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This paper presents an extension of two-dimensional models for the analysis of freely
vibrating laminated plates. The extension concerns the enlargement of higher order theories,
recently introduced by different authors in several forms, to encompass higher order terms
over the cubic one usually taken into consideration. Higher order effects such as rotatory
inertia and transverse shear stress are naturally included without any shear correction
factors. Namely, two different models are introduced by expanding, on different functional
bases, displacements (D2D) and transverse shear stresses in conjunction with displacements
(M2D). The expansion is considered to be consistent with the traction-type boundary
condition on the external surfaces of the plate. The governing equations and associated
boundary conditions are consistently obtained by the classical Hamilton’s variational
principle and Reissner’s mixed variational theorem. Both models are equivalent single layer
type and, therefore, differ according to the layer-wise descriptions, preserve the
independence of the number of unknown variables on the number of layers. However, this
feature is presented together with intrinsic physical violations for both models. Model D2D
violates the interlaminar stress continuity requirement and model M2D violates in a weaker
from the same requirement (derivatives are not piecewise continuous), besides neglecting the
transverse normal stress. The importance of completely fulfilling the mentioned continuity is
then discussed once the relevant governing equations are tailored for the cylindrical bending
condition. The effectiveness of the models is indicated by making numerical comparisons
with the exact three-dimensional theory of the elasticity for several lamination schemes,
angle/cross-ply lay-ups, and characteristic geometric ratios for low and higher frequencies.

© 2001 Academic Press

1. INTRODUCTION

Laminated plates and shells are widely used in several engineering fields such as aircraft,
automobiles, marine and submarine vehicles besides other industrial applications.
Consequently, these applications have stimulated interest in introducing corresponding
mathematical models to predict the dynamical behaviour of the physical models with
sufficient accuracy. Moreover, composite laminated plates and shells have great importance
in modeling many of the mechanical parts employed in several systems, particularly where
optimized strength/weight ratios are required. As far as this work is concerned two
analytical models are formulated in an attempt to generalize some documented and tested
two-dimensional theories [1-11] where free vibration studies are involved. The attention
given to this particular global response of structural elements is largely justified by the
engineering applications involving these modal data [12, 13].

In the kind of generalization we are dealing with, normal effects (in terms of
displacements and/or stresses) are neglected. In this respect, this work should be mainly

0022-460X/01/160125 + 26 $35.00/0 © 2001 Academic Press



126 A. MESSINA

compared with recent studies [ 14-16], where this influence was not accounted for, and for
which the effect of lamination schemes, boundary conditions, geometric characteristics,
different materials on natural frequencies was investigated. In particular, recent references
[14, 15] studied the influence of boundary conditions on modal parameters related to the
free vibration of shells and plates. Besides the valuable numerical results presented in those
works, some dynamical behaviours were not completely clarified and for this reason they
were considered as an issue for further investigation. As far as the modelling is concerned in
references [14, 15], particular emphasis was given to a parabolic shear deformable shell
theory [17, 18] accounting for the continuity of interlaminar stresses. The natural
frequencies coming from this theory (PAR) [17, 18] were numerically compared with
respect to the related older theories (PARy, violating continuity requirements [ 1-3, 6]. The
discrepancies obtained between these different models constitute the subject currently
under investigation.

In order to connect the models we are dealing with, to these recent investigations
[14-18], it is pointed out that the acronym PAR stands, referring to references [6, 8, 17,
18], for parabolic shear deformable theory of laminated plates modelled as equivalent
single-layer models (ESL). Differently, the PAR., model, presented in reference [18], is an
improved equivalent single-layer model accounting for the interlaminar continuity of the
transversal shear stresses. In this respect, PAR, preserves the total number of unknowns
(avoiding the principal disadvantage of LWMs), in total five, and the related computational
effort is independent of the number of layers in the laminate.

Paying particular attention to references [15,19], it is evident how models violating the
interlaminar continuity conditions (say PARg,) can underestimate/overestimate the global
response behaviour with respect to their counterpart models fulfilling the interlaminar
continuities (PAR,). The discrepancies are dependent upon the lamination scheme, as
cross- or angle-ply, and can be accentuated whereas different layers exhibit a high rate
change in material characteristics, with different transverse shear moduli. Similar
conclusions were also reported by different authors [20, 21]. However, in spite of the
discrepancies that were clearly present, the exactness of the values obtained by different 2-D
models cannot be considered a closed question. Indeed, by using the exact results, assessed
by the three-dimensional theory of elasticity, it can be shown how the model PAR,,, can
give poorer results than its counterpart PARg, (see also reference [16]). As it can be
evidently suggested by graphical representations, the higher order theory accounting for the
interlaminar continuity conditions of the transverse shear stress (PAR.) can introduce
a certain “distortion” of the transversal sections than it is done by the corresponding theory
violating the interlaminar continuity conditions (PAR ). The “distortion” can be caused by
a real 3-D strong non-linear variation of the in-plane response. As the number of
layers increases through the same thickness of the plate a “zig-zag” variation becomes more
and more linear and the PAR_, becomes more reliable than the corresponding PAR,
theory.

The question that arises is whether a generalized displacement-based model, violating the
continuity of the transverse shear stresses but having higher order terms than the cubic one,
would be able to recover an accuracy of the global response in cases of practical importance
from an engineering point of view. This question has been taken into account by other
researchers in the past [3, 4, 5,7, 9, 10, 14, 15, 227 showing good results with respect to the
previous classical theories. However, such generalizations, apart from the importance given
to the normal effect (e.g. references [4, 5, 97]), were never carried out beyond the cubic terms.
It is only in the light of the recent developments of higher-speed digital computers that the
implementation of such generalized theories is feasible, and, in this respect, they are possibly
practicable and up to date. With respect to the question that has been raised, generalized
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D2D models, as shown hereafter, are not generally able, to predict satisfactorily relevant exact
results except for some cases for which these models predict the global response more
accurately than the advanced PAR, models fulfilling the continuity requirements [23, 24].

In order to encompass the relevant trends in the subject of free vibration studies of
laminated plates, an expected more accurate model (M2D) has also been developed in this
work. This model differs from the previous one (D2D) by modelling the transverse shear
stress as well as the displacement field by using a mixed variational approach. The model
M2D is expected to be more accurate than the D2D one because it is able to overcome the
deficiency of the discontinuous interlaminar stresses introduced by the constitutive
equations and, for which, all the pure displacement-based models (PARg, D2D) undergo.
There is literature on different proposal concerned with such a mixed approach [25-30],
whereas it is believed that the most important step was originated by Reissner’s works
ranging from references [31] to [32]. The present M2D model is mainly inspired by
reference [32]. Such a mixed variational approach was applied by Toledano and Murakami
[25, 26] to Reissner’s theoretical base for the static analysis of plates. An extension to the
dynamic analysis of plates and shells has been recently considered by Carrera [29, 30] that
presented the relevant models accounting for the effect of the transverse normal stress
usually neglected in 2-D models. Namely, reference [29] considers the mixed approach in
the frame of the layer-wise models comparing its results with those of several authors in
both ESL and LW models. In addition, reference [30] describes a layer-wise mixed model
with an equivalent single-layer model in a unified notation. With respect to the objectives
herein pursued it should be of interest to mention that such ESL models in reference [30]
are: (i) the classical displacement equivalent single-layer models, where the displacement
variables are expressed in Taylor series throughout the thickness of the laminate with
unknown variables defined on the middle surface; (ii) mixed equivalent single-layer models,
where, if the displacement field is modelled in the framework of ESL-type models, according
to reference [25], the transverse stress is modelled in a layer-wise description to properly
impose the boundary conditions.

