

4. NUMERICAL EXAMPLES

Six numerical examples are considered in order to investigate the accuracy and reliability
of the developed shell element based on the FE formulation described in the previous
sections. For comparison purposes, an assumed natural nine-node plate element ANSP9
[20], a standard degenerated nine-node shell element LAG9 [17] and as assumed strain
nine-node shell element ASL [19] are implemented and used to calculate new reference
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Figure 3. The geometry of square plate.

solutions for some examples. The numerical results are then compared with the exact
solutions and the reference solutions which are available in the open literature. In this study,
the plates are considered as zero-curvature shells.

4.1. SQUARE PLATE

A square plate is analyzed in order to examine the effect of using different boundary
conditions on the free-vibration behaviour of the plate. For the purpose of concise
identification, each set of the boundary conditions is denoted by four letters which stand for
the four sides in the rectangular plate. The sequence begins with x =0 and proceeds
anti-clockwise around the plate such as A-B-C-D illustrated in Figure 3. The six boundary
conditions used in this example are (a) S-S-S-S, (b) C-C-C-C, (c) C-C-C-F, (d) S-C-S-C,
(e) S-C-S-S and (f) S-C-S-F where S, C and F stand for the simply supported, clamped and
free boundary conditions respectively.

In addition to the six boundary conditions, two thickness-span ratios are used: h/a = 0-1
and 0-01. In order to compare the present results with the existing reference solutions
[21-26], several values of shear correction factors are employed according to the boundary
conditions used: (a) S-S-S-S; k, =0-8330, (b) C-C-C-C; k, = 0-8330, (c) C-C-C-F;
ks = 0-8220, (d) S-C-S-C; k,= 08601, (¢) S-C-S-S; k,=08601 and (f) S-C-S-F;
ks = 0-8601. The plates are discretized with a mesh of 100 nine-node elements. Note that an
assumed natural nine-node plate element ANSP9 [20] and two shell elements LAG9 [17]
and ASL9 [19] are used to produce new reference solutions.

In this example, the frequencies are presented in dimensionless form:

Q, = w,a(p/G)'?,

where w, is the natural frequency of the plate, a is the side length of the plate, p is the mass
density and the G = E/2(1 + v) is the shear modulus in which E is the elastic modulus and
v = 0-3 is the Poisson ratio.

(a) S-S-S-S: The simply supported plate has been frequently solved and several
analytical solutions for this case are available: three-dimensional elasticity solution [21],
RM thick plate theory and classical thin plate theory [24-28]. In this case, multiple
frequencies are detected since the plate has a double symmetry. The natural frequencies are
presented in Table 1.
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TABLE 1

The non-dimensionalized natural frequencies .., of a plate with the S/S/S/S boundary
condition

m n ES MC TC ANSP9  ANSP9a LAGY ASL9 Present

For the thickness h = 0-1

1 0932 0-9300 09632 09303 09303 09303 09303 09303
1 2:226 2:2190 2:4080 2:2198 2:2195 2:2194 2:2195 2:2195
2 3421 3.4060 3.8530 3.4064 3.4054 3.4053 3.4054 3.4054
1 4-171 4-1490 4-8160 4-1542 4-1510 4-1509 4-1510 4-1510
2 5-239 5-2060 62610 52102 52053 5-2050 52054 5-2053
1 — 6-5200 — 6-5425 6-5270 6-5268 6-5270 6-5270
3 6-389 6-8340 8:6680 6-8414 6-:8307 6-8295 6-8307 6-8307
2 7-511 7-4460 9-6320 7-4673 7-4484 7-4474 7-4484 7-4484
3 8-8960 22:0400 89178 8-8892 8-8861 8-8893 8-8892
1 9-268 9-1740 125210 9-2444 9-1928 9:1923 9-1928 9-1928
2 — 9-9840 13-9660 10-0510 9-9924 9-9900 9-9924 9-9924
4 10-890 10:7640 154110 10-7960 10-7430 10-7360 10-7430 10:7430

the thickness h = 0-01

PRLRLLUNNA,D PUUERLE LWL -
~

1 0-0963 0-0963 0-0963 0-0963 0-0963 0-0963 0-0963
1 0-2406 0-2408 0-2406 0-2406 0-2406 0-2406 0-2406
2 0-3848 0-3853 0-3848 0-3847 0-3846 0-3847 0-3847
1 0-4809 0-4816 0-4814 0-4810 0-4808 0-4810 0-4811
2 0-6249 0-6261 0-6253 0-6247 0-6243 0-6247 0-6247
1 0-8167 0-8187 0-8198 0-8179 0-8167 0-8179 0-8179
3 0-8647 — 0-8652 0-8639 0-8630 0-8639 0-8639
2 0-9605 — 0-9633 0-9609 0-9593 0-9609 0-9609
3 11997 — 12025 1-1988 1-1962 1-1989 1-1988

Note: ES: three-dimensional elasticity solutions [23]. MC: Reissner-Mindlin thick-plate theory solution [24, 25].
TC: thin-plate theory solution [24, 26]. ANSP9: assumed strain plate bending element solution using consistent
mass [20]. ANSP9a: assumed strain plate bending element solution using lumped mass [20]. LAGY: nine-node
shell element [17]. ASL9: assumed strain shell element [19].

