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The fuzzy adaptive back-propagation (FABP) algorithm which combines fuzzy theory
with arti"cial neural network techniques is applied to the identi"cation of restoring forces in
non-linear vibration systems. Simulated results show that the FABP algorithm is e!ective
for the identi"cation of dynamic systems. The FABP algorithm not only increases the
training speed of the network, but also decreases the arti"cial interference of network
parameters to a certain extent. Based upon the FABP algorithm, an improved scheme with
a mutation mechanism is presented in this paper. The improved fuzzy adaptive BP (IFABP)
algorithm extends the e!ectiveness and adaptivity of the FABP algorithm still further. The
successful estimation of simulated systems show that a feasible method of identi"cation is
provided, which can be used to estimate the restoring forces in non-linear vibrating systems
quickly and e!ectively.
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1. INTRODUCTION

Model identi"cation of dynamic systems in the vibration engineering "eld has been
followed with interest in recent years. A number of identi"cation techniques on this topic
are now available, such as parametric or non-parametric identi"cation methods, time
domain or frequency domain estimation approaches, etc. But there exist some unavoidable
limitations in most of the methods, including that a priori information about the system
under investigation is required, that the properties of the identi"ed system is constrained
and that the nature of the excitation source to be used is restricted, and so on. Therefore,
novel models and methods need to be introduced to improve the estimation of dynamic
systems.

It is well known that arti"cial neural network models have several inherent properties
which distinguish them from traditional computational models, such as parallel
architectures and computation, higher degree of robustness or fault tolerance, and the
property of adaptation or learning, etc. The most outstanding characteristics of the neural
network aided computation is that neither complicated programming nor rigid algorithms
are needed. These properties make neural network methods the ideal choice in cases where
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real-time adaptation and fast processing of large amounts of data are required. For this
reason, a lot of attention has been paid to neural networks for system identi"cation in the
"elds of vibration engineering and computational mechanics [1}15].

Masri et al. explored a procedure based on neural networks for the identi"cation of
non-linear dynamic systems [1]. It was a successful attempt to employ neural network
techniques to physical systems in the applied mechanics "eld. Because of the abilities of
learning and generalization of neural networks, no a priori information about the system
under investigation is required and the nature of the excitation source to be used is not
restricted in the procedure. The approach can be used e!ectively for the identi"cation of the
restoring forces of some typical non-linear structural systems, but it only dealt with the
identi"cation of single-degree-of-freedom systems in reference [1]. References [2, 3] extend
the procedure to multi-degree-of-freedom non-linear vibration systems, and make it
applicable in a wider range. In most current studies, it is usual to employ the conventional
back-propagation (BP) algorithm to train the neural networks as was implemented in
references [1}3]. Owing to the inherent shortcoming of requiring a longer training time and
having di$culties in selecting the training parameters in the BP algorithm some limitations
are unavoidable in the real applications of neural network methods. Liang et al. [4, 5]
applied a fuzzy adaptive BP (FABP) algorithm which combines the fuzzy theory with the
structural neural network techniques to the identi"cation of non-linear characteristics in
cushioning liners and attained the goal of increasing the training speed of the network.

This paper applies the FABP algorithm to the identi"cation of restoring forces in
multi-degree-of-freedom non-linear vibration systems and increases the training speed of
the network to a certain extent. In order to increase the e$ciency of the FABP algorithm
still further this study makes some improvement to the algorithm. On the one hand, the
mutation mechanism in the evolutionary computation is introduced into the FABP
algorithm, which increases the training speed of the network still further, on the other, the
arti"cial interference to some parameters of the network is decreased, which increases the
adaptivity of the algorithm still further. The aim of the proposed method is to establish an
equivalent neural network model for a non-linear system rather than identify any
&&parameters'' of the physical systems. The model is validated by matching the projected
output. Simulated results show that it is much more e$cient to apply the improved fuzzy
adaptive BP (IFABP) algorithm to the identi"cation of restoring forces in non-linear
vibration systems. The IFABP algorithm is also more applicable in practice because of its
characteristics of using less arti"cial interference in the processing operation.

