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Vibration characteristics of a rotor-bearing system with pedestal looseness are
investigated. A non-linear mathematical model containing sti!ness and damping forces with
tri-linear forms is considered. The shooting method is used to obtain the periodic solutions
of the system. Stability of these periodic solutions is analyzed by using the Floquet theory.
Period-doubling bifurcation and Naimark}Sacker bifurcation are found. Finally, the
governing equations are integrated using the fourth order Runge}Kutta method. Di!erent
forms of periodic, quasi-periodic and chaotic vibrations are observed by taking the rotating
speed and imbalance as the control parameter. Three kinds of routes to or out of chaos, that
is, period-to-chaos, quasi-periodic route and intermittence, are found.
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1. INTRODUCTION

In diagnosing mechanical faults of rotating machinery, it is very important to know the
vibration feature of the machine with various forms of fault. A rotor system with fault is
generally a complicated non-linear vibrating system. Its vibration is in a very complex form.
A comprehensive investigation on periodic, quasi-periodic and chaotic vibrations of the
rotating system with faults will be very bene"cial to the e!ective fault diagnostics of rotating
machinery. Pedestal looseness is one of the common faults that occur in rotating machinery.
It is usually caused by the poor quality of installation or long period of vibration of the
machine. Under the action of the imbalance force, the rotor system with pedestal looseness
will have a periodic beating. This will generally lead to a change in sti!ness of the system
and the impact e!ect. Therefore, the system will often show very complicated vibration
phenomenon.

There have been very few publications on this topic. Goldman and Muszynska [1]
performed experimental, analytical and numerical investigations on the unbalance response
of a rotating machine with one loose pedestal. The model was simpli"ed as a vibrating
system with bi-linear form. Synchronous and subsynchronous fractional components of the
response were found. In a subsequent paper [2], they discussed the chaotic behavior of the
system based on the bi-linear model.

In this paper, a simple rotor system with a disk in the middle span and with the pedestal
looseness in one support is investigated theoretically. We think that the sti!ness and
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damping of the foundation to the pedestal can actually be divided into three parts while the
system is vibrating. Therefore, the system is simpli"ed as a model of di!erential equations
with tri-linear forms of sti!ness and damping. The shooting method is used to calculate the
stable periodic solutions of the system. The Floquet theory is used to analyze stability and
bifurcation of the periodic solutions. Finally, the equations are integrated by using the
fourth order Runge}Kutta method to discuss the periodic, quasi-periodic and chaotic
vibrations of the system, and the relevant phenomena. The rotating speed and imbalance
are used as control parameters to investigate the bifurcation characteristics.

2. FORMULATION

The model discussed is a simple rotor system as shown in Figure 1. The rotor is supported
on identical oil "lm bearings at both sides. The equivalent lumped mass in the position of
the disk is 2m. The shaft sections between disk and bearings are considered massless and
elastic. It is assumed that the left support has pedestal looseness, the maximum static gap of
the looseness is d, and mass of the pedestal involving looseness is M. Values for the
parameters of the system used in the analysis and the subsequent simulation are as follows:

2m"5 kg, c"0)8]103 Ns/m, k"0)34]106 N/m,

u"0)5]10~4 m, d"0)8 mm, M"8 kg,

c
f1
"0)2]104 Ns/m, c

f2
"0)2]104 Ns/m, c

f3
"0)2]104 Ns/m,

k
f1
"0)4]108 N/m, k

f2
"0)1]103 N/m, k

f3
"0)8]106 N/m,

k"0)015 Ns/m2, R"50 mm, ¸"10 mm, c
l
"0)1 mm, g"9)81 N/kg.

Based on these values the "rst undamped natural frequency of the rotor system is obtained

as n
1
"Jk/m"3521)6 r.p.m., or u

1
"368)8 1/s.

2.1. OIL FILM FORCES OF THE BEARING

For the plain bearing, the housing is constrained from rotating. The Reynolds equation
for the short-bearing approximation is given in both "xed co-ordinates [3] by

L
LzC

h3

k
Lp

LzD"6u
Lh

Lh
#12

Lh

Lt
,

Figure 1. Schematic of the rotor-bearing system.