Finally, references [28, 33] which present generalized higher order models are also worth
mentioning. Reference [28] presents a generalized nth order beam theory in the frame of
geometrical non-linear elasticity and, constitutes, to the best of the author’s knowledge, the
only generalized mixed higher order theory found in literature, but for beam models
and without any particular numerical results. Moreover, reference [33] deals with the
theoretical aspects, without any numerical results, encompassing several displacement-based
transverse shear and normal deformable plate theories in a generalized one, by a certain
vectorial formulation compared to a variational one.

In the scenario described above the present work aims to introduce two different
generalized higher order 2-D models for free vibration studies in which laminated plates are
involved. These theories are introduced in order to model the displacement field and the
transverse shear stress (whenever M2D is considered) throughout the thickness of
the laminated by using continuous functions that are able to simultaneously satisfy the
boundary conditions at the top and those at the bottom of the laminate besides accounting
for the continuity requirements at the interfaces. The particular orthogonal polynomial
bases are used to simplify the formulations of the relevant dynamical problems that in its
nature is conditioned [23, 27]. Such polynomial bases were in part used in conjunction with
Ritz’s method [9, 14, 34] in different contexts. The investigation herein conducted is strictly
related to those theories neglecting the transverse normal stress (e.g. [1-3, 6, 7, 10, 11, 15-19,
22, 237 and for this reason the same transverse normal stress has been neglected. It should
be, however, noted that references [29-30] recently quoted relevant conclusions on this
effect from the static and the dynamical points of view.
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The M2D model is built by expanding both in-plane displacements and the transverse
shear stress by using orthogonal polynomials. Different bases are used for displacement
and/or stress fields. The difference between these bases is related to different conditions that
the mentioned fields should satisfy at the top and bottom of the laminate. A third different
base is used to develop the D2D model. However, it should be stressed that the expansion in
both cases, D2D and M2D, is carried out by a linear combination of continuous functions
having continuous derivative. In this respect, model M2D should be able to account for the
continuity of displacement components (layers perfectly bonded together) and the
continuity of transverse shear stress. Nevertheless, the natural discontinuities through the
thickness of the laminate [23, 24] cannot be exactly fulfilled. The requirements connected
with continuities through the thickness of the laminate can then be considered fulfilled in
a weaker form.

Once the theoretical work introducing the governing equations for both models (D2D,
M2D) is carried out in a unified notation, several numerical tests are presented to test both
models against the 3-D theory of elasticity in cylindrical bending conditions. The details of
the 3D model are presented in reference [ 16] as initially proposed in references [ 35, 36] and,
therefore, they will not be reprocessed here.

Convergence tests compared to the exact results of the elasticity give a benchmark figure
with respect to the best values obtainable by the presented generalized ESLnth-type higher
order for 2-D models in which the transverse normal stress is neglected.

2. THE GENERALIZED DISPLACEMENT-BASED PLATE THEORY: D2D

Consider a composite laminated plate of uniform thickness 4 having an axial and
transverse length L, L, respectively (Figure 1). The axial, transversal and normal to the
middle-surface co-ordinate length parameters are denoted by x, y and z, respectively,
whereas U, VV and W represent the corresponding displacement components. The plate is
made of an arbitrary number, L, of linearly elastic monoclinic layers, the material axes of
which are indicated by the lamination angle 6 with respect to the x-axis (Figure 1).

In line with the “method of hypotheses” [37], the components of displacements are
initially assumed as follows:

Ux,y,z;t) = ulx, y;t) — 2w + Dy1;(2) u;(x, y; 1),
V(x,y,z0) = v(x, y; 1) — 2w, + D,;(2) v;(x, y; 1), (1)
W(x,y,z;t) = w(x, y;1),

where the usual convention of repeated indices j =1, ..., N is adopted in place of the
relevant summation. Throughout the whole paper only the index j will be adopted under
this assumption unless otherwise specified. The displacement field (1) can be considered an
extension of the expansions assumed by references [1-3, 6]. The crucial point is connected
with a choice of the particular components or the so-called shape functions (®,;, ®,;). This
will be tackled in order to satisfy the boundary conditions on the top and bottom of the

plate.
From expressions (1) it is clear how the generalized higher order theory is dictated by
(2N + 3) displacement components (u, v, uy, ..., Uy, Uy, ..., 0y, W) and, consequently,

computational demand is added with respect to PARy, model. The computational effort
should be then justifiable in the light of remarkable improvements. As far as the strain
displacement equations are concerned, they can be obtained by three-dimensional elasticity
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Middle surface

Figure 1. Nomenclature and co-ordinate system of the laminated plate.

as follows [() = (d/dz)()]:
&y = Uy — ZWx + Prjlljx, & =V, —2ZW, + P05, & =0,
ny = u,y + U,x - zzw,xy + @ljuj,y + (DZjvj,x: sz = @/ljuja Vyz = (D,Zjvj: (2)

where it is revealed that the shape functions @, ;(z) and ®,;(z) are still directly responsible
for modelling the transverse shear strain through the thickness, i, of the laminate. Hence,
under the usual two-dimensional theory of negligible transverse normal stress, the
constitutive relationships in the kth monoclinic layer (starting to count from the bottom) are
given as follows (k =1, 2, ..., L)

o®] [09 0% oW re.
a?1=10%% 0% 0%\ e |
L] | o®R 0% R |Liw
(3)
(0] [0% E{‘%} [vyz}
W] o8 08|y

where the appearing reduced stiffness are defined in Whitney [38].
Finally, the governing partial differential equation can be consistently obtained on the
basis of Hamilton’s principle:

fz (0T — 80)dt = 0, )

t1

where

5T = J p(USU + V8V + W 81)d Vol,
Vol
)
oU = f (0 0ex + 0,08, + TyyOYxy + Tuz OYxz + Ty 07y.)d Vol.
Vol
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Therefore, applying equation (4) according to equation (1-3), and carrying out the usual
integrations (decomposing the volume in surface and thickness) herein not reported for the

sake of brevity, the following governing equations are obtained:
Nx,x + ny,y = pou - le,x + P;jﬁj,

