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This paper concerns wave motion in tunable #uid-"lled beams. The beams comprise two
elastic faceplates with a central core of tunable #uid such as electro-rheological or
magneto-rheological #uid. Free wave propagation is considered and three wave modes are
seen to exist. The corresponding wavenumbers depend on the viscoelastic properties of the
tunable #uid, which in turn depend on the "eld applied to the #uid. Consequently, the
wavenumbers can be controlled. A systematic technique for describing wave transmission
and re#ection in one-dimensional waveguides is described. This involves transformations
between wave amplitudes and waveguide displacements and internal forces. Expressions are
derived which describe wave re#ection at a boundary, re#ection and transmission at
a change in section and re#ection and transmission at an attachment. Numerical results are
presented for electro-rheological #uid-"lled beams and the junction between such a beam
and an Euler}Bernoulli beam. The re#ection and transmission coe$cients also depend on
the applied "eld so that the transmission characteristics are tunable.

( 2001 Academic Press
1. INTRODUCTION

A tunable #uid-"lled beam is a composite beam which comprises elastic faceplates between
which is sandwiched a layer of tunable #uid. Typical examples of such #uids are
electro-rheological (ER) and magneto-rheological (MR) #uids. If no yield takes place, then
these #uids behave like viscoelastic materials whose properties (the shear and loss moduli)
vary, depending on the strength of the electric or magnetic "eld to which they are exposed.

Dynamically, a tunable #uid-"lled beam behaves in the same manner as a composite
beam whose central core is some viscoelastic material [1]. Such beams have been used to
add damping to structures. Their vibration characteristics are, however, "xed at the time of
manufacture. Replacing the central core with a tunable #uid raises the possibility of tuning
the passive vibration characteristics of the beam by changing the "eld to which the tunable
#uid is exposed.

Tunable #uid-"lled beams have been the subject of many recent publications (e.g.,
references [2}10]). In these, the vibrational behaviour was modelled using modal methods.
In this paper, however, a wave approach is adopted. Expressions describing the
propagation, re#ection and transmission of waves are developed. The ultimate aim is to be
able to adaptively control the transmission or absorption of vibration energy in structures
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by appropriately tuning a part of the structure comprising a tunable #uid-"lled beam (see
Harland et al. [2]).

The next section concerns free wave propagation. The tunable #uid-"lled beam is
described by the model of Mead et al. [1]. Three wave modes exist, the wavenumbers
depending on the applied "eld. Then a general method is described by which waveguide
displacements and internal forces can be related to positive- and negative-going wave
amplitudes. The method is then used to determine re#ection and transmission coe$cients at
boundaries, junctions between two waveguides with di!erent sections and point
attachments. Numerical examples are presented for ER #uid-"lled beams and for junctions
between Euler}Bernoulli beams and an ER #uid-"lled beam.

2. TUNABLE FLUIDS AND BEAMS

In this paper, tunable #uids are de"ned to be #uids whose properties, in particular the
viscoelastic properties, are able to be changed. The ability to change the properties of these
#uids is the primary mechanism that will be exploited to create beams whose vibration
characteristics can be tuned. The two most common tunable #uids are ER and MR #uids,
whose shear properties change in response to an electric "eld E and a magnetic "eld
H respectively.

Generally, ER #uids are suspensions of micron-sized dielectric particles (typical
diameters are in the 5}50 km range) in an insulating #uid, that exhibit changing rheological
properties in the presence of an applied electric "eld. When an electric "eld of the order
0)1}5)0 kV/mm (AC or DC depending on the #uid) is applied to the #uid, long ordered
chains of dielectric particles form between the electrodes. The change in rheology of the #uid
occurs within a few milliseconds. Physically, the #uid changes from a viscous oil to an
almost solid gel. In MR #uids, the suspensions of micron-sized particles are usually some
form of soft-magnetic material and the applied "eld is magnetic. In general, the viscoelastic
characteristics of ER #uids are considerably weaker and less tunable than those of MR
#uids (see Weiss et al. [11]).

The pre-yield viscoelastic characteristics of a tunable #uid can in general be modelled for
vibrational analysis by [3]
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where G is the shear modulus and G@ the loss modulus of the #uid, A
0
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1
, B, C

0
, C

1
and

D are constants and F is the applied "eld.