Figure 2. Schematic of the oil "lm bearing.
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where h is the "lm thickness and is given by h"c
l
!x cos h!y sin h, as shown in Figure 2,

p is the oil "lm pressure, z, the axial co-ordinate, k, the oil viscosity, u, the rotating speed, c
l
,

the bearing clearance, and t, the time.
Integrating the equation for z yields

p (h, z)"
3k
h3

[z2!¸z]Cu
Lh

Lh
#2

Lh

LtD,
where ¸ is the bearing length. The total force components in the x and y directions can be
obtained by integrating the pressure over the entire journal surface as follows:

G
P

x
(x, y, xR , yR )

P
y
(x, y, xR , yR )H"P

2n

0
P

L@2

~L@2

p (h, z)G
cos h
sin hHR dzdh.

Finally, the two forces can be written as

P
x
(x, y, xR , yR )"!knR¸3C

uy#2xR
2(c2

l
!x2!y2)3@2

#

3x (xxR #yyR )
(c2

l
!x2!y2)5@2D,

(1)

P
y
(x, y, xR , yR )"!knR¸3C

2yR !ux

2(c2
l
!x2!y2)3@2

#

3y (xxR #yyR )
(c2

l
!x2!y2)5@2D.

2.2. GOVERNING EQUATIONS

It is assumed that the radial displacements in the right-bearing position are x
1
, y

1
, in the

disk position x
2
, y

2
, and in the left-bearing position x

3
, y

3
. The small movement of the left

pedestal in the horizontal direction is considered negligible and its displacement in the
vertical direction is assumed as y

4
. The di!erential equations for the system can then be

written as

c(xR
1
!xR

2
)#k(x

1
!x

2
)"P

x1
(x

1
, y

1
, xR

1
, yR

1
),

c(yR
1
!yR

2
)#k (y

1
!y

2
)"P

y1
(x

1
, y

1
, xR

1
, yR

1
),
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2
!xR

1
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2
!xR
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2
!x

1
)#k (x

2
!x

3
)"2muu2 cos ut,
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2
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1
)#c (yR

2
!yR

3
)#k(y

2
!y

1
)#k (y

2
!y

3
)"2muu2 sinut!2mg ,

c(xR
3
!xR

2
)#k(x

3
!x

2
)"P

x3
(x

3
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3
!y

4
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3
, yR

3
!yR

4
),

c(yR
3
!yR

2
)#k (y

3
!y

2
)"P

y3
(x

3
, y

3
!y

4
, xR

3
, yR

3
!yR

4
),

MyK
4
#c

f
yR
4
#k

f
y
4
"!P

y3
(x

3
, y

3
!y

4
, xR

3
, yR

3
!yR

4
)!Mg,

(2)

where the change in the unbalance of the rotating disk and shaft caused by the looseness gap
is neglected. In the above equation c is the damping coe$cient of shaft, k the sti!ness
coe$cient, u the unbalance, P

x1
, P

y1
the oil "lm force components of the right bearing in the

x and y directions, P
x3

, P
y3

of the left bearing, and c
f
, k

f
are the damping and sti!ness

coe$cients of the foundation or the joint to the pedestal. When the looseness occurs, these
two coe$cients can be expressed by

c
f
"

i
g
j
g
k

c
f1

, y
4
(0,

c
f2

, 0)y
4
)d,

c
f3

, y
4
'd,

k
f
"

i
g
j
g
k

k
f1

, y
4
(0,

k
f2

, 0)y
4
)d,

k
f2
#k

f3
!k

f3

d
y
4

, y
4
'd,

(3)

where the sti!ness and damping actions are considered in three parts. When y
4
"0, the

pedestal is in contact with the foundation. y
4
(0 means that the pedestal and the

foundation are in compression state and the impact is considered elastic. y
4
'd describes