Ny,y + ny,x = ,00ij - plw,y + pozji}ja

Mx,xx + My,yy + 2]\/Ixy,xy = Pa‘.’{’ — P2 (W,xx + W,yy) + pl(u,x + b,y) + pijuj,x + p%jbj,ys

o 11: 11 11,15
Mxi,x + Mxyli.y - Qxi =pPo U —pP1 W,x + Po Mj,

_ 1i-- 1ies 1i,1j:- .
Mxi,x+Mxy1i,y_Qxi_pou_pl W.x+po uja l—l,...,N,

1N 1N - 1N, 1j:
MxN,x + Mxle,y - QxN =pPo U— P1 W,x + Po ujs

2L 21 . 21,25
Myl,y+Mxy21,x_le =PV —pP1 W,y+pa Uj,

20 2i e 20,25 s
Myi,y+Mxy2i,x_Qyi_pav_p1 W,y+pa Uja 1_13"',N5

_ 2N 2N .- 2N,2j::
MyN,y + MxyZN,x - QyN =Po UV —pP1 Wy + Po Uj,

(©)

where the resultant generalized stresses and inertia terms are given according to the

following equations:

h/2 h/2

(NxaNysny):J‘

—n2 —h/2

h/2
(Mxi> Myis Mxylis MxyZi) = J‘ (ax¢1i7 O-y ¢2ia Txy d)lia Txy q)Zi) dZ.
—h/2
h/2
(Qxi, Qyi) = J‘ (sz ,li, 'Eyz /21) dZ.
—h/2

h/2 h/2
Pr = J\ pzk dZs f)m,np = J\ p¢lm ¢np dZa

—h/2 —h/2

h/2
pfcm = J p(plmzkdz

—hj2

(0w 1)z, (Mo My, M) = f (0 5y 7y) 242,

()

t)]

with the following equations correlating the resultant generalized stresses (7) with the

displacement components:
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O Asanior o Asanion Asaspiir 0 Aasaiaw U1
Oy _ Assonon Assonir o Aasoavaw | o~ (10)
Qx1 A55,11,11 A55,11,1N 251
. Sym . . .
Oxn Ass NN Uy
with the plate stiffness having the following expressions:
n2 2 2
k k k
Aij = J ng)dz, Bij = J ng)ZdZa Bij,lp = J ng) ‘Dlp dz,
—h)2 —n/2 —h)2
h/2 h/2 h/2
k) 2 k k
D;;= f Q( ) dz, Djj., = f Q(ij) ¢lpZdZ> Dijipng = J‘ ng) D,,P,, dz, (11)
—h/2 —h/2 —h2

n2
k
Aij,lp.nq = J Q( )le(p;q dz.

—h/2

Finally, the consistent boundary conditions along the edges of the plate require the
following prescriptions:

along x =0, L,,
N,=0 or u, Ny=0 or v, M;=0 or u; My=0 or v, M,=0 or w,
(Mx,x + 2Mxy,y - ,011.1 + Pzw,x - Pijuj) = 0 or w.
(12)
along y =0, L,
N,=0 or v, Nyw=0 or u, M;=0 or v;; M,,;=0 or u, M,=0 or w,
(M, +2M,,, — piv + piw, — p'o;)) =0 or w.

As far as the expansion is concerned, an appropriate polynomial base should be chosen to
satisfy the boundary conditions on the bottom and top of the plate. Namely, combining

equations (2, 3):
(ykz) 0% 0% ,21 Uj (13)
"o oble,

Equation (13) suggests, as a proper choice, an expansion through the z-co-ordinate for
which the derivatives of the shape functions are identically 0 at the bottom and top of the
plate ( & h/2). Moreover, mathematical reasons suggest to make use of orthogonal
polynomials to average functions C? continuous. The orthogonal polynomials have been
symbolically obtained by the Gram—-Schmidt orthogonalization process [39] carried out on
independent functions having an extremum at ¢ = z/h = + 1/2. The independent functions
have been obtained by using the following equations:

p&o=1, &=z/h,
PEp=a;é+af + S+ + - V4 n=3,...,N,

3 5 n, 4 6 Neven
a; = — <22 + 54 + o+ 2,1011;1‘11), a = — (23 + 75 ot 2/12.,(,..1)’ (14)
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with (ny44, Meven) Indicating the maximum odd or even number related to the truncation
number n. On the basis of equations (14) the Gram-Schmidt process [39] has been
symbolically carried out to obtain orthonormal polynomials with zero derivative at
¢ =z/h = + 1/2. Concluding, the ith shape function @; (®4; or @,,) is assumed to be the ith
component belonging to the mentioned set of orthonormal polynomials, the first three of
which are shown below as in equation (15).

D (O = /35/17(— 3¢ + 48
B(E), = /525(— &2 +2&* + 7/120),

B(E); = /2618/13(105¢/136 — 14583/17 + 1885), j=4, ..., N. (15)

It is worth mentioning that this model contains the previous shear deformable theory
PARy [6] as a particular case. Indeed, whenever only the first term of equation (15) is
retained, within the expansion concerning displacement field (1), the PAR, higher order
theory is evidently obtained. Indeed, the first term in equation (15) corresponds to the cubic
shape function adopted in PARg [6] or equivalent models. With the aim of keeping the
(u;, v;) degrees of freedom dimensionless, each term in equation (15) can be used in equation
(1) pre-multiplied by thickness h.

3. THE GENERALIZED MIXED-BASED PLATE THEORY: M2D

Still with respect to Figure 1 and a view towards the application of such a mixed
approach [32], two independent fields are assumed for both displacement and stress
variables. To this end, the components of displacements are initially assumed as reported
above in equation (1). As dictated by Reissner’s work [32] only a part of the stresses is
assumed and, therefore, the transverse shear stress is expanded on a general functional base
as reported in equation (16). The normal stress is assumed to be zero.

Tyz = d(Z)j ‘L'(X, ya t)yzj;

Txz = ﬁ(z)j T(x’ y; [)xzja - h/2 < Z < h/zs (16)
o, =0.
In equation (16) the convention of repeated indices j = 1, ..., N is still adopted in place of

relevant summations. It should be interesting to note that a different N could be adopted for
displacement and stress and herein they will be indicated by N, and N, respectively. In such
circumstances, a double computational demand seems to be correlated with such a mixed
model, with respect to the previous D2D theory. However, as hereafter reported, any
computational effort is not effectively added relating to the free vibration studies this paper
is dealing with.