(b) C-C-C-C: This is an inherently stiffer plate than the S-S—S-S plate. In this case, the
multiple frequencies are also obtained because of its double symmetry. The natural
frequencies are presented in Table 2.

(c) C-C-C-F: In this case, there is no double symmetry so multiple frequencies
disappear. The mode shapes are particularly dominated by the free-boundary condition on
one side of the plate. The natural frequencies are presented in Table 3.

(d) S-C-S-C: The overall mode shapes for this case are similar to those of the case
S-S-S-S. However, the natural frequencies in this case are higher than those for case
S-S-S-S. The natural frequencies are presented in Table 4.

(e) S-C-S-S: The overall mode shapes are similar to those of the cases S-S-S-S and
S-C-S-C. The frequencies are a little higher than those of the case S-S-S-S but rather
lower than those of the case S-C-S-C. The natural frequencies are presented in Table 5.

(f) S-C-S-F: This case has the lowest frequencies among the six cases. The overall mode
shapes are similar to those of the case C—C—C-F but the frequencies in this case are lower
than those of the case C—C-C-F. The natural frequencies are presented in Table 6.

From numerical results the natural strain shell elements shows a good performance and
its results are in good agreement with the solutions obtained from the other shell elements.
From the test, the plate with thickness h = 0-01 has lower frequencies than the plate with
thickness h = 0-1.
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TABLE 2

The non-dimensionalized natural frequencies Q,,, of a plate with the C/C/C/C boundary

condition
m n MC TC ANSP9 ANSP9a LAGY ASL9 Present
For the thickness h = 0-1
1-594 1-756 1-5913 1-:5912 1-:5910 1-5912 1-5912
3-046 3-581 3-0406 3-0397 3-0393 3-0397 3-0397
4-285 5-280 4-2653 4-2631 4-2619 4-2631 4-2631
5-035 6421 5-0341 5-0289 5-0282 5-0289 5-0289
5078 6451 5-0817 50763 50758 50763 50763

6-0891 6-0817 6:0797 6:0817 6:0817
— — 7-4459 7-4258 7-4251 7-4258 7-4258
— — 7-6934 7-6788 7-6750 7-6788 7-6788
— — 82911 82675 81729 82675 82675
— — 8:3669 8:3427 82645 8:3427 8:3427
— — 9-7322 9-6978 9-6914 9-6978 9-6978

For the thickness h = 0-01

01754 01756 01754 01754 01754 1-7538 0-1754
0-3576 0-3581 0-3576 0-3575 0-3575 0-3575 0-3575
0-5274 0-5280 0-5268 0-5265 0-5264 05265 0-5265
0-6402 0-6421 0-6415 0-6407 0-6407 0-6407 0-6407
0-6432 06432 0-6446 06438 0-6438 0-6438 0-6438
0-8034 0-8021 0-8020 0-8021 0-8021
— — 1-0296 1-0261 1-0261 1-0261 1-0261
— — 1-0705 1-0679 1-:0678 1-:0679 1-:0679
— — 1-1818 1-1776 1-1775 1-1776 1-1776
— — 1-1868 1-1825 1-1825 1-1826 1-1825
— — 1-4436 1-4373 1-4371 14373 14373

DD W W W N -
W RN W= D)W = N =

BB WER WEWNND -
WA N W DN WRE N = —

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 257. TC: thin-plate theory solution [24, 26]. ANSP9:
assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending
element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element

[19].

4.2. CIRCULAR PLATE

A circular plate with clamped boundaries is analyzed. Hinton et al. [29] analyzed this
problem using three different types of boundary conditions: (a) symmetry conditions on
both edges, (b) symmetry and antisymmetry conditions on each edge and (c) antisymmetry
conditions on both edges. However, the entire plate is used to examine the free-vibration
behaviour of the plate. The plate is discretized with a mesh of 108, nine-node elements. The
resulting frequencies are presented in the dimensionless form

Q, = w,r*(ph/D)""?,

where m, is the natural frequency of the plate, r is the radius of the circular plate, h the
thickness of the plate, p is the density of the material and the D = Eh®/12(1 — v?) is the
flexural rigidity of the plate in which E is the elastic modulus and v = 0-3 is the Poisson
ratio. Two thickness-span ratios h/2r = 0-01 and 0-2 are used in this study. Asymmetric and
axisymmetric vibration modes are detected in this example and multiple frequencies are
obtained from the axisymmetric modes. The result for the thickness-span ratio h/2r = 0-01
is compared with the analytical solution [30]. It is shown that there are minor numerical
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TABLE 3

The non-dimensionalized natural frequencies Q, of a plate with the C/C/C/F boundary