the extension of the joint and also the deformation of the joint is assumed as elastic.
Equation (2) including equation (3) is a non-linear vibrating system with piecewise-linear
sti!ness and damping.
If one assumes that

ut"q,
d

dq
"@,

x
1
"s

1
, y

1
"s

2
, x

2
"s

3
, x

2
@"s

4
, y

2
"s

5
, y

2
@"s

6
, (4)

x
3
"s

7
, y

3
"s

8
, y

4
"s

9
, y

4
@"s

10

and

D
1
"nkR¸3, D

2
"(c2

l
!x2

1
!y2

1
)3@2, D

3
"(c2

l
!x2

1
!y2

1
)5@2 ,

D
4
"[c2

l
!x2

3
!(y

3
!y

4
)2]3@2, D

5
"[c2

l
!x2

3
!(y

3
!y

4
)2]5@2, (5)

then equation (2) can be transferred into a set of "rst order di!erential equations in the form
of S@"f (S, S@, q) as

s@
1
"(D

8
D

9
!D

7
D

10
)/(D

6
D

9
!D

7
D

7
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"(D
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D
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, s@
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6
!s@

2
!s@

8
)!k(2s

5
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2
!s

8
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7
"(D

13
D
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!D

12
D

15
)/(D

11
D

14
!D

12
D

12
), (6)

s@
8
"(D

11
D

15
!D

12
D

13
)/(D
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D

14
!D

12
D
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,
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10
"!

1
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(c

f
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10
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s
9
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D
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2D
4
D
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5
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8
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8
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!s
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8
!s
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In equation (6), some of the right-hand terms contain derivatives. In performing numerical
integration, one can compute s@

1
, s@

2
, s@

7
, s@

8
"rst, then use the obtained results to calculate

other derivatives. In this way, the problem S@"f (S@,S, q) can be processed by using the same
method as in the form of S@"g (S, q).

3. BIFURCATION AND STABILITY ANALYSIS

Equation (6) is a non-linear vibrating system with seven degrees of freedom and with
piecewise-linear form. Because of these features, when performing a theoretically qualitative
analysis it is very di$cult to discuss the equations of motion in an analytical way and
impossible to obtain the solutions in a closed form. Therefore, numerical methods have to
be resorted.

There have been several methods for determining the periodic response of the non-linear
rotor systems, including the series expansion [4] and the harmonic balance method as used
in references [5, 6]. However, for a multi-degree of freedom, these methods often su!er the
problem of convergence to some extent when iteration is performed. In this aspect, the
shooting method has shown good ability of convergence. The shooting method has been
previously used to obtain periodic solutions of non-linear di!erential equations. The
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algorithm is based on the utilization of the Poincare's map in which the #ow of an nth order
continuous-time system is replaced with an (n!1)th order discrete-time system, thus
transforming the problem of "nding a periodic solution to that of "nding a "xed point.
Kaas}Petersen [7] discussed the method and extended it to "nd quasi-periodic solutions. In
this section, the shooting method to calculate periodic solutions and to analyze stability is
presented followed by some of the numerical results.

Consider a system described by the following equation:

sR"f (s, u, t)3Rn , (7)

where f is periodic in t with period ¹"2n/u, f (s, u, t#¹ )"f (s, u, t) and
s"(s

1
, s

2
,2, s

n
)3Rn. For s03Rn, let q(t, s0) be the solution of equation (7) with initial

value g (0, s0)"s0. Then the Poincare's map for the system (7) is

P : RnPRn , P (s)"q (¹, s). (8)

A ¹-periodic orbit q (t, s0) of equation (7) obviously corresponds to a "xed point of the
Poincare's map (8), P(s0)"s0.

The map P can be used to de"ne a map Q as follows:

Q"P!I, (9)

where I is the identity. Then a periodic solution of equation (7) corresponds to a zero of Q.
Newton}Raphson method is very e$cient for the purpose of "nding zeros of Q. The values
of Q(s) and the derivative DQ(s) needed for the iteration procedure can be computed
numerically. The iteration formula can then be obtained as

sk`1"sk![DQ (sk)]~1Q(sk), k"0, 1,2 . (10)

The iteration process is repeated until EQ(sk)E(e for some preassigned e. If too many
iterations are performed, then the process is stopped, which could be an indication of a too
poor initial guess. The convergent result of MskN as a "xed point of the map P is just
a periodic solution to the system (7).