In accordance with the mixed variational approach [32], the theory should be
based on a mixed field of stress and strains. Therefore, half of the stresses, 6,, = (T,., Tyz, 02),
are assumed by equation (16), the remaining ones, o}, = (g, 0y, T,,), are dependent
on the strains coming from the classical 3-D constitutive equations (17) with respect
to the kth monoclinic layer. The latter dependencies can be conveniently considered
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as in equation (17):
0'1; -—Clh Cliz Cli6- 0 0 C’is-- Slfc
0"; Cliz Clﬁz Cl§6 0 0 C1§3 8’;
Tl;y — _Cli6 Cl§6 Clé6: L 0 0 Cl§6: . V’;y C126 Dk
Ty [0 0 0] [C4 Cs 0 o Dk,
1%, 0 0 0 Cis C& 0 Ve
7t | Chs G5 %] | 0 0 Ch & -

Moreover, by simple algebraic manipulations carried out on the partitioned sub-matrices of
equation (17) the following equations can be easily established:

= (C’i26 D* (C345) ! DkT)e (C345) L6,
(C345) Oou — (C345)_ ' DT €in- (18)

The mixed variational equation can then be considered, similar to reference [30], for the
dynamic case which is

J [0, 0e!9 + or,0el%9 + oL, (€9 —eQ) + p(USU + V6V + W sW)]d Vol =0, (19)

Vol
where the subscript T stands for the transpose operator. The superscripts in parentheses
(G, C) state that the relevant out-of-plane strains (e,,) should be introduced, into equation
(19), by using geometric equations (2) and constitutive equations (18) respectively.
Conversely, the in-plane strains are related to the displacement always by kinematics
equations (2). Finally, in-plane (6;,) and out-of-plane (o,,) stresses should be assessed by
using constitutive equations (18) and assumed field (16) respectively.

Therefore, applying equation (19) according to equations (1-2, 16, 18), and carrying out
the usual integrations, herein not reported for the sake of brevity, the governing equations
are obtained identically to equations (6) and (7), apart from a few localized changes. As far
as these changes are concerned, firstly, equation (6) contain 2N, more algebraic equations.
Secondly, the generalized global transverse stresses (Q,;, Q,;) are not defined as in equation
(7) but, upon the assumed transverse stress field (16). In conclusion, a localized part of the
previously D2D model results as changed by the mixed variational approach in the part
strictly depending on the shear stress contribution. The following equations clarify the
mentioned terms consistently obtained through equation (19).

The mentioned albegraic equations, that must be added to equation (6), are conveniently
reported as

Lijtyzy + Lijtezj = Eai e LijTyzj + TijTazj = Evgewe Lj,k=1,..., Ny, Noy N, (20)

whereas any single equation in equation (20) is obtained by fixing the i- with ( j, k)-index
indicating relevant summations on the convention of repeated indices in any single ith
equation. The relevant coefficients of the algebraic equation in equation (20) correspond to
the following terms:

Elh a(z); 2(z); dz

_ h/2
Fij = f
—h/2

E}iz o(z); ﬁ(z)j dz,

_ h/2

T k

Fij = f E5
—h/2

h/2
L= J
—h/2

2 B(2); B(2); dz

Ef, B(2); a(z);dz

i

>

o(z); D(2)2k dz,

/2
ik = J
—h/2

h/2
Ein = J B(2)s B()yy dz
—h2 (21)
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whereas the compliance coefficients E%,, E%,, E%,, are respectively (Ci4s)11', (Chas)1s,
(C%45)5,'. Moreover, from the fourth equation to 2N (in the mixed models say 2N,) in
equation (6), the equations should be substituted by the following ones:

Mxi,x + Mxyli,y - Qxij = Pall“ - piiﬁ},x + pt}i’lki’iksi, Jsk = la ceey Nu» Now Nu’
_ ‘ . (22)
Myi,y + MxyZivy - Qyij = pgli} - p%l‘.’(’,y + pgllki}kaia jak = 1: ) Nu) Nm Nu
where the same convention of equations (20) is assumed for (i, j, k) and the generalized
global transverse stresses in equation (22) can be obtained by the following equations:

n/2

@nga[ (B)y Ty @ 22ty Pr) . 23)

—h/2

At this stage it should be of interest to note how the algebraic equations (20) correspond to
a linear system of algebraic equations and, for this reason, the transverse shear stresses
components (t,.j, T..;) can be easily expressed as a function of the displacement components
(vg, ). The operation consists in solving a (2N, x 2N ) system of linear equations once the
functional base, expanding the shear transverse stress (16), is chosen beforehand.

Algebraic and symbolical manipulations can assist to propose a formulation in a more
suitable form than equations (20-23) gaining a more clear presentation of M2D with respect
to model D2D. In more detail, bringing together equations (20, 21, 23) it is possible to
rewrite equations (22) exactly as they are expressed in equation (6), whereas, the global
transverse shear stresses (Q.;, Q,;) should be expressed, differently as done in equation (10),
as reported in equation (24):

Qy1 %51

Q;}Nu _ |:aT O:| |:H1 1 H12:| |:a O:| U;V,, (24)
0 0 p"[[HI, H,,||0 B ug [’

O.n, Uy,

where, with respect to notations in equations (20, 21), the sub-matrices in equation (24) have
the following expressions:

n/2 Py oo 0‘1‘15/21\1“_ /2 B1®y1 - P1Pn,
e R I T A N
T Loy @y e oy, /ZNM_ M Py ®yy - B, P,
H;; Hj, _ l_= r (25)
Hi, H,, r rj

In conclusion, the M2D model can be presented with the same governing equations of the
D2D model, i.e. the same equation (6), the same generalized resultant stresses (7) except for
(O Qy:), the same inertial terms (8), and the same global constitutive equations (9).
However, the M2D model should consider equation (24) in place of equation (10). Finally, it
is pointed out that during all subsequent observations N, has been considered equal to N,
and for this indicated in the abbreviated form as N.

As far as the expansions are concerned, appropriate functional bases should be chosen to
satisfy the boundary conditions on the bottom and top of the plate. In particular, the
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transverse shear stresses should always fulfill the conditions to be zero at the bottom and
top of the multilayered plate: t(z/h = + 1/2),, = 1(z/h = + 1/2),, = 0. For the numerical
test herein presented the functional base in equation (16) is constituted by a set of
orthonormal polynomials the first three of which are

2(&) = P& =/30(E% — 1/4), (&), = B(&)r = /21028 — £)2),
1(&)s = f(&)s = /10(428% — 128% +3/8), j=4,...,N. (26)

They can be recursively obtained successfully by a known equation which was used for the
first time by Bath [34] to study the free vibration of plates on the basis of the Ritz method.
A normalization processes can assist to make the norm unitary. Each function in the set (26)
fulfils the condition to be zero at £ = z/h = =+ 1/2, and for this reason, the same set has been
used elsewhere [19] to model geometric “SS” boundary conditions in vibration studies of
plates. This choice is then retained appropriate to model the transverse shear stress through
the section of the laminate.

The expansion used to model the in-plane components of the displacement field (1) into
the M2D model is now considered as a beam completely free (say ‘FF’) through the
z-co-ordinate. Indeed, considering the transverse shear stress is modelled independently of
equations (16), any possible displacement field should be permitted and the relevant
functional base should not depend on any constraints at the ends. For this reason the
functional base in equation (1) is constituted now by a complete set of orthonormal
polynomials of which the first three are:

(&) =/3028,  D(E),=./568—1/2), () =T(208 -3¢, j=4,...,N
(27)

with the remaining ones being recursively obtained as previously indicated in case of the set
of equations (26). It is pointed out here that set (27) does not constitute a complete set due to
the absence of the constant term. However, the constant term was not accounted for
because of the presence of u and v in equation (1).