condition
n MC TC ANSP9 ANSP9a LAGY ASL9 Present
For the thickness h = 0-1
1 1-089 1-171 1-0807 1-0807 1-0804 1-0807 1-0807
2 1-785 1-953 1-7440 1-7438 17429 17438 1-7438
3 2:673 3-094 2:6577 2:6569 2:6562 2:6569 2:6569
4 3-216 3-744 3-1979 3-1967 3-1955 3-1967 3-1967
5 3-318 3-938 3-2912 3-2902 3-2884 3-2902 3-2902
6 4615 5699 45605 45579 45548 45579 4-5579
7 47378 47328 47316 47328 47328
8 — — 52521 5-2457 5-2444 52457 5-2457
9 — — 5-3185 5-3129 5-3106 5-3129 5-3129
10 — — 6-4016 6-3925 6-3385 6-3925 6:3925
11 — — 6-4539 6-4456 6-4411 6-4456 6-4456
12 — — 7-1630 7-1454 6-4802 7-1435 7-1454
13 — — 7-6879 7-6669 7-6640 7-6669 7-6669
14 — — 7-7092 7-6851 7-6837 7-6851 7-6851
For the thickness h = 0-01
1 01171 01171 0-1166 0-1166 0-1166 0-1166 0-1166
2 0-1951 0-1953 0-1949 0-1949 0-1947 0-1949 0-1949
3 0-3093 0-3094 0-3082 0-3081 0-3079 0-3081 0-3081
4 0-3740 0-3744 0-3738 0-3736 03733 0-3736 0-3736
5 0-3931 0-3938 03924 0-3923 03920 03923 0-3923
6 0-5695 0-5699 05678 0-5674 0-5668 0-5674 0-5674
7 — — 0-5963 0-5955 0-5953 0-5955 0-5955
8 — — 06556 0-6547 0-6544 0-6547 0-6547
9 — — 0-6835 0-6825 0-6822 06825 0-6825
10 — — 0-8417 0-8402 0-8394 0-8402 0-8402
11 — — 0-8605 0-8591 0-8583 0-8591 0-8591
12 — — 09833 09800 09796 09800 0-9800
13 — — 0-1040 1-0361 1-0357 1-0361 1-0361
14 — — 0-1072 1-0684 1-0680 1-:0684 1-0684

Note: MC: Reissner-Mindlin thick-plate theory solution [19, 207]. TC: thin-plate theory solution [19, 21]. ANSP9:
assumed strain plate bending element solution using consistent mass [20]. ANSP9a: assumed strain plate bending
element solution using lumped mass [20]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element

[19].

discrepancies between the analytical solution and the present result. Some intermediate
frequencies are calculated in the FE analysis. However, the frequencies obtained from the
present shell elements show a very good agreement with the exact solutions in overall
modes. The natural frequencies are presented in Table 7.

4.3. ELLIPTICAL PLATES

Liew [31] presented the vibration characteristics of elliptical plates with aspect ratios
a/b =1, 2, 3 and 4. The geometry of the plate is presented in Figure 4.

Since the results for the circular plate (a/b = 1) are already presented in Section 4.2, the
results of three elliptical plates with aspect ratios a/b = 2, 3 and 4 are presented in this
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TABLE 4

The non-dimensionalized natural frequencies Q, of a plate with the S/C/S/C boundary
condition

n MC TC FS ANSPY9 ANSP9a LAGY ASL9 Present

For the thickness h = 0-1

1 1-302 1-413 1-:300 1-:3002 1-:3002 1-3001 1-3002 1-:3002
2 2-398 2:671 2:394 2-3946 2-3941 2:3939 2:3941 2:3941
3 2-888 3:383 2-885 2-8861 2-8852 2-8850 2:8852 2-8852
4 3-852 4-615 3-839 3-8410 3-8394 3-8387 3-8394 3-8394
5 4-237 4-988 4232 4-2362 4-2328 4-2324 4-2328 4-2328
6 4-939 6-299 4936 4-9444 4-9394 49391 49394 4-9394
7 — — — 54626 54571 54559 54571 54571
8 — — — 57979 57913 5:7902 5:7913 57913
9 — — — 6:5768 6:5611 6-5605 6-5611 6-5611
10 — — — 7-2296 7-2173 7-2147 72173 7-2173
11 — — — 7-3315 7-3119 7-3115 7-3119 7-3119
12 — — — 7-6051 7-5854 7-5833 7-5854 7-5854
13 — — — 80972 8:0746 7-9898 80746 8:0746
14 — — — 9-1558 9-1256 9-1205 9-1256 9-1256

For the thickness h = 0-01

1 0-1411 0-1413 0-1411 0-1411 0-1411 0-1411 0-1411 0-1411
2 0-2668 0-2671 02668 0-2668 0-2668 0-2668 0-2668 0-2668
3 0-3377 0-3383 0-3376 0-3378 0-3377 0-3377 0-3377 0-3377
4 0-4608 0-4615 0-4604 0-4607 0-4604 0-4604 0-4604 0-4604
5 0-4979 0-4988 0-4977 0-4984 0-4980 0-4980 0-4980 0-4980
6 0-6279 0-6299 0-6279 0-6295 0-6287 0-6287 0-6287 0-6287
7 — — — 0-6827 0-6820 0-6820 0-6820 0-6820
8 — — — 0-7539 0-7529 0-7528 0-7529 0-7529
9 — — — 0-8321 0-8301 0-8301 0-8301 0-8301
10 — — — 0-9725 0-9705 0-9705 0-9705 0-9705
11 — — — 0-1008 1-0052 1-0052 1-0052 1-0052
12 — — — 0-1019 1-0158 1-0158 1-0158 1-0158
13 — — — 0-1146 1-1416 1-1415 1-1416 1-1416
14 — — — 0-1269 12623 12623 12623 12623

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite
strip solution [25]. ANSPY: assumed strain plate bending element solution using consistent mass [20]. ANSP9a:
assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17].
ASL9: assumed strain shell element [19].