For the stability analysis, based on the iteration result, stability of a periodic solution
could be determined as the stability of the "xed point. Now let s be the "xed point of the
map P, so

s"P(s).

If eu is any disturbance, then by Taylor's theorem

P(s#eu)"P(s)#DP (s)eu#O( DeD2).

Let s#eu be mapped into s#/, then

s#/"P (s#eu)"P (s)#DP (s)eu#O ( De D2).

Retaining only the lowest-order terms gives

/"DP(s)eu. (11)
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s is stable when any disturbance eu yields a / such that E/E(D eD. This is ful"lled if all
eigenvalues of DP (s) are inside the unit circle. Since Q"P!I, DP can be obtained by

DP(s)"DQ(s)#I. (12)

The eigenvalues of DP(s) are the Floquet multipliers [8], or the characteristic multipliers.
Therefore, it is possible to use Floquet theory to discuss the stability of the periodic
solution. If the Floquet multipliers of the system are j

1
, j

2
,2, j

10
, concerning bifurcation

and stability of equation (6), there are the following conclusions:

(1) When Dj
i
D(1 (i"1, 2,2, n and n

s
"R), the stable periodic solution of equation (6)

is asymptotically stable.
(2) If there is one j

j
which passes the unit circle outwards through the point of !1 and

other Dj
i
D
iOj

(1 (i"1, 2,2, n), the stable periodic solution will have the period-doubling
bifurcation.

(3) If there is one j
j
which passes the unit circle outwards through the point of #1 and

other Dj
i
D
iOj

(1 (i"1, 2,2, n), the stable periodic solution will have the saddle-node
bifurcation.

(4) If there is a pair of conjugate complex characteristic multipliers j
j
"a$ib which

pass the unit circle outwards and other Dj
i
D
iOj

(1 (i"1, 2,2, n), the stable periodic
solution will have the Naimark}Sacker bifurcation [9] and the bifurcation will lead to an
invariant torus.

The above-discussed shooting method is used to obtain the periodic solutions of equation
(6) for some rotating speeds. The Floquet multipliers at di!erent rotating speeds are
obtained as shown in Table 1. It can be seen that at some rotating speeds, the system will
TABLE 1

Characteristics of the rotor system at di+erent rotating speeds

u/u
1

Floquet multipliers j
1

Conclusions

0)64 !1)08279#i0)0;!1)03667#i0)0 Period-doubling bifurcation
!0)65323#i0)12867;!0)65323!i0)12867
!0)11665#i0)06240;!0)11665!i0)06240

0)01217#i0)0;!0)01101#i0)0
!0)01047#i0)00732;!0)01047!i0)00732

1)98 !1)28657#i0)36588;!1)28657!i0)36588 Naimark}Sacker bifurcation
!0)67434#i0)06945;!0)67434!i0)06945
!0)14346#i0)19808;!0)14346!i0)19808
!0)41499#i0)21141;!0)41499!i0)21141
!0)21215#i0)06682;!0)21215!i0)06682

2)83 !1)02718#i0)60448;!1)02718!i0)60448 Naimark}Sacker bifurcation
!0)72867#i0)19399;!0)72867!i0)19399
!0)23703#i0)49386;!0)23703!i0)49386

0)01937#i0)37864; 0)01937!i0)37864
!0)16616#i0)30358;!0)16616!i0)30358

6)22 !0)77510#i0)54037;!0)77510!i0)54037 Periodic solution is stable
!0)71783#i0)39661;!0)71783!i0)39661

0)47102#i0)65186; 0)47102!i0)65186
0)49991#i0)40466; 0)49991!i0)40466
0)38520#i0)51588; 0)38520!i0)51588



886 F. CHU AND Y. TANG
become unstable and exhibit Naimark}Sacker bifurcation. Also, as appeared in the
bi-linear oscillator [10, 11], this tri-linear oscillator has period-doubling bifurcation as well.

