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Fourier series are often used to study structural vibrations induced by periodical loads.
However, there is a hidden error when the response is expressed by introducing a phase lag,
which makes the expression more concise. This article identi"es what the error is and
introduces a supplementary condition to avoid such an error.

Periodical vibrations can be expressed by a Fourier series as follows [1]:
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Alternative, equation (1) can be represented in a more concise form as
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Equation (2) is often used instead of equation (1) in calculations. However, it should be
noted that equations (1) and (2) are not identical. The di!erence between these equations is
due to the de"nition of the angle, or the phase lag, /

n
, in equation (2c). When deriving

equation (2) from equation (1), one has
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As there are no limitations on the signs of a
n
and b

n
, the phase lag /

n
in equation (3) may

vary between 0 and 2n. However, the angle /
n
in equation (2a) de"ned by equation (2c) and
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Figure 1. De"nition of the range of the phase lag /
n
: (a) !n(/

n
(n in the actual summation; (b)

!n/2(/
n
(n/2 in equation (2).

TABLE 1

Comparison of the phase lags de,ned in Figure 1(a) (equation (3)) and Figure 1(b) (equation (2c))
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calculated by some computer software is assigned a value between !n/2 and n/2. This is
because equation (2c) only considers the ratio rather than the individual signs of the
numerator and denominator, i.e., there is no di!erence between !a

n
/b

n
and a

n
/!b

n
or

between a
n
/b

n
and !a

n
/!b

n
. Therefore, the de"ned region of the phase lag /

n
in equation

(2c) (Figure 1 (b)) does not match that in the original equation (equation (1) or equation (3))
as shown in Figure 1a. It can be examined in detail as listed in Table 1.

It can be noted that the range of the phase lag is incomplete in equation (2c) and has
a di!erence of n with equation (3) when b

n
(0. To cure the problem, a supplementary

condition to equation (2c) must be introduced as follows:
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The above "nding was found to be important when the authors were studying #oor
responses to dance-type loads by Fourier analysis [2]. Dance-type loads can be described
by a high contact force for a certain time t

p
(contact duration) followed by zero force when

the feet leave the #oor. The contact duration t
p
may vary from 0 to ¹

p
(the period of dance

type load) corresponding to di!erent movements and activities. The contact ratio was then
de"ned as follows:
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Thus, di!erent contact ratios characterize di!erent rhythmic activities. The dance-type
loads were de"ned in a period as follows [3]:
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where K
p

is the impact factor, F
max

/G, and is equal to n/2a, F
max

is the peak dynamic load,
G is the weight of the jumper, t

p
is the contact duration and ¹

p
is the period of the jumping

load.
Alternatively, the above equation can be equivalently expressed as a function of the

contact ratio by Fourier series [2]:
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Equation (7a) indicates that human-induced loads equal the sum of the static-body weight
and some dynamic components. Equation (7) can also be represented as follows:
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Table 2 provides the "rst six Fourier coe$cients and the phase lags when a"2
3
.

It can be noted from Table 2 that when n"2 or 5, b
n
(0 and since the ratio of a

n
to b

n
is

positive, the phase lag would be of n/6 if only equation (2c) or equation (8d) is used.
Following the supplementary condition equation (4), the phase lag should be !5n/6 (or
7n/6).

Considering an example having the following data:

G"1.0, ¹
p
"0.5, a"2

3
.
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Figure 2. The comparison between the load models de"ned by equation (8): (a) using the supplementary
condition (equation (4)); (b) without using equation (4).
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The load curves (equation (8)), taking the "rst six Fourier terms, with and without using the
supplementary condition (equation (4)) are shown in Figure 2.

It is obvious that Figure 2(b) gives an incorrect load model as it shows even negative
loading and the peak does not occur at the centre of the applied load, which are di!erent
from the original de"nition of equation (6). Figure 2(a) provides a correct presentation of the
load. As only the "rst six terms are used, there is a slight but negligible di!erence between
equations (6) and equations (8) and (4) as expected.

To conclude this study and to avoid the mistake in the calculation of the phase lag, there
are two ways to be considered:

1. Equation (1) is directly used to avoid the calculation of the phase lag, otherwise
2. the phase lag /

n
in equation (2a) should be determined, rather than equation (2c), using

the following equations:
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