section. The resulting frequencies are presented in the dimensionless form.
Q, = w,a*(ph/D)""?,

where w, is the natural frequency of the plate, a is the radius of the elliptical plates in the
x direction, p is the density of the material, h is the thickness of the plate, and the
D = Eh3/12(1 — v?) is the flexural rigidity of the plate in which E is the elastic modulus and
v = 0-3 is the Poisson ratio. The thickness-span ratio is assumed as h/2b = 0-01 since there
is no information of aspect ratio presented in reference [31] and the plate is discretized with
a mesh of 400 FEs for analysis. All units are assumed to be consistent. The frequencies
calculated by using the present shell elements with the aspect ratio show good agreement
with Liew’s results although there are some discrepancies in the higher mode. As a reference
solution, the FE solution obtained by using the shell element S9RS of the ABAQUS [32] is
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TABLE 5

The non-dimensionalized natural frequencies Q, of a plate with the S/C/S/S boundary
condition

n MC TC FS ANSP9 ANSP9a LAG9 ASL9 Present

For the thickness h = 0-1

1 1-:092 1-154 1-092 10919 1-0918 1-0918 1-0918 1-0918
2 2-298 2:521 2:296 2-2969 2-2965 2:2964 2:2965 2:2965
3 2-543 2:862 2:542 2:5425 2-:5420 2-:5419 2:5420 2:5420
4 3616 4-203 3611 36121 3-6108 3:6105 3-6108 3:6108
5 4-187 4-893 4-184 4-1892 4-1859 4-1857 4-1859 4-1859
6 4-543 5525 4-541 4-5475 4-5434 4-5432 4-5434 4-5434
7 — — — 5:3267 5:3216 53208 53216 53216
8 — — — 5-4967 54910 5-4903 54910 54910
9 — — — 6-5521 6:5365 6-5361 6:5365 6-5365
10 — — — 69368 6-9192 6-9189 69192 69192
11 — — — 7-0252 7-0137 7-0118 7-0137 7-0137
12 — — — 7-5256 7-5063 7-5048 7-5854 7-5063
13 — — — 77762 77554 7-7540 77554 77554
14 — — — 9-0236 8:9942 8:9902 8:9942 8:9942

For the thickness h = 0-01

1 0-1153 0-1154 0-1153 0-1153 0-1153 0-1153 0-1153 0-1153
2 0-2521 0-2521 0-2519 0-2519 0-2519 0-2519 0-2519 0-2519
3 0-2858 0-2862 0-2858 0-2859 0-2858 0-2858 0-2858 0-2858
4 0-4190 0-4203 0-4195 0-4197 0-4195 0-4195 0-4195 0-4195
5 0-4889 0-4893 0-4883 0-4890 0-4886 0-4886 0-4886 0-4886
6 0-5533 0-5525 0-5513 0-5522 0-5516 0-5516 0-5516 0-5516
7 — — — 0-6518 0-6511 0-6511 0-6511 0-6511
8 — — — 0-6862 0-6854 0-6854 0-6854 0-6854
9 — — — 0-8255 0-8235 0-8235 0-8235 0-8235
10 — — — 0-9159 0-9136 09136 09136 09136
11 — — — 09162 09142 09142 0-9142 0-9142
12 — — — 0-9840 0-9815 0-9815 0-9815 0-9815
13 — — — 0-1051 1-0478 10478 1-0478 1-0478
14 — — — 0-1245 12404 12623 12623 1-2404

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite
strip solution [25]. ANSPY: assumed strain plate bending element solution using consistent mass [20]. ANSP9a:
assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17].
ASL9: assumed strain shell element [19].

also provided. The natural frequencies and mode shapes of the elliptical plates are presented
in Figures 5, 6 and 7 and Table 8 respectively.

4.4. DOUBLY CURVED SHELL

In this example, the effect of double curvature on the natural frequencies is investigated.
The mid-surface of the shell is defined in the following equation:

1 x2+y2
XxX=——|— —
2\R, 'R,
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TABLE 6

The non-dimensionalized natural frequencies Q, of a plate with the S/C/S/F boundary
condition

n MC TC FS ANSPY9 ANSP9a LAGY ASL9 Present

For the thickness h = 0-1

1 0-603 0-619 0-598 0-5977 0-5977 0-5975 0-5977 0-5977
2 1-495 1-613 1-483 1-4836 1-4835 1-4827 1-4835 1-4835
3 1-900 2:035 1-884 1-8848 1-8845 1-8840 1-8845 1-8845
4 2744 3-075 2:720 2-7220 2:7214 2-7200 27214 27214
5 3-:073 3-533 3-057 3-0595 3-:0584 3-0574 3-0584 3-0584
6 3-855 4-421 3-827 3-8329 3-8299 3-8288 3-8299 3-8299
7 — — — 4-1892 4-1872 4-1846 4-1872 4-1872
8 — — — 4-5709 4-5671 4-5652 4-5671 4-5671
9 — — — 51551 5-1489 5-1479 5-1489 5-1489
10 — — — 59013 5-8948 5-8911 5-8948 5-8948
11 — — — 6-1497 6-1415 6-1381 6-1415 6-1415
12 — — — 62367 6-2218 6-2200 62218 62218
13 — — — 6:8765 6-8598 6:8573 6:8598 6:8598
14 — — — 7-6122 7-5885 7-5874 7-5885 7-5885