2.1. TUNABLE FLUID-FILLED BEAMS

The tunable #uid-"lled beams in this paper comprise a layer of tunable #uid sandwiched
between two solid elastic layers (see Figure 1). Physical properties of the beam can be
changed by tuning the viscoelastic properties of the tunable #uid. The beam can form one
component of a larger structure.

Most previous vibrations-related research concerns structures that incorporate ER #uids,
rather than MR #uids and all analyses proceed along modal lines. Ghandi et al. [4], Coulter
et al. [5], Choi et al. [6] all studied cantilevered ER #uid-"lled beams. Signi"cant changes in
the natural frequencies of the beams occur in response to an applied electric "eld. Control
methods based on a modal description are then developed to tune the applied "eld to
minimize vibrations at the tip for discrete frequency excitation.



Figure 1. Tunable #uid-"lled beam.
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Haiqing et al. [7] considered a cantilever beam with an ER #uid patch acting as a spring
of variable sti!ness midway along its length. It was concluded that the beam was more
sensitive to changes in the applied electric "eld than a cantilevered beam completely "lled
with ER #uid. Don [8] conducted experimental investigations into the vibrations of ER
adaptive beam-like and plate-like structures with various boundary conditions. The model
of Mead et al. [1] was used to predict the response. Oyadiji [9] experimentally studied the
dependence of the vibrational response on the area of an ER #uid patch. He concluded that
the area covered has a larger e!ect than varying the electric "eld applied to the #uid.

Yalcintas [3] developed models to describe ER beams with various boundary conditions
and with di!erent electric "elds being applied to di!erent regions of the beam. The model of
Mead et al. [1] was used here also and was seen to be applicable to a number of di!erent
beam con"gurations. Theoretical results were validated by experiment. Neural network
models were also developed to control the ER beam. Finally, Lee [10] modelled ER beams
with various boundary conditions using a "nite element approach.

3. TUNABLE FLUID-FILLED BEAM MODEL

A number of con"gurations exist for beams "lled with tunable #uids. The particular
con"guration used in this paper is the three-layer sandwich beam shown in Figure 1. In this
section, a model of this beam is presented following the work of Mead et al. [1] which
concerns three-layer sandwich beams with a viscoelastic core. In this paper, the shear
properties of the tunable #uid are given by equations (1). This pre-yield assumption was
shown to be valid for ER beams by Yalcintas [3]. In her work, she showed that the
maximum strain experienced in ER #uid-"lled beams is of the order of 10~4, whereas the
yield strain was approximately 10~3.

Consider a composite beam comprising two elastic outer layers between which is
sandwiched a layer of viscoelastic material or tunable #uid (see Figure 2). The elastic face
plates are of thicknesses h

1
and h

3
. The viscoelastic layer is of thickness h

2
. All layers are of

equal width ¸
y

and have length ¸
x
.

The same assumptions as Mead et al. [1] are made concerning the material properties
and the deformation of the beam. The elastic outer layers are undamped, isotropic and have
Young's moduli E

1
and E

3
. These layers experience no shear deformation normal to the

beam surface. The viscoelastic layer carries shear but no direct stress and has a shear
modulus G

2
and a loss factor b. Longitudinal and rotary inertia is neglected in all of the



Figure 2. Cross-section of a tunable #uid-"lled beam (a) before and (b) after deformation.
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layers and the densities of each layer are given by o
1
, o

2
and o

3
. The whole sandwich beam

is assumed to be in pure bending and hence the overall longitudinal force on the beam
section is zero. No slip is assumed to occur at the interfaces of the viscoelastic core and
elastic layers. All points on a normal to the beam move with the same transverse
displacement w. The longitudinal displacement of the midpoints of the elastic layers are
given by u

10
and u

30
(see Figure 2). Henceforth, it is assumed that the outer layers are

identical, so that h
1
"h

3
, etc.