With the aim of keeping the (u;, v;) degrees of freedom dimensionless each term in
equation (27) can be used in equation (1) but, pre-multiplied by thickness h. Conversely,
equation (26) can be considered as it is presented.

4. NUMERICAL EXAMPLES AND DISCUSSION ON CYLINDRICAL BENDING CASE

In order to test the effectiveness of both proposed models the relevant dynamical
equations for certain simply supported plates in cylindrical bending conditions have been
considered [40]. The choice was dictated by the possibility of obtaining exact solutions for
any kind of lamination angle and stacking sequence in 3-D analysis [40]. Namely, the
following “simply supported” boundary and “cylindrical bending” conditions are assumed

(u, v, w, uy, v;) = f(x, z; ), (28)
w(0,) =0,  w(Ly,y) =0,
N:(0,y) = Nyy(©0,y) =0, Ni(Ly,y) = Nyy(Ly, y) =0,
M (0, y) = Mi (0, y) = M ,2:(0, y) = 0,
M (L, y) = My (Ly, y) = My, (Ly, y) = 0, (29)
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where, by taking into account equations (12), the boundary conditions (29) would
correspond to the three-dimensional case [40] having w, ¢, and 7, nullified at x = (0, Lx).
In this work, no details of the 3-D model have been reported because the model has been
presented in reference [16]. However, in this paper, the same numerical code was used to
obtain a 3-D base for comparison purposes. As far as the D2D and M2D models are
concerned the following generalized displacement field is used:

. nmx
(u, v, u;, v;) = A® 5100 cog < I > cos (wt),

X

w =A™ sin <n£zx> cos(wt), i=1,...,N, (30)

X

in order to get, by substitution of equation (30) into equation (6), the following exact
generalized eigenvalue problem:

(K — »>M)A =0 (31)

with A = (4™, AD, A™, AW AWN) gD 0 AEONNT

After implementing the solution of the generalized eigenvalue problem (31), six numerical
tables were produced to test the effectiveness of the proposed models. To this end the
following material properties were considered for all subsequent numerical tables:

El = 25E2 = 25E3, G12 = G13 = 0'5E2, G23 = 0'2E2, UVip = V13 = U3 = 025, (32)

to evaluate the frequency parameter as given by

[ p
w*=wh [—. 33
G12 ( )

Hence, referring to Table 1, for any fixed value of N, shown in the first column, six columns
report the convergence performance of D2D with respect to an increasing number of layers
in the same thickness h. Namely, the first frequency parameter is listed when the wave
number 7 is fixed to be 1. In order to check any possible different behaviour, cross- and
angle ply, symmetric and antisymmetric laminates have been analyzed. Moreover, in
Table 1, each column reporting the frequency parameter is presented in conjunction with
the relevant percentage error with respect to the 3-D result. This percentage error is given
by

(@* — w3 _p)

e% = x 100 (34)

*
W3-p

to point out that a negative value stands as an underestimation of the relevant result.
Conversely, a positive evaluation of e% states an overestimation of the frequency.

Hence, based on the described arrangement, Table 1 compares four different models,
including the presented D2D one, against the PARy, [6, 14], PAR, [16-18] and the exact
3-D.

The first observation that can be made, concerns the behaviour of the D2D model with
respect to its origin (PARy,). As it was mentioned in section 2 the D2D model is exactly
equivalent to PARy, when only one term of expansion (15) is retained (say D2D,). Indeed,
Table 1, unaware of the lamination scheme and layers arrangement, lists the frequency
parameter, corresponding to N = 1, coincident with respective frequencies of PARg.



TaBLE 1

First frequency parameters, w*, for different numbers of expansion terms and different models: 3-D, D2D, PAR«, PAR.; (h/L, = 0-1; n = 1)

[0/90°] % [0/90/0°T %  [0/90/0/90°] %  [(0/90),0°1 % [0/90°T6 %  [(0/90):0°]s  e%
0-0838082 259 0146384 009 0112403 269 0140347 033 0119717 029 0129924 013
00823808 084 0151077 330 0115672 567 0145701 415 0123267 327  0-134168 3-40
1 00823808 084 0151077 330 0115672 567 0145701 415 0123267 327 0134168 3.40
2 0-0818501 019 0151077 330 0112590 286 0145701 415 0123063 310 0134168 3-40
3 00816917 000 0148925 183 0111888 222 0145142 375 0123062 310  0-134055 331
4 00816912 000 0148925 183 0110910 132 0145142 375 0122983 303 0134055 331
5 00816598  —004 0147621 094 0110865 128 0142928 217 0122982 303 0134014 328
6 00816594  —004 0147621 094 0110335 080 0142928 217 0122947 300  0-134014 328
7 00816467 —006 0147297 072 0110268 074 0141136 089 0122930  2:98  0-134013 328
8 00816460 —006 0147297 072 0110153 063 0141136 089 0122924  2:98  0-134013 328
3 00816952 — 0146248  — 0109461  — 0-139891 — 0119368  — 0129758 —
[45/ —45°]  e% [45/ —45/45°] % [(45/ —457,] e% [(45/—45),/45°] e%  [45/— 451 €% [(45/—45)45] e%
00663629 111 00911503 004 00895849 142 00944397 035 00954749 013 00959541 005
0-0658395 031 00929594  2:03 00912185 327 00964630  2:50 00972497 199 00977788 195
1 0-0658395 031 00929594  2:03 00912185 327 00964630  2:50 00972497 199 00977788 195
2 00657384 016 00929594 203 00899278 181 00964630  2:50 00971667 191 00977788 195
3 0-0656663 005 00921017 108 00896170 146 00960575 207 00971667 191 00977411 191
4 00656657 005 00921017 108 00890792 085 00960575  2:07 00971349 187 00977411 191
5 0-0656495 002 00916134 055 00890560 082 00952327 119 00971347 187 00977219 1-89
6 00656482 002 00916134 055 00887633 049 00952327 119 00971206 186 00977219 1-89
7 00656414 001 00914918 042 00887356 046 00945997 052 00971138 185 00977142 1-89
8 00656402 001 00914918 042 00886749 039 00945997 052 00971103 185 00977142 1-89
3 00656341 — 00911137  — 00883295 — 00941086 — 00953487  — 00959047 —

8¢T
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Moreover, it is interesting to notice the monotonic convergence of the frequency
parameter from the less approximated value of PARy to the exact 3-D frequency. In
particular, when a couple of antisymmetric layers are considered ([0/90°] and [45/ — 45°]),
three terms into the expansion (15) are sufficient to get the 3-D result with three or four
significant digits (that means an extreme reliability from an engineering point of view).
However, the reduction of the performances of this model cannot be ignored when layers
increase. Indeed, four layers are sufficient to reduce the good behaviour of the D2D shown
in the case of two layers. In general, by observing the results shown in Table 1, it can be
concluded that firstly, the D2D model does not have an excellent behaviour when many
layers are considered to constitute the laminate and secondly, its behaviour is layout
dependent. Indeed, the discrepancies, fixing for example N = 5, increase with the number of
layers in both angle- and cross-ply laminates. Moreover, it could be of interest to note that
the better behaviour of PARy, appears to be even better in the case of two layers than
PAR,,, but, by increasing the number of layers, the latter PAR,, behaves conversely better
than PAR, besides presenting minor discrepancies with respect to any fixed N for the D2D
model after considering the case of four layers.