For the thickness h = 0-01

1 0-0622 0-0619 0-0619 0-0619 0-0619 0-0618 0-0619 0-0619
2 0-1612 0-1613 0-1611 0-1612 0-1612 0-1610 0-1612 0-1612
3 0-2045 0-2035 0-2033 0-2034 0-2033 0-2032 0-2033 0-2033
4 0-3075 0-3075 0-3070 0-3071 0-3070 0-3067 0-3070 0-3070
5 0-3528 0-3533 0-3526 0-3528 0-3527 0-3525 0-3527 0-3527
6 0-4438 0-4421 0-4413 0-4420 0-4417 0-4415 0-4417 0-4417
7 — — — 0-5024 0-5021 0-5015 0-5021 0-5021
8 — — — 0-5454 0-5459 0-5446 0-5449 0-5449
9 — — — 0-6411 0-6402 0-6399 0-6402 0-6402
10 — — — 0-7438 0-7430 0-7422 0-7430 0-7430
11 — — — 0-7786 0-7768 0-7765 0-7768 0-7768
12 — — — 0-7911 0-7899 0-7891 0-7899 0-7899
13 — — — 0-8809 0-8788 0-8783 0-8788 0-8788
14 — — — 1-0288 1-0252 1-0248 1-0252 1-0252

Note: MC: Reissner-Mindlin thick-plate theory solution [24, 25]. TC: thin-plate theory solution [24, 26]. FS: finite
strip solution [25]. ANSPY: assumed strain plate bending element solution using consistent mass [20]. ANSP9a:
assumed strain plate bending element solution using lumped mass [20]. LAG9: nine-node shell element [17].
ASL9: assumed strain shell element [19].

in which R, and R, are the radii of curvature in the x and y directions respectively. The shell
has curvilinear planform. Two kinds of curvilinear planforms are considered, namely, the
circular (a/b = 1) and elliptical (a/b = 2) planforms. The geometry of the shell is presented in
Figure 8. The shell is assumed to be clamped on its circular or elliptical circumference. The
effect of Gaussian curvature (1/R,R,) is investigated by varying the curvature ratio (R,/R,)
with combination of the wide ranges of shallowness ratio (2b/R,). The Poisson ratio of shells
is v = 0-3 and its thickness ratio is taken as 2a/h = 100-0. The resulting frequencies are
presented in the dimensionless form

Q, = dw,ab(ph/D)/?,
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TABLE 7

The non-dimensionalized natural frequencies Q, of a clamped circular plate

Aspect ratio h/a = 0-01 Aspect ratio h/a = 0-2
Mode
n AS LAG9 ASL9 Present LAGY ASL Present
1 10-2158 10-2135 10-2129 10-2129 7-49398 7-49388 7-49382
2 21-2600 21-2341 212311 21-3110 13-:04010 13-:04010  13-04000
3 34-8800 34-7925 347816 34-7816 1862370 1862300  18:62270
— — 34-8027 347915 347915 18-:62590 1862520  18:62500
4 39:7710 39:6796 39-6766 39-6766 20-52050 20-52130  20-52100
5 51-0400 50-8591 50-8348 50-8348 24-29180 2429140 2429100
6 60-8200 60-6797 606761 60-6761 27-34810 27-35060  27-35030
7 696659 69-3585 693028 69-3027 29-98000 2998520  29-98480
— — 69-3637 693379 69-3379 29-98340 29-98690  29-98650
8 84-5800 84:3196 84:2999 84:2999 3045530 3392340 33-92290
— — 84-3800 84-3835 84-3853 — 3392610 3392560
9 111-0100 889752 889848 889848 3391490 3512680  35-12630
10 140-1080 90-2597 90-2078 90-2078 35:63310 3565090  35:65040
11 110-5830 110-5630 110-5630 40-29730 40-31720  40-31660
12 113-5440 113-4890 113-4890 41-19330 41-23920  41-23850
— 113-5570 113-5020 113-5020 41-19470 41-24180  41-24120
13 119-8420 119-8480 119-8480 42-00430 42:01420  42-01360
14 139-2750 139-2220 139-2220 44-78240 44-78420  44-78340
15 139-3700 139-2280 139-2280 45-12300 4501030  45-00960

139:3920 139-3760 139:3760

Note. AS: analytical solutions [30]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element
[19]. — multiple frequencies associated with axisymmetric modes.

=Y

yan
N~

Figure 4. The geometry of an elliptical plate.
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Figure 5. A clamped elliptical plate with aspect ratio a/b = 2: (a) mode 1-(0) mode 15.

where o, is the natural frequency of the plate, a is the radius of the elliptical plates in the
x direction, b is the radius of the elliptical plates in the y direction, p is the density of the
material, h is the thickness of the shell and the D = Eh3/12(1 — v?) is the flexural rigidity of
the plate in which E is the elastic modulus and v =03 is the Poisson ratio. The
thickness—span ratio is taken as h/2a = 0-01 and the plate is discretized with a mesh of 400
FEs for analysis. All units are assumed to be consistent. The present result is in good
agreement with a reference solution [33] with lower curvature (2b/R,) but there are some
discrepancies in case of shells with higher curvature. To clarify this discrepancies between
the present element and the reference solution [33], the shell element S9RS5 of the ABAQUS
[32] is used to produce new FE reference solution. The present results are in good
agreement with the FE solutions obtained with the ABAQUS. From this study, it was found
that the curvature of the shell greatly affects the free-vibration behaviour. The fundamental
frequencies of the shell are presented in Tables 9 and 10.
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Figure 6. A clamped elliptical plate with aspect ratio a/b = 3: (a) mode 1-(0) mode 15.