If a distributed load p(x, t) acts on the beam then [1]
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where EI, mN , g and> are the total bending sti!ness of the beam, the mass per unit length, the
shear parameter and the geometric parameter respectively.
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The longitudinal displacements are given by
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The net shear force on the section is
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while the bending moment
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The axial forces experienced by the top and bottom elastic layers, N
1

and N
3
, are given by
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3.1. WAVE PROPAGATION IN TUNABLE FLUID-FILLED BEAMS

Consider the free vibration problem. A displacement of the form

w (x, t)"ae*(ut~kx) (8)

is assumed.
Consequently, the dispersion equation is given by

!k6!g (1#>)k4#
mN
EI

k2u2#g
mN
EI

u2"0. (9)

Equation (9) is cubic in k2 and thus three pairs of positive- and negative-going waves exist,
with wavenumbers k

j
, j"1, 2, 3 which are in general complex. In general, the motion is

a superposition of all the wave components so that the displacement, for example, can be
written as

w (x, t)" +
j/1,3

(a`
j

e~*kjx#a~
j
e`*kjx)e*ut, (10)

where a`
j

and a~
j

are the amplitudes of the positive- and negative-going components of the
jth wave mode.

From equation (9) it follows that
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and hence the phase and group velocities are
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respectively. Note that since> is positive then the group speed is always less than twice the
phase speed.

3.2. NUMERICAL EXAMPLE

Consider an ER #uid-"lled beam with aluminium elastic layers and unit width. The
properties of the beam are given in Table 1. The shear properties of the ER #uid are taken
from Don [8].

Figure 3 shows the real and imaginary parts of the wavenumber for positive travelling
waves at u"10 rad/s, as functions of applied electric "eld. Results at other frequencies
(u(1000 rad/s) are qualitatively similar. The wavenumbers are complex. The real and
imaginary parts are related to the phase and attenuation of the wave with distance.

There are three wave modes. For small electric "elds wave mode 1 propagates freely with
large phase change and attenuates relatively gradually. It can transport energy relatively
freely over large distances. Wave mode 2, on the other hand, behaves like a bending near
"eld, having a relatively large imaginary part and a small real part. It thus attenuates
rapidly with distance and generally propagates little energy. Wave mode 3 behaves like
a &&push}pull'' axial wave motion in the outer layers. Like wave mode 2, it has small phase
changes and attenuates rapidly with distance. At higher "elds wave 1 continues to
propagate freely but it now has somewhat less attenuation. Wave modes 2 and 3 continue to
have small phase changes but both attenuate more rapidly.

Assuming a displacement of unit magnitude (i.e., Dw D"1), then the slope w@ for each wave
mode is shown in Figure 4. The corresponding shear force is shown in Figure 5. Both "gures
show a dependence on the applied "eld.

Both rotation and axial motion determine the shear within the viscoelastic layer and
consequently the deformation that the ER beam experiences. Typical features of the
deformed shape of the cross-section at high and low electric "eld strengths are shown in
Figure 6. At low "eld strengths the deformations caused by wave modes 1 and 2 are
dominated by w@ and the beam deforms under these wave types as if the face plates are
bending independently with the same displacement and slope. These wave modes are thus
analogous to the propagating and near"eld bending wave modes that exist in
Euler}Bernoulli beams. On the other hand, the core strain of wave mode 3 is dominated by
u
10

and represents a deformation where a large shearing action occurs in the viscoelastic
layer.
TABLE 1

Properties of the ER -uid-,lled beam
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Figure 3. (a) Real and (b) imaginary parts of wavenumbers, u"10:==, wave mode 1; } }, wave mode 2; } ) },
wave mode 3.
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As the "eld increases, however, there is a change in the deformed shape of each
wave mode. In wave modes 1 and 2 the core strain is spread more evenly between w@ and u

10
and the beam deforms more as a single plane surface. In wave mode 3 the core strain is
again spread more evenly but, because w@ and u

10
are out of phase by 1803, the core strain

is larger than that experienced by the other wave types. These changes in behaviour
with electric "eld are due to the sti!ening of the #uid layer. With a low "eld the viscoelastic
properties of the ER #uid are weak and therefore the #uid transmits little shear stress
to the face plates and consequently contributes little to the motion of the beam. With
a higher "eld the #uid is considerably sti!er and thus the transmitted shear stress a!ects
the deformation.

The changes in the behaviour exhibited by each wave mode are also seen in the change
in the phase and group speeds. The phase speeds for each wave mode type are shown
(see Figure 7). We see that as the electric "eld increases then phase speeds of wave
modes 1 and 2 vary little with the applied electric "eld. Conversely, the phase speed of
wave mode 3 increases rapidly. Relative to wave mode 1, wave modes 2 and 3 propagate
little energy.