2. IDENTIFIED MODEL

A general mechanical structure can be discretized into a lumped parameter,
n-degree-of-freedom system. The equations of motion of the system can be written as
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It is assumed that the excitations F
i
(t) and the accelerations y(

i
(t) (i"1, 2,2, n) of the

system are available from measurements, and that the mass m
i
(i"1, 2,2, n) are known or

easily estimated. The non-linear characteristics of the system and the restoring forces
g
i
(y

1
, yR

1
,2, y

n
, yR

n
) (i"1, 2,2, n) acting on the system are unknown. The purpose of the

paper is to identify the restoring forces, which are the functions of the displacements and the
velocities, using neural network methods.

From equation (1) the restoring forces can be written as
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The estimation procedure described in this paper requires the velocity and displacement
responses simultaneously at each response location. The displacements and the velocities of
the system can be found by direct measurement, or through integration of y(

i
(t) [3]. If the

displacement, velocity, acceleration and the input excitation signals are taken at discrete
times t
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then the values of the resting forces at times t
k
are
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3. REVIEW OF CONVENTIONAL AND FUZZY ADAPTIVE BP ALGORITHM

A three-layer feedforward neural network is used in this paper to illustrate the
algorithms. The inputs to the net are the measured or calculated displacements and
velocities y
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are the unknown restoring forces. The network topology is represented by the weight
matrices [=i] and the threshold vectors MhiN (i"1, 2).

Let
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be the input vector to the net,
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be the output vector to the net and

f (x)"tanh(bx) (b'0) (7)

be a non-linear activation function.
The outputs of the network are computed according to the following equations:
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where l is the number of the neurons in the hidden layer.
The identi"cation approach consists of two phases: the network training (or learning)

phase and the validation phase. During the training phase, the network is presented with
the sequence of input vectors My
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NT and the sequence of desired output
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vectors Mg
1k

, g
2k

,2, g
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NT. Given a set of weights and threshold (which initially is chosen
randomly), the input vector is propagated forward through the net and the network output
Mg@

1k
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2k
,2, g@

nk
NT is calculated according to equations (8).

The error between the actual system output and the desired output is de"ned as
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where p is the number of patterns in the training set.
The purpose of the training phase is to adjust the weights and thresholds w1
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Mh2N, respectively, in the direction that will reduce the error. The training is performed by
the back-propagation (BP) algorithm [15]. According to the conventional BP algorithm,
the modi"ed formulas of the network parameters are as follows:
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where g is the learning rate, a is the momentum factor, and Dw2
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, Dh2

j
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and Dh1

k
are the

increments of connection weights and thresholds respectively.
During the validation phase, the network is given other input vector sequences
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na , yR naNT not among those used for training. If the training was successful and
the network is a good identi"er, it should produce an output sequence Mg@
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close to the actual system output
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References [1}3] applied the conventional BP algorithm to the identi"cation of restoring
forces in non-linear vibration systems successfully. In general, however, the speed of
convergence of the BP algorithm for training the feedforward multilayered neural networks
is slower. Therefore, the BP algorithm needs to be improved in order to speed up the
convergence. The learning rate g and the momentum factor a are the main parameters
a!ecting the speed of convergence in the BP algorithm. References [4, 5] applied the FABP
algorithm to the identi"cation of non-linear characteristics in cushioning liners, realized the
adaptive adjustment of the learning rate g and the momentum factor a, and attained the
goal of increasing the training speed of the network.

In the fuzzy adaptive BP algorithm, the error function changes with the iteration number.
The input variables of the fuzzy controller are de"ned as

CE (t#1)"C¹

E (t)!E (t#1)

maxME (t), E(t#1)N
, (12)

CCE(t#1)"CC¹ [CE(t#1)!CE(t)], (13)



Figure 1. Membership function curves of fuzzy subsets for CE and CCE.