4.5. CLAMPED CYLINDRICAL SHELL PANEL

A clamped cylindrical shell is analyzed. It was tested experimentally by Nath [34] and
was also solved numerically by various methods [35-37]. The following material properties
are used: elastic modulus E = 107, the Poisson ratio v = 0-33 and the mass density of
p = 0-096. The thickness of the shell is taken as & = 0-013 and a 10 x 10 FE mesh is used for
analysis. All units are assumed to be consistent. The geometry of the shell is illustrated in
Figure 9.

The two shell elements LAG9 [17], ASL9 [19] are used to produce a reference solutions
and the results are presented in Figures 10 and 11 and Table 11. The frequencies obtained
using the element LAGY are higher than those obtained using the elements ASL9 and the
present element. The present element produces the best agreement with the solution which
is based on the higher order theory [36].
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Figure 7. A clamped elliptical plate with aspect ratio a/b = 4: (a) mode 1-(0) mode 15.

4.6. CYLINDRICAL SHELL: CURVED FAN BLADE

The vibrations of cylindrical shells have been frequently studied because of the
relationship to practical vibration problems such as turbine engine blade. Lee et al. [38]
investigated the behaviour of this structure using the Ritz method based on classical
thin-shallow-shell theory in which the different polynomial terms are used. In addition, the
effects of the aspect ratio (a/b), shallowness ratio (b/R) and width—thickness ratio (b/h) on
the frequencies were also investigated by them. In order to investigate the effect of
span-thickness ratio on the natural frequencies and mode shapes, a moderately thin
(b/h = 100) and shallow shell (b/R = 0-5) is used. First, the effect of aspect ratio (a/b) on the
frequency is investigated with two aspect ratios: (a/b) = 1 and 5. Note that Lim and Liew
[39] also investigated the same problem and it is used here as reference solution in this
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TABLE 8

The non-dimensionalized natural frequencies Q, of a clamped eliptical plates

a/b =2 alb =3 a/b =4
Mode
n Ref Abaqus Present Ref Abaqus Present Ref Abaqus Present
1 274773 272460 272841 56:8995 56:1096 56-3842 97-5984 957492 96-3561
2 394976 392112 393187 71-5902 70-1736 70-9595 115-6080 112-7570 113-8980
3 559773 555036 55:6492 90-2380 88:0596 89-2972 1372690 133-5000 134-9390
4 69-8557 691572 69-3343 1132660 109-6860 111-5840 164-3250 157-2960 159-5900
5 770443 762480 76-4236 140-7460 1355400 137-9990 1953400 184-7760 187-9870
6 880472 86:8140 87-2420 150-0890 1464360 147-6710 255-0950 215-7240 220-2470
7 — 101-5360 101-6943 — 1658040 168-6610 — 2506680 254-0450
8 — 1081620 1087374 —  168-1440 171-2220 — 2506680 2564610
9 — 130-2000 130-6763 — 1937880 1980190 — 2781120 283-2320
10 —  131-3400 131-4431 — 200-5920 203-6420 — 2896200 2966990
11 —  133-1640 133-9560 — 2219760 228-1300 —  310-3320 315-4470
12 — 1536360 154-6886 —  239-8440 2429620 — 3330600 3409870
13 — 1620600 1629953 — 2534160 261-6840 —  343-8240 354-7230
14 — 1655760 1656098 —  277-2000 280-4390 — 3807600 389-1430
15 —  180-7920 182-0875 —  283:3200 286-6140 —  381-0840 389-3490

Note. Ref: analytical solution [31]. Abaqus: FE solution using Abaqus [32].

example. A 10 x 10 FE mesh is used to model the entire shell. The shell geometry is
presented in Figure 12. The result is expressed in non-dimensional form as
» [ph

Q=w,a D
where ), is the natural frequency of the shell, a is the width of the shell, p is the density of the
material, i is the thickness of the shell and the flexural rigidity is D = Eh®/12(1 — v?) in
which E is the elastic modulus and v = 0-3 is the Poisson ratio. The results are compared
with the solution obtained by the Ritz method where six and five polynomial terms are used
in the x and y directions respectively. From the test, the larger aspect ratio produces the
lower frequency and quite different mode shapes are observed. The natural frequencies and
the mode shapes are presented in Table 12 and Figures 13 and 14.

5. CONCLUSIONS

The assumed natural strain nine-node Lagrangian shell element is developed and used to
assess the vibration behaviour of shell structures. The accuracy and efficiency of the
proposed shell FE formulation are tested by six numerical examples. From the numerical
results, the shell element based on the proposed formulation has performed well in most
situations and the results are very close to the theoretical solutions and have a good
agreement with the other reference solutions. It is shown that the present shell element is
applicable to most shell structures which are either the thick or thin case.
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(d) (e) ()

(8] (k) U]

Figure 8. The shell geometries with respect to the parameters (2b/R,, R,/R,): (a) (0-1, — 1-0), (b) (0-1, —1-5),
(¢) (01, 0:0), (d) (0-1, 0-5), (e) (0-1, 1:0), (f) (0-3, — 1-0), (g) (0-3, — 0-5), (h) (0-3, 0-0), (i) (0-3, 0-5), (j) (0-3, 1-0),
(k) (0-5, — 1:0), (1) (0-5, — 0-5), (m) (0-5, 0-0), (n) (0-5, 0-5) and (o) (0-5, 1-0).
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TABLE 9

625

Natural frequencies w, of fully clamped doubly curved shallow shell with circular platform

2b/R, Ry/R.