Figure 4. Magnitude of rotation per unit translation, u"10:==, wave mode 1; } }, wave mode 2; } ) }, wave
mode 3.

Figure 5. Magnitude of shear force per unit translation, u"10:==, wave mode 1; } }, wave mode 2; } ) },
wave mode 3.
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4. GENERALIZED WAVES AND THE STATE OF A WAVEGUIDE SECTION

In general, a number of di!erent wave modes may exist in a waveguide. In this section,
a general, systematic approach is described which enables the wave amplitudes to be related
to the displacements and internal forces in the waveguide. Later this approach is adopted to
determine re#ection and transmission coe$cients at boundaries, discontinuities and
junctions between beams.

4.1. WAVE AMPLITUDE VECTORS

It is convenient to group the amplitudes of the waves at a cross-section of a waveguide
into vectors of positive and negative going waves. For a waveguide carrying n di!erent wave



Figure 6. Characteristics of deformation of tunable #uid-"lled beam for each wave mode, u"10.

Figure 7. Phase speed, u"10:==, wave mode 1; } }, wave mode 2; } )}, wave mode 3.
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types the amplitudes of the positive and the negative travelling waves a` and a~ at
a cross-section can be written as
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Speci"cally, the wave amplitude vectors for Euler}Bernoulli beams and are given by
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where a$

P
and a$

N
represent the amplitudes of the propagating and near"eld waves while for

tunable #uid-"lled beams
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4.2. STATE OF A SECTION IN TERMS OF WAVE COMPONENTS

It is possible to write expressions for the displacements and internal forces at
a cross-section of a waveguide, using the wave amplitude vectors described in the previous
section. As an example consider an Euler}Bernoulli beam. Suppressing time dependence,
then the displacement of a cross-section can be written as

w"[1 1] a`#[1 1]a~, (17)

while the slope is given by
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Similarly, the shear force and bending moment are given by
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As a second example, consider tunable #uid-"lled beams. The three degrees of freedom of
the cross-section are related to the vectors of wave amplitudes by
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is the axial deformation per unit wave amplitude produced by the jth wave type.
Similarly, the corresponding internal forces are given by
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where
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4.3. DISPLACEMENT AND INTERNAL FORCE VECTORS

The degrees of freedom of the cross-section and the corresponding generalized internal
forces describe the state of the cross-section at any point and can be related to the wave
amplitudes straightforwardly. It is convenient to group the displacements into a vector,
termed the displacement vector, W. Similarly, the internal forces and moments can be
grouped into the internal force vector, F. Corresponding entries in W and F give
a generalized displacement and its corresponding generalized force.

For an Euler}Bernoulli beam

W"G
w

Lw/LxH (27)

and

F"G
Q

MH . (28)

For a tunable #uid-"lled beam the displacement and internal force vectors are given by
equations (21) and (23).

Let us de"ne W` and W~ as displacement matrices for waves travelling in the positive and
negative x directions, respectively, such that

W"W`a`#W~a~. (29)

In a similar way, U` and U~ are de"ned as internal force matrices for waves travelling in the
positive and negative x directions, respectively, so that

F"U`a`#U~a~. (30)

The positive- and negative-going displacement matrices are related to each other such that

W~"tW`, (31)

where t is a diagonal matrix whose elements are $1, relating the phases of the positive-
and negative-going wave components.

Similarly, the positive- and negative-going internal force matrices are related by

U~"/U`, (32)
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where

/"!t. (33)

For an Euler}Bernoulli beam these matrices are given by
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while for tunable #uid-"lled beams the matrices are given by equations (21), (23) and

t"

1 0 0

0 !1 0

0 0 !1

, /"

!1 0 0

0 1 0
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The displacement and internal force matrices indicate the contribution that wave
components travelling in a particular direction make to the waveguide deformations and
internal forces.

4.4. TIME-AVERAGED ENERGY FLOW

The time-averaged energy #ow P in a cross-section is given in terms of the displacement
and internal force vectors by

P"!1
2
ReMiuWHFN. (37)

where H is the Hermitian operator. Substituting for the displacement and internal force
vectors from equations (34) and (35) gives

P"!1
2
u ImMa`HW`HU`a`#a~HW~HU~a~#a~HW~HU`a`#a`HW`HU~a~N . (38)

The time-averaged energy #ow has four components. The "rst two arise from the waves
travelling in either the positive or the negative x directions, while the other two terms arise
from the interaction of these waves.