4. NUMERICAL SIMULATION

The shooting method is to some extent still an approximate method for analyzing
a non-linear system. In order to further observe the dynamic behavior of the system, the
fourth order Runge}Kutta method was then used to integrate equation (6). In this section,
the rotating speed and imbalance were used as the control parameters to perform a detailed
investigation on bifurcation, chaos, and the routes to or out of chaos.

During integration, a smaller marching step is chosen to ensure a stable solution and to
avoid the numeric divergence at the point where damping and sti!ness coe$cients are
discontinuous. Generally, long time-marching computation is needed to obtain
a convergent orbit. In the case of a strongly stable motion with heavy damping, several
hundred periods of integration may be enough while for some other cases several thousand
periods are necessary.

To illustrate the motion behavior of the system, the orbit, the Poincare's map and the
bifurcation diagram are used. A Poincare's section is a stroboscopic picture of a motion and
consists of the time series at a constant interval of ¹ with ¹ being the period of excitation.
The corresponding Poincare's map is a combination of those return points and after
iterating enough times these points may converge at a subset which is often called an
attractor. Examination of the distribution of return points on the Poincare's map can reveal
the nature of motion. In the case of a periodic motion, the N discrete points on the
Poincare's map indicate that the period of motion is N¹. In the case of a quasi-periodic
motion, return points appear to "ll up a closed curve in the Poincare's map. For a chaotic
motion, return points form a geometrically fractal structure. The bifurcation diagram is
another type of plot to re#ect the motion change. To compute a bifurcation diagram,
a control parameter was varied at a constant step. The variation of the> (y

2
/c

l
) co-ordinate

of the return point in the Poincare's map versus the control parameter to form a bifurcation
diagram was then plotted. In this paper, the motion of the disk position in the form of x

2
/c

l
and y

2
/c

l
was recorded to form orbits and the corresponding Poincare's maps and

bifurcation diagrams. In some cases, the orbits at the left-bearing position in the form of
x
3
/c

l
and y

3
/c

l
were also presented.

In order to judge whether a motion is chaotic or not, a method discussed by Wolf et al.
[12] was used to calculate the maximum Lyapunov exponent. The program contained in
reference [12] for ordinary di!erential equations plus the IMSL-routine DVERK was used
to perform this calculation. Also to describe the fractal behavior of the attractor
quantitatively the information dimension was calculated for some cases. The information
dimension is one of the many de"nitions of the fractal dimension that measures the extent to
which the points "ll a subspace as the number of points becomes large [13].

It has to be pointed out that in "gures presented in this paper the same amount of data of
80 periods are used in all orbit plots but with di!erent scales and also the di!erent scales are
used in the Poincare's maps in order to amplify the attractors and to re#ect the shape of an
attractor adequately.

Figure 3 is the bifurcation diagram of the system by using the rotating speed as the
control parameter where for every rotating speed 100 points are included. It can be seen that
at very low rotating speeds the motion is synchronous with period-2. The bifurcation map
shows two points for every rotating speed. But by examining the Poincare's map carefully it
is found that the motion is actually quasi-periodic and the Poincare's return points move



Figure 3. Bifurcation diagram by using u/u
1
as the control parameter showing the dynamic characteristic in the

process of increasing speed.

Figure 4. Orbit (a) and Poincare's map (b) at disk position for u/u
1
"1)77.
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very slowly. It is di$cult to see the return points to form a closed curve because the data
amount is too large. As the rotating speed increases further the attractor diverges and at
about u/u

1
"1)70 the motion becomes chaotic. An example of the chaotic picture, in the

form of orbit and Poincare's map, is shown in Figure 4, where u/u
1
"1)77. The Poincare's

map was obtained by recording data from period 2001 to period 10,000 and the maximum
Lyapunov exponent was computed to be 3)08. Figure 5 is the orbit and Poincare's map for
u/u