Mode

1

2

3

4

5

6

01 —10 Pre
Refa

Refb

— 05 Pre
Refa

Refb

00 Pre
Refa

Refb

05 Pre
Refa

Refb

1-0  Pre
Refa

Refb

03 —10 Pre
Refa

Refb

— 05 Pre
Refa

Refb

00 Pre
Refa

Refb

05 Pre
Refa

Refb

1:0 Pre
Refa

Refb

05 —10 Pre
Refa

Refb
—05 Pre
Refa

Refb

00 Pre
Refa

Refb

05 Pre
Refa

Refb

1:0  Pre
Refa

Refb

54-039
54-038
54-100
50-055
50-054
50-111
50-158
50-160
50-268
54-345
54:350
54411
61-729
61-733
61-811

111-790
111-790
54-100
94-021
94-022
94:336
93-484
93-490
93-823
108-600
108-610
109-420
135-540
135-560
139:690

164:310
164-300
166:720
121-860
121-860
123-600
108-740
108-740
110-570
139-490
139-510
141-810
192-790
192-810
196-630

89-795
89-803
90-016
86-729
86-736
86-954
86-066
86-:074
86-300
87-875
87-883
88:120
92-005
92-:016
92-263

121-460
121-460

90-016
100-220
100-220
100-850

94-807

94-814

95-505
111-460
111-470
111-880
135-540
135-560
136:700

164-:310
164-300
166-730
136:580
136-580
137-380
128-750
128770
129770
158:030
158070
159-570
192:790
192:810
196-630

89-795
89-803
90-025
89-487
89-496
89:689
89-760
89-770
89-958
90-607
90-619
90-827
92-005
92-:016
92:278

121-460
121-460

90-025
119-390
119-400
119-830
121-300
121-310
121-680
127010
127-030
127-620
138:790
138-810
139-490

168-850
168-850
170-040
159-460
159-470
160-610
163-650
163:670
164-600
176:510
176:530
178-260
204-510
204-550
206600

140-78
140-77
141-30
140-28
140-27
140-79
140-54
140-53
141-06
141-54
141-54
142-09
143-28
143-27
143-87

153-72
15371
141-30
149-67
149-66
150-56
151-75
151-75
152:69
159-70
159-77
161-12
17298
173-00
174-80

175-35
175-33
178-47
16573
165-73
167-80
170-57
170-58
12773
189-99
190-01
193-08
218-40
21844
223-87

142-68
142-75
14325
141-33
141-40
141-87
140-96
141-03
141-50
141-64
14171
142-19
143-29
143-36
143-89

168-59
168-64
143-25
15599
15604
157-37
152-48
152-54
153-92
159-90
15991
161-17
172-99
173-06
174-82

209-43
209-45
213:66
180:69
180-72
184-72
177-50
177-54
181-58
19770
197-76
201-44
218-41
21848
223-88

160-77
160-81
16143
160-09
160-13
160-73
160-23
160-27
160-87
161-13
161-17
161-80
162-85
162-89
163-58

178-16
178-20
16143
174-85
17490
17574
17697
17702
17777
183-22
183-28
184-46
197-15
197-20
19912

211-73
21176
216:16
20578
205-82
207-40
210-71
210:77
211-93
22524
22531
228-10
260-76
260-87
267-82

204-86
20494
20594
204-28
204-36
205-33
204-26
204:34
205-31
204-82
20490
205-89
20593
206-01
207-06

217-57
217-61
20594
212-53
212-58
214-31
212-40
212-46
214-19
217-27
217-38
219-29
22650
226-60
229-17

23881
238-80
223-57
227-05
227-06
230-93
224-31
224-46
228-90
237-33
237-48
242-40
260-76
260-87
267-83

204-86
204-94
20597
204-29
204-37
205-35
204-27
204:36
205-33
204-82
20491
20591
20593
206-02
207-08

217-57
217-61
20597
21298
213-07
21473
212-50
212:61
214-30
217-31
217-38
219-34
226-50
226-60
22919

23881
23881
223-57
22823
228:32
232-03
226-81
226-84
230-84
238-88
238:94
243-67
262:66
26272
268-64

Note: Pre: present shell element.