5. WAVE REFLECTION AND TRANSMISSION

Generally, beams are used to form members of a larger structure. Beams are "nite in
length, have boundaries and may have discontinuities along their length. If a wave in
a beam is incident upon a boundary then it is re#ected and if it is incident upon
a discontinuity then it will be re#ected and transmitted. In general, an incident wave of
a particular wave mode is scattered into all wave modes that the particular waveguide can
carry. The amplitudes of the re#ected and transmitted waves are given by re#ection and
transmission matrices. These matrices are determined for a particular discontinuity by the
particular discontinuity and equilibrium equations applicable for that discontinuity. This
section concerns the re#ection and transmission of waves at various boundaries and
discontinuities.
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5.1. BEAM BOUNDARIES

Suppose waves à are incident upon a boundary of a waveguide as shown in Figure 8.
They give rise to re#ected waves a~. Equilibrium equations can always be written such that

AF#BW"0, (39)

where A and B are matrices whose elements may involve sti!ness, damping, etc. and are in
general complex and frequency dependent. In terms of the incident waves the re#ected
waves are given by

a~"raaa`. (40)

It then follows that

raa"!(AU~#BW~)~1 (AU`#BW`) (41)

is the re#ection matrix that gives the amplitudes of the re#ected waves in terms of those of
the incident waves. The superscript indicates that waves in waveguide a are re#ected into
waves in waveguide a. Unless raa is a diagonal matrix then wave mode conversion occurs, in
that an incident wave of one type will be scattered into waves of all types.

Consider the case of a waveguide with a free end. Since the end is free then the vector of
internal forces is zero. Consequently,

A"I, B"0, (42)

where I and 0 are the identity and the null matrices respectively. The re#ection matrix is
therefore given by

raa
F
"!(U~)~1U`. (43)

Similarly, if the boundary is clamped then the displacement vector is zero and therefore

A"0, B"I (44)

and hence the re#ection matrix is given by

raa
C
"(W~)~1W`. (45)

In a similar way, re#ection coe$cients can be found for end conditions that have
attachments such as springs, dampers, masses and dynamic absorbers.
Figure 8. Wave re#ection from a boundary.
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5.1.1. Re-ections from tunable -uid-,lled beam boundaries

Consider the re#ection of waves from a boundary of a tunable #uid-"lled beam. The
re#ection matrices for free and clamped boundaries of these beams are given by equations
(43) and (45) respectively. For a simply supported boundary the beam is physically
constrained so that w"M"0. Since the beam is free to rotate N

1
is also zero. Therefore, in

this case,

A"

0 0 0

0 1 0

0 0 1

, B"

1 0 0

0 0 0

0 0 0

. (46)

The re#ection matrix is given by

raa
S
"!

1 1 1

MI (!k
1
) MI (!k

2
) MI (!k

3
)

NI
1
(!k

1
) NI

2
(!k

2
) NI

3
(!k

3
)

~1 1 1 1

MI (k
1
) MI (k

2
) MI (k

3
)

NI
1
(k

1
) NI

2
(k

2
) NI

3
(k

3
)

, (47)

which reduces to

raa
S
"!I. (48)

Note as is the case with Euler}Bernoulli beams wave mode conversion does not occur since
raa
S

is diagonal. Note that this re#ection matrix holds for Euler}Bernoulli beams. The only
di!erence is, however, that the identity matrix for Euler}Bernoulli beams is 2]2 as opposed
to the 3]3 size for #uid-"lled beams.

5.1.2. Numerical example

As an example, consider wave re#ection from a free end of the ER #uid-"lled beam
described in section 3. Figure 9 shows various components of the re#ection matrix raa

F
for an

incident mode 3 wave at u"10 as a function of the applied electric "eld. Note that the
re#ection coe$cients depend upon the electric "eld. Consequently, an applied electric "eld
can be used to alter the wave re#ection characteristics in ER #uid-"lled beams. Similar
variations in structural parameters can be achieved in tunable structural elements in
general.

