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1. INTRODUCTION

From a general standpoint, structural damage can be interpreted as a local variation in
mechanical properties and thereby, the global dynamic response is altered owing to
damage. In recent years, many proposals have been formulated to verify the integrity of a
structure by means of vibrational measures. The most common approach by far consists of
modelling damage as a local variation in sti!ness, such that in a damaged structure
variations in frequency and mode shapes are expected to be found.

The contribution of Adam et al. [1] was the "rst of numerous publications related to the
frequency approach. See among others, Salawu's review [2]. The shape-based approach
initially relied on the direct comparison of shapes in terms of synthetic parameters such as
MAC [3] and COMAC [4]. More recently, the use of mode shapes expressed in terms of
curvature [5] or strain [6] has shown advantages. Not so commonly, the detection of
structural damage has been proposed on the basis of damping variations, this approach is
also present in reference [1], or by identifying non-linearities [7].

Therefore, it would appear that damage detection is essentially based on a comparison of
standard modal parameters (shapes, frequencies, and more rarely damping). Conversely, up
to now, several other phenomena, which also clearly identify the presence of damage, have
been neglected.

1.1. SOME EXPERIMENTAL EVIDENCE

The authors have recently carried out a series of experiments to verify the possibility of
using vibrational measures to check the integral state of prefabricated prestressed
reinforced concrete (PRC) elements. This paper mainly presents some qualitative aspects of
the results. Details of these tests can be found in reference [8].

The free response of one PRC element (i.e., a hollow panel simply supported at its ends)
subjected to test is illustrated in Figure 1(a). The response was measured at middle-span
level. A load was then applied to the same panel causing the opening of a transverse crack.
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Figure 1. Free response of a PRC specimen: (a) undamaged; (b) cracked.

Figure 2. Free response FFT of a PRC specimen: (a) undamaged; (b) cracked.

926 LETTERS TO THE EDITOR
The free response of the same panel after damage, measured in the same conditions, is
shown in Figure 1(b), while Figures 2(a) and 2(b) highlight the Fourier transform of the same
signals. Some qualitative remarks on the behavior of the structure before and after damage
can be made. The variation of the "rst frequency can be observed in situation (b), but it is
only signi"cant when compared with situation (a). Damping appears to be more sensitive to
damage than frequencies. Indeed, it has been demonstrated that in PRC structures the
opening of a crack is characterized more clearly by the triggering of non-viscous dissipative
mechanisms [8].

Instead, the most evident qualitative di!erence is the presence of the beat in the damaged
structure and its absence in the free signal of the undamaged structure. It consists of
a frequency splitting of the resonance peak, in the frequency domain. The appearance of two
peaks in the place of one could lead one to think that in an undamaged structure the two
frequencies are coupled, and that the damage may have caused a loss of symmetry which
made them distinct. A phenomenon of this type has already been studied in the case of
prefabricated cylindrical pipes [9].

In this particular case, however, the modal extraction shows that the "rst peak of the
structure is associated with the fundamental bending mode, which is a non-coupled
frequency. Moreover, the modal components associated with each of the peaks are
substantially the same in the free response of the damaged panel. It appears thereby that the
two peaks are related to the same vibration made while the peak splitting seems to be
connected to the free response only. Indeed, it appears in the FRF obtained from the shock
test but not in those obtained by means of the stepped sinusoidal test. This con"rms that the
peak splitting is not related to a simple frequency coupling.
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The aforementioned phenomenon is not peculiar to a particular material or structural
system. Various experiences have shown that frequency splitting is typical of a cracked
structure in RC, PRC, or masonry while it is absent in undamaged structures.

1.2. PROPOSITIONS

With this contribution, the authors demonstrate that it is possible to explain the
frequency splitting phenomenon through a linear model. In detail: (1) it is su$cient to admit
an imaginary damping for an s.d.o.f. system; (2) it su$ces to admit that the medium or a
localized portion of it is dispersive in the strict sense for a continuous system. Thereby, a
dispersion relation

u2#2dv
0
au!v2

0
a2"0 (1)

must hold. Due to observation (2), and other reasons illustrated later on, hereinafter the
imaginary damping mentioned in observation (1) is referred to as dispersion.