It could be of interest to note that in the case of symmetric laminates (fourth, eighth and
12th columns) the convergence is conditioned by only the odd terms of expansion (15). It
should evidently be related to the particular in-plane distribution of displacements
requiring odd functions through the thickness of the laminate. Table 2 is built on
the same arrangement as Table 1 but, relating its comparisons to the M2D model. There is
no doubt that generally the M2D behaves better than the D2D model. In particular,
it is worth mentioning that the uniform performance of this model stands almost
independent of the number of layers. In particular, when N =2 terms are added in
expansions (26, 27) just a couple of cases present a discrepancy beyond 1% (1-65 and 1-33%
for [0°/90°/0°] and [(0°/90°), 0°] respectively). Moreover, in the majority of the cases with
N =2, the M2D model behaves better than PAR .. It would not comes as a surprise
comparing the results to the computational effort involved. Indeed, two terms mean a plates
theory based on 7 d.ofs for displacements and consequently more cumbersome with
respect to 5 d.o.fs related to the PAR . However, the possibility of modeling the transverse
shear stress by continuous functions to average the real trend besides keeping low the
complexity of the model with an increasing number of layers, remains interesting with
respect to an analytical model that is able to get reliable natural frequencies as shown in
Table 2. Also, in Table 2 the convergence, generally from below with a modulated
oscillation, seems to be affected only by odd terms in case of symmetrical stacking
sequences.

Tables 3, has been reported for a two-fold objective. It was considered to give evidence of
the possible improvement that such a generalized theory can give for isotropic plates where
interfaces are absent. Moreover, this table goes to test the discrepancy of both the 2-D
models presented herein besides testing their effectiveness. As far as the first objective is
concerned it is evident that retaining a number of terms equal to or beyond three, in the
relevant expansions, there is absolutely no difference between the M2D and the D2D
models. In this situation, the displacement-based theory (D2D) behaves equivalently to the
mixed-based theory (M2D). This could be expected since both models are able to satisfy the
lateral boundary conditions and the continuity requirements through the thickness of the
laminate. However, Table 3 clarifies that such generalized theories can be only
computationally demanding, without any effective improvement, if they are not properly
used. Namely, as far as the discrepancies are concerned, a monotonic increase occurs since
— 0.1 to — 1.0% against an increasing wave number. In this respect, it should be of interest
to known that by graphically displaying the relevant mode shapes, herein not reported, the



TABLE 2

First frequency parameters, w*, for different numbers of expansion terms and different models: 3-D, M2D, PARs, PAR<; (h/L, =0-1; n = 1)

[0/90°] e%  [0/90/0°] €%  [0/90/0/90°] ¢%  [(0/90),0°]  e% [0/90°Ts e%  [(0/90):0°,]5 €%
PAR,, 0-0838082 259 0146384 009 0112403 269 0140347 033 0119717 029 0129924 013
PAR,, 0-0823808 084 0151077 330 0115672 567 0145701 415 0123267 327 0134168 340
M2D, N
1 00806500 — 128 0143837  — 165 0113288 350 0138037 —133 0119802 036 0128569  — 092
2 00809977 —0-85 0143837  — 165  0-110066 055 0138037 — 133 0119436 006 0128569  — 092
3 00817015 001 0145844  —028 0109150 —028  0-139901 001 0119372 000 0129739  — 001
4 00816482 — 006 0145844  —028 0108963 — 046 0139901 001 0119401 003 0129739  — 001
5 00816093 — 011 0146142 —007 0108836 —057 0139381  —036 0119399 003 0129780 002
6 00816170 —0-10 0146142  —007 0109205 —023 0139381 —036  0-119437 006 0129780 0-02
7 00816104 —010 0146210 —003 0109239 —020 0139652 —017 0119437 006 0129808 0-04
8 00816138 — 010 0146210 —003 0109406 —005 0139652 —017 0119412 004  0-129808 0-04
9 00816118 —010 0146209 —003 0109405 —005 0139857 —002 0119412 004 0129763 0-00
10 00816134 — 010 0146209 —003 0109419 —004 0139857 —002 0119340 —002 0129763 0-00
11 00816126 —010 0146203 —003 0109414 —004 0139862 —002 0119337 —003 0129748 — 001
3-D 00816952  — 0-146248 — 0-109461 — 0-139891 — 0119368 — 0129758 —
[45/ —45°] % [45/ —45/45°] e% [(45/—45%),] % [(45/—45),/45°] e% [45/—45Ts % [(45/—45),45,] e%
PAR,, 0-0663629 111 00911503 004  0-0895849 142 00944397 035 00954749 013 00959541 005
PAR,, 0-0658395 031 00929594 203 00912185 327 00964630 250 00972497 199 00977788 1-95
D2D, N
1 00650055 —0.96 0.0903783  —0.81  0.0900247 192 0.0941281 0.02  0.0955344 0.19 00958849  — 0.02
2 00653133  — 049 00903783 —0-81 0-0886327 034 00941281 002 00953718 002 00958849  — 002
3 00656297 — 001 00909154 —022 00882111 —013 00941504 004 00953356 —001 00958935 — 001
4 00656277 —001 00909154 —022 00880816 —028 00941504 004 00953495 000 00958935 — 0-01
5 00656125 —003 00910464 —007 00880258 —0-34 00938425 —028 00953490 000 00959056 0-00
6 00656180  — 002 00910464 — 007 00881969 — 015 00938425 —028 00953646 002 00959056 0-00
7 00656153  — 003 00910817 —004 00882121 —013 00939627 —015 00953643 002 00959152 001
8 00656173 — 003 00910817 —004 00882933 —004 00939627 — 015 00953534 000 00959152 0-01
9 00656165 — 003 00910803 —004 00882947 —004 00940689 — 004 00953535 000 00958949  — 0-01
10 00656174  — 003 00910803 — 004 00883019 —003 00940689 — 004 00953211 —003 00958949 — 001
11 00656171  — 003 00910756 — 004 00883003 —003 00940783 —003 00953201 —003 00958829  — 002
3-D 00656341  — 00911137  — 00883295  — 00941086  — 00953487  — 00959047  —

—_
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TABLE 3

First frequency parameters, w*, for isotropic plates; h/L, = 0-1; v = 0-3

D2D, N
n 1 3 5 7 PAR 3-D  e%D2D,e% PAR
1 0-0473103  0-0473103 0-0473103 00473103 00473103 00473422 —-01 —01
2 0-180237  0-180237  0-180237  0-180237  0-180237  0-180672 -02 =02
3 0-378281  0-378279  0-378279 0378279 0378281  0-380024 —-05 —-05
4 0-620463 0620447  0:620447  0-620447 0620463  0:624669 -07 =07
5 0-890825  0-890757  0-890757  0-890757  0-890825  0-898528 -09 —-09
6 117876 117855 1-17855 1-17855 117876 1-19064 -10 —-10

M2D, N
n 1 3 5 7 PAR 3-D  e%M2D,e% PAR
1 0-0473100 00473103 0-0473103 0-0473103 0-0473103 0-0473422 —-01 —01
2 0-180226 ~ 0-180237  0-180237  0-180237  0-180237  0-180672 -02 =02
3 0-378182 0378279  0:378279  0-378279 0378281  0-380024 -05 —=05
4 0-620047  0-620447  0-620447 0620447 0620463  0-624669 -07 —-07
5 0-889649 0890757  0-890757  0-890757  0-890825  0-898528 -09 —-09
6 1-17613 1-17855 1-17855 1-17855 1-17876 1-19064 -10 —-10

increasing discrepancy was provided together with the increasing inability of both models
(M2D, D2D) to deal with normal effects.