5.2. JUNCTIONS BETWEEN BEAMS

When waveguides form part of a structure it is not uncommon for them to experience
discontinuities along their length. These discontinuities can include attachments such as
springs, dampers, etc., a change in section and so on. If a wave is incident upon any
discontinuity then it will be scattered, being partly re#ected and partly transmitted. In
general, wave mode conversion occurs, in that an incident wave of one mode will be
scattered into waves of all modes. This is equally true when a wave is incident upon
a junction between waveguides of di!erent types.

Consider the junction j between two waveguides, a and b (see Figure 10). The number of
wave modes in beams a and b are n

a
and n

b
; n

a
does not necessarily equal n

b
. Incident waves

of amplitude a`
j
and b~

j
at the junction are scattered into waves a~

j
and b`

j
.



Figure 9. (a) Real part and (b) imaginary part of the re#ection coe$cients for a wave mode 3 wave incident
upon a free boundary, u"10:==, raa

F
(k

1
); } }, raa

F
(k

2
); } ) }, raa

F
(k

3
).

Figure 10. Waves at a junction j.
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At the junction, the displacement vector for waveguide a is given by

W
a
"W`

a
a`
j
#W~

a
a~
j

(49)

and the internal force vector is given by

F
a
"U`

a
a`
j
#U~

a
a~
j

(50)

with similar expression holding for beam b.
Since waveguides a and b are physically connected then there are continuity and

equilibrium relations at the junction. These are given by

C
a
W

a
"C

b
W

b
(51)

and

E
a
F
a
"E

b
F
b
, (52)

respectively, where C
a,b

are continuity matrices and E
a,b

are equilibrium matrices.
Equations (49) and (50) and the continuity and equilibrium equations (51) and (52), give

C
!C

a
W~

a
!E

a
U~

a

C
b
W`

b
E
b
U`

b
D G

a~
j

b`
j
H"C

C
a
W`

a
E

a
U`

a

!C
b
W~

b
!E

b
U~

b
D G

a`
j

b~
j
H . (53)

Assuming that the matrix on the left-hand side is invertible then

G
a~
j

b`
j
H"C

!C
a
W~

a
!E

a
U~

a

C
b
W`

b
E
b
U`

b
D
~1

C
C

a
W`

a
E
a
U`

a

!C
b
W~

b
!E

b
U~

b
D G

a`
j

b~
j
H . (54)

Note that equation (54) is in the form

G
a~
j

b`
j
H"T G

a`
j

b~
j
H , (55)

where T is the scattering matrix given by

T"C
raa
j

tab
j

tba
j

rbb
j
D , (56)

where r and t are re-ection and transmission matrices, respectively, the superscripts
identifying the waveguides of the incoming and outgoing waves respectively.

If n
a
)n

b
then by simplifying equation (54) using its partitioned matrix inverse and then

comparing the result to equation (56), the re#ection and transmission matrices are found to
be given by

raa
j
"(!E

a
U~

a
#E

b
U`

b
(C

b
W`

b
)~1C

a
W~

a
)~1(E

a
U`

a
!E

b
U`

b
(C

b
W`

b
)~1C

a
W`

a
),

tab
j
"(C

b
W`

b
)~1 (C

a
W`

a
#C

a
W~

a
raa
j

),

tba
j
"(E

a
U~

a
!E

b
U`

b
(C

b
W`

b
)~1C

a
W~

a
)~1 (E

b
U~

b
!E

b
U`

b
(C

b
W`

b
)~1C

b
W~

b
),

rbb
j
"(C

b
W`

b
)~1 (!C

b
W~

b
#C

a
W~

a
tba
j

). (57)

If n
b
*n

a
, similar equations hold with the sub- and superscripts a and b reversed.
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5.2.1. Junction between an Euler}Bernoulli beam and a tunable -uid-,lled beam

As an example, consider the junction between an Euler}Bernoulli beam a and a tunable
#uid-"lled beam b. From continuity at the junction, the slopes, displacements and the axial
deformation on both sides of the junction must equal each other. As a consequence, the
continuity matrices are given by

C
a
"

1 0

0 1

0 1
2
d

, C
b
"

1 0 0

0 1 0

0 0 1

. (58)

From equilibrium the shear forces and the bending moments on both sides of the junction
must also equal each other while the net axial force is zero. Hence,

E
a
"C

1

0

0

1D , E
b
"C

1

0

0

1

0

0D . (59)

5.2.2. Numerical example

Consider the junction between an Euler}Bernoulli beam and an ER #uid-"lled beam. In
this example, the Euler}Bernoulli beam is made of aluminium. It is assumed to be of unit
width with its remaining properties given in Table 2. The ER #uid-"lled beam is described
in section 3.4.