2. A GENERALIZED FORM OF THE S.D.O.F. OSCILLATOR

In its most general form, the equation of motion of an unforced s.d.o.f. oscillator is

mxK#(c#id)xR #(k#ih)x"0, (2)

where m, c and k are the mass, damping and oscillator sti!ness. The coe$cient h is well
known in the literature, and it is adopted to describe structural or hysteretic damping of
the system (see, for example reference [10]). The coe$cient d is introduced here and is
de"ned as system dispersion. Equation (2) generalizes the most standard form of the
oscillator equation, where the terms considering velocity and displacement are real. By
normalizing each term through the mass and assuming
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, (3)

a normalized equation of motion is obtained:

xK#2u
n
(m#id)xR #u2

n
(1#ig)x"0. (4)

The dispersion rate is de"ned as the nondimensional value d, in analogy with the de"nition
of damping rate attributed to m. The equation of motion has solutions of the type

x(t)"Aes1t#Bes2t, (5)

where s
1

and s
2

satisfy the characteristic equation

s2#2u
n
(m#id)s#u2

n
(1#ig)"0. (6)

Evidently, they also satisfy the equation
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Thereby, from a comparison between equations (6) and (7) it can be deduced that

Re (s
1
#s

2
)"!2mu

n
, Im(s

1
#s

2
)"!2du

n
. (8)

On the other hand, the following relation holds:

DIm (s
1
#s

2
)D"DDIm s

1
D!DIm s

2
DD"Dq

1
!q

2
D"Dq, (9)

where Dq represents the frequency splitting. From a comparison of equations (8) and (9), it
can be deduced that

Dq"2du
n
, (10)

that is, the frequency splitting appears if, and only if, the dispersive term is not equal to zero
(Figure 3).

2.1. FREE RESPONSE OF A DISPERSIVE OSCILLATOR

Hereinafter, the free response of an undamped, non-hysteretic oscillator with the
dispersive term is analyzed. Under these assumptions, the equations of motion reads as

mxK#idxR #kx"0, (11)

which in normalized form becomes

xK#i2u
n
dxR #u2

n
x"0. (12)

The solutions of the characteristic equation

s2#i2u
n
ds#u2

n
"0 (13)

lead to the solutions

s
1
"#iu

n
(J1!d2!d)"#iq

1
, s

2
"!iu

n
(J1!d2#d)"!iq

2
. (14)

Thereby, equation (11) admits two imaginary oscillating solutions, with pulsations q, one
greater and the other smaller than the natural frequency according to the plot of Figure 4.
The time history has a form of the type

x(t)"C
1
e*q1t#C

2
e~*q2t , (15)

with C
1

and C
2

being complex coe$cients which can be calculated using the initial
conditions. Equation (14) describes the beat phenomenon very clearly and also underlines
that the d term is conservative. It would therefore be misleading to talk of imaginary
damping. In the same way, the hysteretic term h, which is the imaginary sti+ness, is
dissipative indeed.

2.2. FORCED RESPONSE

Hereinafter, the forced response of a dispersive oscillator is analyzed. It is therefore
necessary to "nd a particular solution of the equilibrium equation

mxK#idxR #kx"F
0
e*ut. (16)



Figure 3. Representation of the frequency splitting in the complex plane.

Figure 4. Natural frequency variation of the dispersive oscillator versus the dispersion rate.
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Solutions of the type

x (t)"x
0
e*ut (17)

are sought, which when substituted into equation (16) provide

(!u2m!ud#k)x
0
"F

0
, (18)

from which the expressions both of the dynamic sti!ness

R(u)"(!u2m!ud#k) (19)

and of the receptance
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can be found.



Figure 5. FRF of a dispersive oscillator for di!erent values of the dispersion rate.
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The receptance function is real and produces a non-"nite value corresponding to the
resonance. The relevant graph is shown in Figure 5 together with the frequency response of
the simple oscillator. The resonance is obtained by assuming that the dynamic sti!ness
expressed by equation (20) is null. Thus, obtaining two solutions

u6
1,2

"u
n
(!d$Jd2#1). (21)

However, only one solution, the positive one,

u6 "u
n
(Jd2#1!d), (22)

is endowed with a physical meaning. Thereby, only one resonance peak in the FRF exists
whose value is lower than the one of the simple oscillator.