Tables 4 and 5 compare the results obtainable through the D2D and the M2D models for
higher frequencies for the worst case presented in Tables 1 and 2. In this respect, Table 4 lists
the first natural frequencies for each fixed n, but Table 5 lists an increasing number of
frequencies with n = 1. As clearly shown in both tables, the M2D model shows a good
behaviour when compared to the 3-D results also in the case of higher frequencies. An
exception is provided with the sixth mode (Table 5) where a large discrepancy, even in the
M2D model, is present (7-:6%). However, it should be considered that in that case we are
dealing with extremely high frequencies, for which the 3-D w-part of the displacement field
was checked to be comparable with the inplane components. PARy, and PAR,, in such
cases are not evidently able to provide such frequencies for the natural limitation of the
d.o.f. (five) used in the formulation.

In order to conclude the numerical test and comparisons, Table 6 is presented to evaluate
the behaviour of both models when the thickness approaches zero starting from very thick
plates (L,/h = 2-5) to extremely thin ones (L,/h = 500). As is evident, both two-dimensional
models get closer to the 3-D results proving their sensitivity with respect to the physics of
the problem (continuity requirements) that indeed becomes immaterial for very thin plates.
In any case the M2D model shows the best behaviour whenever compared to the 3-D exact
model.

Finally, a graphical representation of the mode shapes (or eigenfunctions) is considered
helpful to complete the investigation herein reported. In this respect, Figures 2-6 are
displayed, after scaling the first mode shape evaluated by the eigen problem (31), so that the
mode shapes in the z direction [see equation (1)] approximately matches the 3-D one at
a fixed x-co-ordinate.
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TaBLE 4

First frequency parameters, w*, for orthotropic plates; [0/90/0/90°]; (h/L, = 0-1)

D2D, N

n 1 3 5 7 PAR, 3-D e%D2D, e% PARy,

1 0115672 0-111888 0-110865 0-110268 0-115672  0-109461 07 57

2 0352370 0328915 0-324061 0-321023  0-352370 0-316561 1-4 11-3

3 0612065 0-564253  0-557127 0-551860  0-612065  0-542971 16 127

4 0875924 0-806547 0-799598 0792924  0-875924  0-779708 17 12-3

5 114445 1-05553 1-04977 1-04218 1-14445 1-02465 17 117

6  1-42055 1-31082 1-30586 1-29749 1-42055 1-27545 17 114
M2D, N

n 1 3 5 7 PAR,, 3-D e%M2D-, e% PAR

1 0113288 0.109150 0.108836  0.109239  0-112403  0-109461 —02 27

2 0335410 0311781 0312974 0-315550  0-332740 0-316561 —-03 51

3 0570510  0-525477 0-535635 0-541454  0-575222  0-542971 —03 59

4 0802076  0-742103 0768963 0-778136  0-831635 0-779708 —02 67

5 102967 096240 1-01124 1-02333 1-10678 1-02465 -0 80

6 125443 1-18663 1-26019 1-27461 1-40561 1-27545 —01 102

TABLE 5
Frequency parameters, w*, for orthotropic plates; [0/90/0/90°T; (h/L, = 0-1; n = 1)

D2D, N

No 1 3 5 7 PAR,, 3D e%D2D, ¢% PARy,

1 0115672 0111888 0-110865 0-110268 0-115672  0-109461 07 57

2 0314159 0314159 0-314159 0314159 0-314159 0314159 00 00

3 1-56827 1-55582 1-54683 1-54388 1-56827 1-53891 0-3 19

4 264884 2:63821 2-50984 2-43944 2-64884 2-:38107 25 112

5 3-10585 3-:09678 298629 2:92172 3-10585 2:86911 1-8 83

6 — 5151307 5-13362"  5:02041F — 4:55831 10-1 —
M2D, N

No 1 3 ) 7 PAR,, 3-D e%M2D, e% PAR,,

1 0113288 0-109150 0-108836  0-109239 0-112403  0-109461 —02 27

2 0314159 0314159 0-314159 0314159 0-314159  0-314159 00 0-0

3 1-54805 1-55199 1-54249 1-53967 1-56071 1-53891 01 14

4 241101 2:39392 2:38652 2-38205 264884 2-38107 00 0-1

5 291497 2-89007 2-89426 2-87932 2-89643 2-:86911 0-4 1-0

6 — 5007557 4:92504" 4906827 — 4:55831 7-6 —

T Appearing as the seventh mode compared to the sixth one of the 3-D model.

In Figure 2, the PARy, and the D2D solutions are compared with the 3-D model. Figure
3 is the counterpart of Figure 2, but considers the M2D model. In both cases, it is easy to
verify the benefits of adding terms in the relevant expansion series. Indeed, the



TABLE 6

First frequency parameters, w*, for orthotropic plates; [0/90/0/90°]; (n = 1)
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D2D, N
L./h 1 3 5 7 PAR 3-D e%D2D; e% PARy
2:5 0-875924 0-806547 0799598 0-792924 0-875924 0-779708 17 12-3
10 0-115672 0-111888 0-110865 0-110268 0-115672 0-109461 0-7 57
100 0-00133113 0-00133051 000133032 000133020 0-00133113 0-00133005 0-0 01
200 0-000333196 0-000333157 0-000333145 0-000333138 0-000333196 0-000333129 0-0 0-0
500 0-0000533300 0-0000533290 0-0000533287 0-0000533285 0-0000533300 0-0000533282 0-0 0-0
M2D, N
L./h 1 3 5 7 PAR, 3-D e%M2D, e% PAR,,
2:5 0-802076 0-742103 0-768963 0-778136 0-831635 0-779708 —-02 67
10 0-113288 0-109150 0-108836 0-109239 0-112403 0-109461 —-02 27
100 000133076 0-00133003 000132994 0-00133001 0-00133059 0-00133005 00 0-0
200 0-000333173 0-000333127 0-000333121 0-000333126 0-000333162 0-000333129 0-0 0-0
500 0-0000533294 00000533282 0-0000533280 0-0000533282 0-0000533291 0-0000533282 00 0-0