Figures 11 and 12 show the re#ection and transmission coe$cients for an incident
propagating wave in the Euler}Bernoulli beam. Note that the incident wave is scattered
into all three modes in the ER #uid-"lled beam (although the amplitude of the mode 2 wave
is small) as well as being re#ected into both propagating waves and near "elds in the
Euler}Bernoulli beam. From Figure 11 it is seen that about half of the incident energy is
re#ected and that a relatively small re#ected near "eld is produced.

Note also that it is possible to tune the #uid properties to achieve desired re#ection and
transmission characteristics. As an example, applying an electric "eld of 1)366 kV/mm
causes a re#ected propagating wave of minimum amplitude.

5.3. LOCALIZED ATTACHMENTS

As a "nal case, consider re#ection and transmission at a junction where a spring, mass,
damper, etc. has been attached to a junction between two waveguides a and b. In this
situation, the continuity equation is given by equation (51) while the equilibrium equation is
given by

F
b
!F

a
"KW

a
, (60)
TABLE 2

Material and geometric properties of the Euler}Bernoulli beam

h E o

5]10~3 7)27]1010 2)7]103



Figure 11. (a) Magnitude and (b) phase of the re#ection matrix coe$cients for a propagating wave incident
upon a junction between an Euler}Bernoulli and an ER #uid-"lled beam, u"10:==, propagating; } }, near
"eld.
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where K is a dynamic sti!ness matrix that may be complex and frequency dependent,
depending on the type of attachments.

In this situation, the re#ection and transmission matrices of the discontinuity are given by

raa
j
"(!KW~

a
!E

a
U~

a
#E

b
U`

b
(C

b
W`

b
)~1C

a
W~

a
)~1 (KW`

a
#E

a
U`

a
!E

b
U`

b
(C

b
W`

b
)~1C

a
W`

a
),

tab
j
"(C

b
W`

b
)~1 (C

a
W`

a
#C

a
W~

a
raa
j

),

tba
j
"(KW~

a
#E

a
U~

a
!E

b
U`

b
(C

b
W`

b
)~1C

a
W~

a
)~1(E

b
U~

b
!E

b
U`

b
(C

b
W`

b
)~1C

b
W~

b
),

rbb
j
"(C

b
W`

b
)~1 (!C

b
W~

b
#C

a
W~

a
tba
j

). (61)



Figure 12. (a) Real part and (b) imaginary part of the transmission matrix coe$cients for a propagating wave
incident upon a junction between an Euler}Bernoulli and an ER #uid-"lled beam, u"10: ==, tab

j
(k

1
);

} }, tab
j

(k
2
); } ) }, tab

j
(k

3
).
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When there is no junction and the waveguide is uniform (i.e., waveguides a and b are
identical) then

raa
j
"!(KW~

a
#2U~

a
)~1KW`

a
"t (tba

j
!I)"rbb

j
,

tab
j
"I#traa

j
"(KW~

a
#2U~

a
)~12U~

a
"tba

j
. (62)

It can be shown that a junction with localized attachments can be modelled as two
discontinuities separated by zero distance, one discontinuity being a uniform waveguide
with localized attachments, the other being a junction without attachments. The order of
the discontinuities does not matter. The resulting net re#ection and net transmission
matrices are the same as those given by equations (57).
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6. CONCLUSIONS

This paper considered wave motion in tunable #uid-"lled beams. Expressions for the
wavenumbers and the re#ection and transmission coe$cients were derived, the latter using
a matrix method which is applicable to wave analysis in general one-dimensional
waveguides. Numerical results were presented for an ER #uid-"lled beam and for the
junction between an Euler}Bernoulli beam and an ER #uid-"lled beam.

The important feature that distinguishes this structural element from more traditional
passive components is that the characteristics of the wave motion, i.e., the wavenumbers,
and re#ection and transmission coe$cients, are tunable to an extent by varying the electric
or magnetic "eld to which the tunable #uid is exposed. In a subsequent paper [2], this
behaviour is exploited by incorporating a tunable beam within a larger structure, the aim
being to tune the vibrational behaviour of the structure as a whole.
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