2.3. OBSERVATION

From equation (19), it is easy to prove that the presence of the dispersive term is
equivalent to admitting that the oscillator embodies a variable sti!ness proportional to the
frequency:

k@(u)"k!ud. (23)

3. AN INTERPRETIVE MODEL FOR CONTINUOUS SYSTEMS

A one-dimensional continuous system is considered. Physically, it can represent a bar
composed of a non-dissipative homogeneous elastic material. The equilibrium equation,
which describes the propagation of perturbation, u, along the medium, is the classical wave
equation

L2u

Lt2
"v2

L2u

Lx2
, (24)
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where v is the propagation velocity, which in the case of pressure waves reads as

v"JE/o . (25)

In the literature [11], the nomenclature dispersive system has two di!erent meanings. In
a broad sense, a dispersive system is any system which allows solutions of the form

u"A cos (ax!ut), (26)

where u is the frequency and a the wave number. Equation (24) admits solutions of this
type. An expression that relates the frequency to the variation of the wave number is called
a dispersion relation. With regard to equation (24), a linear relationship holds:

v"u/a. (27)

In a strict sense, a dispersive system is one that admits a non-linear dispersion relation or, in
other words, a system in which the propagation velocity varies with the wave frequency. As
a result, a system that is described through the classical wave equation is not dispersive in
a strict sense.

Hereinafter, a formulation that reproduces the frequency splitting phenomenon in the
case of a continuous system is found. In particular, a wave equation which admits two
di!erent frequencies for the same wave number is sought. It is evident that dispersion
relation (27) associated with the classical wave equation, cannot describe that phenomenon,
as a single frequency is associated with one wave number. This means that the system being
sought is dispersive in a strict sense. Equation (23) suggests studying a mechanical system
where the modulus of elasticity varies linearly with the frequency, according to the
expression

E(u)"E
0
#cu, (28)

where c is a constant. Keeping in mind equation (25), it is possible to write an analogous
equation for the phase velocity

v2"v2
0
!cu (29)

from which the following dispersion relation is obtained:

u2

a2
#cu#v2

0
"0. (30)

Equation (30) is analogous to the characteristic equation (6) when one assumes that

d"
c

2v
0

. (31)

By substituting the relationship (29) within (24), one obtains

L2u

Lt2
"v2

L2u

Lx2
!2dv2

L2u

Lx2
. (32)
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For the sinusoidal wave, it also holds that

uv2
L2u

Lx2
"v

L2u

LxLt
(33)

and the wave equation

L2u

Lt2
"v2

L2u

Lx2
!2dv

L2u

LxLt
, (34)

which describes the frequency splitting phenomenon in a continuous system, is obtained.
The "ndings obtained above suggest the possibility of modelling localized damage as part
of a continuum, in which the wave propagation follows equation (34). In a similar manner,
the common damage simulation allows the modelling of a part of a continuum with
reduced sti!ness.

4. CONCLUSIONS

Some experimental evidence has shown that cracking in reinforced concrete or masonry
structures is accompanied by a dispersive phenomenon, which has been named as frequency
splitting. As this phenomenon is easily recognizable and appears with regularity, it could be
adopted in damage detection.

It has been demonstrated that the frequency splitting phenomenon cannot be described
with classical modal analysis tools. However, it can be reproduced by a linear model which
embodies a skew-symmetric damping operator. For an SDOF system, this corresponds to
the presence of an imaginary damping while for continuous systems it is due to the presence
of a mixed second order di!erential operator in the wave equation. In this sense, the
proposed model presents formal analogies to the equations of motion in gyroscopic systems
[12]. Nonetheless, the nature of this phenomenon is clearly di!erent in a damaged structure
and not easily detected microscopically.

Finally, it should be emphasized that the presence of damage exhibits itself not only in the
variation of standard modal parameters of the structural dynamic response. Additional
phenomena appear in the form of non-linearities, hystereses, non-classical dissipative
mechanisms, dispersion, etc., which deserve further studies.
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