341
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Figure 2. Mode shapes through the thickness of the laminate; reference Table 1; comparison: D2D-3-D;n = 1;
[0/90/0/90°7. (a) 3-D (0-1094611), (---) PAR4(0:115672, + 5.7%); (b) 3-D (0-01094611), (---) D2D_2 (0-112590,
+2.9%); (c) 3-D (0-1094611), (---) D2D_8 (0-110153, + 0.6%).

displacements match the exact displacement distribution better as the number of terms
increases. In particular, in Figures 2(c) and 3(c), where eight terms are used in the
expansions, the 3-D mode and relevant 2-D ones are practically indistinguishable.
However, the M2D model behaves better although the good agreement in displacements is
comparable to the agreement present between D2D and 3-D. It, however, cannot be
forgotten that the M2D goes beyond being a good approximation concerned with only the
displacement. Figures 4 and 5 are extremely interesting with respect to the capability of
both approaches to model quite accurately the displacement fields as the relevant expansion
series increase. Particularly interesting are Figures 4(a) and 5(a) with respect to the
distortions that PAR_, and PARy, can introduce with respect to the true distribution of the
in-plane displacements which, with a few layers and from a layout dependence, can be
highly non-linear.
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Figure 3. Mode shapes through the thickness of the laminate; reference Table 2; comparison: M2D-3-D;n = 1;
[0/90/0/90°]. (a) 3-D (0-1094611), (---) PAR(0-112403, + 2.7%); (b) 3-D (0-1094611), (---) M2D_2 (0-110066,
+ 0.6%); (c) 3-D (0-1094611), (--) M2D_8 (0-109406, — 0.05%).

Finally, Figure 6 illustrates the case with a relatively high number of layers. The
M2D, like the D2D, averages the real 3-D displacement distribution (a “zig-zag”), but
unlike the D2D it quite accurately estimates the natural frequency. This is evidently
attributed to the modelling of the transverse shear stress that fulfills the continuity
requirements.

Graphic outputs, in conjunction with Tables 1 and 2, show that when a few layers
constitute the laminate, the in-plane displacements can be highly non-linear or, at least, the
displacements are not extremely well approximated by the cubic terms, layer by layer. The
transverse section can then be distorted in such a way that a global average distribution of
the in-plane displacements (PARy) could transform the PARy, into a better model than
PAR,,. However, when the layers increase, a “zig-zag” distribution coming from PAR
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Figure 4. Mode shapes through the thickness of the laminate; [45/ — 45°]; comparison: D2D-3-D; n = 4;
h/L,=0.1. (a) 3-D(0-7141170), (---) PAR4(0-737823, + 3.3%); (b) 3-D(0-7141170), (---) D2D_2 (0-724107,
+ 1.4%); (c) 3-D(0-7141170), (---) D2D_8 (0-714527, + 0-06%).

results in a better solution and even the M2D can constitute an appreciable solution for low
and relatively high number of layers.

After discussing the numerical tables and graphical outputs it should be appreciated how
different models, based on different substantial mathematical treatment, are going to give
results in excellent agreement (3-D exact, the D2D by using a polynomial base with
extremum at the ends, the M2D by using two different polynomial bases such as “completely
free” for the displacement and “simply supported” for the transverse shear stress at the ends)
in a refined and unified notation [equations (6)—(15) for the D2D along with equations
(24)-(27) for the M2D]. Based on the simplicity of such an expansion-based method, it
should be interesting to account for the normal effects. Its importance was considered
elsewhere [30] in the case of a layer-wise description.
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Figure 5. Mode shapes through the thickness of the laminate; [45/ — 45°]; comparison: M2D-3-D; n = 4;
h/L,=01. (a) 3-D(0-714117), (---) PAR.(0-804256, + 12.6%); (b) 3-D(0-714117), (---) M2D_2 (0-689217,
—3.5%); (c) 3-D(0-714117), (--) M2D_8 (0712842, — 0.18%).

5. CONCLUSIONS

This paper introduces, in a unified notation, two different generalized higher order
theories extending 2-D models to account for arbitrarily high number of degrees of freedom
for an accurate modelling for free vibration studies of composite multilayered plates. This
generalization has been obtained by expanding in-plane displacements and stresses
throughout the thickness of the laminate. An orthogonal base has been initially proposed
obtaining a model (D2D) in accordance with displacement-based plate theories [1-3, 6]
that violate the interlaminar continuity requirements concerned with the interlaminar
transversal shear stresses. It is an extension of recent higher order theories and, besides their
possible equivalencies [ 8], it has been presented mainly by referring to the notations used in
references [6, 17, 18, 14] and herein indicated as PARg,. It has been numerically shown that
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Figure 6. Mode shapes through the thickness of the laminate; [(0/90°);/0°;],; comparison: D2D-M2D-3-D;
n=3; h/L, = 0-1. 3-D(0-611977), (---) D2D_7 (0-662178, + 8.2%), M2D_7 (0:611633, — 0.06%).

such a generalized displacement-based higher order model is able to improve the
performance of its origin (PARg,) by numerical convergence tests. Such as improvement,
however, seems to be layout-dependent.

A generalized model accounting in a weaker form for all the continuity requirements
(in-plane displacements and transverse shear stresses are approximated as continuous
functions with continuous derivatives) has also been introduced by using different bases
with respect to the base used in the D2D model. This model (M2D) has been introduced in
the light of a mixed approach where displacement and stress can be independently
modelled. The presentation of this model (M2D) has been provided with respect to the 2-D
generalized model violating the stress continuity requirements (D2D) in a unified notation
to highlights the main relevant differences. The mixed plate model has then been tested
against the displacement-based one and an excellent performance has been obtained
compared to the 3-D results. Several numerical tests have shown the independence of the
M2D model from the number of layers, the stacking lamination schemes and finally, from
the lower and higher frequencies. Whenever the continuity requirements are absent an exact
correspondence between D2D and M2D has been verified to demonstrate the invariance of
the both models with respect to the physics of the problem. Due to the particular bases used,
any complications, concerned with mathematical treatments at the interfaces or at the top
and bottom of the laminate, to fulfil continuity requirements or traction boundary
conditions, respectively, are not requested. Based on the engineering applications, it can be
concluded that the M2D seems to be able to assess fairly satisfactorily natural frequencies
and relevant modal data by using continuous functions to approximate in-plane
displacements and transverse stresses. The overestimation and/or underestimation of
natural frequencies, obtained from previous higher order theories, has been justified by
using both the generalized models D2D and M2D.

The capability of such a mixed model to approach “asymptotically” the exact 3-D
eigenvalues sounds extremely interesting. However, based on the comparison with
a relevant 3-D code normal effects have been detected important for some higher
frequencies, as has been highlighted, on the other hand, in reference [30]. It remains to
verify whether a model accounting for such ‘normal effects’ together with fulfilling the
continuity requirements, in a weaker form, is able to further improve the performance
herein presented by the generalized M2D model.
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