1
"3)54. The attractor is a clear indication of chaotic motion in which stretching and

folding can be clearly seen and the information dimension was calculated to be 1)21. In
order to see if there is any rub happening between the rotor and the left bearing, the orbit at
the left-bearing position is also shown in Figure 5. The chaotic motion remains until
u/u

1
"6)06209 and at u/u

1
"6)06210 the motion suddenly becomes periodic. Figure 6

shows two orbits at the disk position and the left-bearing position for u/u
1
"5)66. Figure 7

is the Poincares map and the orbit at the disk position and the orbit at the left-bearing
position for u/u

1
"6)06. An interesting phenomenon that can be seen is that the disk is



Figure 5. Orbit (a) and Poincare's map (b) at disk position and orbit (c) at left-bearing position for u/u
1
"3)54.

Figure 6. Orbits at disk position (a) and at left-bearing position (b) for u/u
1
"5)66.
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Figure 7. Orbit (a) and Poincare's map (b) at disk position and orbit (c) at left-bearing position for u/u
1
"6)06.

Figure 8. Bifurcation diagram by using u/u
1

as the control parameter showing the route of intermittence.
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vibrating in the form of period-8 but the left end of the rotor is in period-5. Finally, the
motion was found to leave the chaotic region in a route of intermittence as shown in
Figure 8, where chaotic motion and periodic vibration alternates in a range of rotating



Figure 9. Poincare's map (a) and orbit (b) at disk position and orbit (c) at left-bearing position for
u"0)0220947498313 mm.

890 F. CHU AND Y. TANG
speed and the motion settles into periodic "nally. This is di!erent from the route of
intermittence found in the rub-impact system [10]. In conclusion, when the rotating speed is
used as the control parameter the motion enters into the chaotic region in the
quasi-periodic route and leaves in a route of intermittence.

We now take imbalance as the control parameter to see various forms of vibration and
the route to or out of chaos. In this case, we "x u/u

1
"3)54. Figure 9 is the Poincare's map

at the disk position, and orbits at both the disk position and the left-bearing position for
u"0)0220947498313 mm and the motion can be found periodic. Figure 10 is for
u"0)0220947498314 mm and the motion becomes chaotic. The maximum Lyapunov
exponent was calculated as 0)3302 in this case. It can be seen that the route to chaos is
a kind of period-to-chaos, or crisis, a route mentioned recently in several publications [10,
14]. If we further increase the imbalance, various forms of chaotic vibrations can be found.
Figure 11 is the Poincare's map and the orbit at the disk position where
u"0)1699999999 mm. The attractor is very loose and the information dimension was
calculated to be 1)38. Figure 12 is for u"0)17 mm where the motion has become



Figure 10. Poincare's map (a) and orbit (b) at disk position for u"0)0220947498314 mm.

Figure 11. Poincare's map (a) and orbit (b) at disk position for u"0)1699999999 mm.
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quasi-periodic. Therefore, the route out of chaos in this case is quasi-periodic. In conclusion,
when imbalance is used as the control parameter the motion enters into the chaotic region
in the period-to-chaos route and leaves the region in the quasi-periodic route.

5. CONCLUSIONS

A mathematical model of the rotor-bearing system with pedestal looseness is presented.
The model is a non-linear vibrating system containing piece-wise damping and sti!ness
forces with the tri-linear forms. A shooting method is used to calculate the stable periodic
solutions of the system and the method is found very e$cient. The Floquet theory is used to
analyze stability and bifurcation of the periodic solutions. Period-doubling bifurcation and
Naimark}Sacker bifurcation are found.



Figure 12. Poincare's map (a) and orbit (b) at disk position for u"0)17 mm.
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The fourth order Runge}Kutta method is used to integrate the governing equations. Very
rich forms of periodic, quasi-periodic and chaotic vibrations can be observed. Three types of
route to or out of chaos, that is, period-to-chaos, quasi-periodic route and intermittence, are
found. The analytical results are very important for diagnosing the pedestal looseness in
rotating machinery.
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