Refa: Abaqus [32]. Refb: analytical solution [33].
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TasLE 10
Natural frequencies w, of fully clamped doubly curved shallow shell with elliptical platform

Mode

2b/R, R,/R, 1 2 3 4 5 6 7 8

01 —10 Pre 65-145 84-547 11529 141-63 15551 17594 20520 21846
Refa 65090 84355 11502 14129 15517 17509 20488 217-31

Refb 65350 84952 11606 14276 15688 177-64 20748 22099

— 05 Pre 61706  83-520 11482 13943 15544 17503 20534 218:04
Refa  61-646 83328 11454 13908 15510 17418 20503 21689

Refb 61907 83-893 11550 140-58 15664 17673 207-35 220-53

00 Pre 61-711 83721 11502 13886 15563 17501 20552 21814
Refa  61:656 83-532 11475 13850 15529 17417 20522 217-00

Refb 61919 84-097 11569 14001 15679 17673 20745 22064

05 Pre 65188 85154 11589 13993 156:06 17590 20574 21876
Refa 65141 84972 11562 13958 15573 17506 20543 217-63

Refb 65402 85560 11661 141-10 15731 17765 207-80 221-32

1:0  Pre 71-532 87729 11743 14261 15674 177-67 20599 219-89
Refa 71498 87-554 11717 14227 15641 176:84 20568 21877

Refb 71771 88205 11830 14379 15822 17947 20838 222-56

03 —1.0 Pre 117430 120410 14298 162:55 17449 186:50 21850 225:86
Refa 117-410 120320 14279 16227 17419 18570 21818 22470

Refb 118250 222-050 14573 16461 17822 189:38 22409 22992
—05 Pre 101410 114710 13932 14532 17447 17922 22012 222-37
Refa 101400 114630 139-15 14499 17421 17841 21986 22125

Refb 102-:010 115510 14047 14725 17625 181:69 22295 22564

00 Pre 101200 116070 14024 14093 176:07 17904 22174 223-26
Refa 101-200 116:000 13990 140-78 17584 17825 221-51 22220

Refb 181-820 116:780 141-86 14230 17745 18163 223:86 22660

05 Pre 118310 124830 14723 14936 17932 186:56 223-37  228:57
Refa 118320 124780 147-11 149-06 179-11 18583 223-15 22757

Refb 119-100 125950 148-82 151-57 18161 18951 226:72 23251

1:0 Pre 138260 1409970 16097 170-15 183:89 20036 22492 237-40
Refa 138210 140940 16091 16991 183:67 19972 22468 23645

Refb 140-640 142-340 164-81 172:80 18890 204-37 231-78 24293

05 —1.0 Pre 166100 170240 188-45 194-33 20341 20359 23874 24016
Refa 166-050 170-160 18837 19410 202:68 20333 23758 239-83

Refb 171-660 172-900 197-86 19877 210-10 214-54 24813 25421
—05 Pre 149470 155990 15726 17653 186:85 20581 230-18 24588
Refa 149440 155690 15722 17644 186:09 20564 22910 24569

Refb 151-310 159:610 159-64 179-44 19108 20949 23536 25096

00 Pre 142:560 147-840 160-09 180-54 186:16 210-18 23265 250-42
Refa 142:240 147-810 160-07 18049 18546 21008 23171 250-30

Refb 146-430 149-690 16190 18245 190-61 21242 237-87 25330

05 Pre 165520 176390 176-:58 19395 20493 21685 24605 253-66
Refa 165290 176:340 17658 193-94 204-36 21677 24523 25354

Refb 170-020 178-830 17993 19827 21079 222-04 25333 260-25

1:0 Pre 197740 198940 211-68 22399 22905 23535 25583 26515
Refa 197-740 198910 211-53 22391 22903 23490 25565 26443

Refb  205-170 205-510 21885 23910 239-66 24636 274-52 279-01

Note: Pre: present shell element. Refa: Abaqus [32]. Refb: analytical solution [33].
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Figure 9. A clamped cylindrical shell panel.

TaBLE 11

The Natural frequencies w, of clamped cylindrical panel

n Expt Refa Refb Refc LAGY ASL9 Present
1 814 869-560 890 870 897-142 879-244 878253
2 940 957-560 973 958 989-541 968-427 966972
3 1260 1287-560 1311 1288 1356:33 1302-47 1300-51
4 1306 1363-210 1371 1364 1407-25 137865 137721
5 1452 1440-260 1454 1440 149490 145503 1453-50
6 1802 1755:590 1775 1753 1854-01 1770-87 176854
7 1735 1779-630 1816 1779 1996-44 1802-15 1797-46
— 1770 — — — — — —
8 2100 2056-080 2068 2055 219701 2079-55 2077-21
9 2225 2221750 2234 2218 236894 2242-47 2239-54
10 2280 2295-310 2319 2288 2505-70 2313-59 230638
1 2518 2553120 — 2742-38 2582:36 257377
12 2622 2569-500 — 3002-53 2594-85 2581-58
13 3016 3041-:690 — 3365-68 3069-81 304821
14 3188 3081-280 — 3440-05 3119-12 3107-57
15 3113 3112-900 — 3466-82 3121-52 3111-13
16 3332 3299-670 — 364696 3321-82 3311-50
— 3348 —
17 3403 3485-700 — 4028-54 356475 351792
— 3445 —
18 3699 3686580 — 427726 368492 366825
19 3812 3855-450 — 4303-11 3857-51 3823-05
20 3930 3980-780 — 462568 402797 3970-34

Note: Expt: experiments results [34]. Refa: numerical solution [37]. Refb: numerical solution [35]. Refc:
analytical solution [36]. LAG9: nine-node shell element [17]. ASL9: assumed strain shell element [19].
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Note: Refa: theoretical solution [38]. Refb: theoretical solution [39]. LAG9: nine

assumed strain shell element [19].
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