Figure 2. Membership function curves of fuzzy subsets for Dg and Da.
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respectively, where C¹ and CC¹ are scale factors which depend upon the changing
condition of the error curves. The determination of the input variables of the fuzzy
controller is based on the following considerations: (1) the value of the absolute changing
rate of E is fairly small, therefore, the relative changing rate of E is fairly small, therefore,
the relative changing rate of E is given by CE(n#1); (2) the increase of CE indicates
the decrease of the error E according to the de"nition of CE in equation (12), therefore, the
de"nition of CE makes it easier to determine the control rules.

In the fuzzy BP algorithm the input variables of the fuzzy controller CE and CCE are
divided into "ve fuzzy subsets: &&Positive Big'', &&Positive Small'', &&Zero'', &&Negative Small''
and &&Negative Big'', represented by PB, PS, ZE, NS and NB respectively. Their membership
funtions are shown in Figure 1.

The curves of the membership functions of Dg and Da are shown in Figure 2. The fuzzy
control variables g(t#1) and a (t#1) are adjusted according to the following equations:

G
g(t#1)"g (t) (1#Dg),

a(t#1)"a (t) (1#Da).
(14)

The fuzzy control rules of Dg and Da can be obtained and are given in Tables 1 and 2
respectively.

In order to simplify the calculation of fuzzy decision, the table matching method is used.
Therefore, the values of Dg and Da can be obtained by looking up Tables 1 and 2 according
to the values of CE and CCE. The adjustment values of Dg and Da are taken as
NS"!0)01 , ZE"0)0, PS"0)01.

4. AN IMPROVED FUZZY ADAPTIVE BP ALGORITHM (IFABP)

In a large number of simulated experiments using the FABP algorithm we observe that
the following case occurs quite often: after a certain phase of adjustment, parameters g and
a stabilize at some value whereas the calculated error does not reach the desired value and



TABLE 1

Fuzzy control rules of Dg

CE

CCE NB NS ZE PS PB

NB NS NS NS ZE ZE
NS NS NS ZE ZE PS
ZE NS ZE ZE PS PS
PS NS ZE ZE PS PS
PB NS PS PS PS PS

TABLE 2

Fuzzy control rules of Da

CE

CCE NB NS ZE PS PB

NB NS NS ZE NS NS
NS NS NS ZE ZE NS
ZE NS NS PS ZE ZE
PS NS NS ZE ZE ZE
PB NS NS ZE NS NS
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the speed of the decrease of the calculated error is very slow. The numerical analysis results
show that the parameters g and a tending towards stability are not adjusted to the optima.
A detailed analysis has revealed the following two reasons causing this phenomenon:

(1) The parameters being adjusted may get stuck at a local optimum. There, however,
exist probably much better values in some far region. Owing to the limitation of the FABP
algorithm, a slight adjustment on the parameters no longer has an e!ect once the
parameters get stuck in a local optimum, i.e., a slight adjustment on the parameters cannot
improve the results any further. The fuzzy BP algorithm does not possess the ability of
escaping from the local optima, therefore, it fails to continue the global searching.

(2) The searching direction may not be optimal. It is found that a slight adjustment on
parameters in one direction may result in better results than in other directions.
Unfortunately, the FABP algorithm does not possess the ability of selecting the optimal
searching direction. In fact, the algorithm often follows the original searching direction. As
a result, the search may even run in the opposite direction of the optimum one and the
adjusted parameters get further away from their global optima. For example, if we set the
searching interval of parameter g to be [g

1
, g

2
], then the search may end at either g

1
or g

2
and then stops at one end without searching through the other end. Such cases occurs quite
often in the simulated experiments.

In view of these facts we adopt the idea of mutation operation widely used in the genetic
algorithm for avoiding being trapped in a local optimum. Set a mutation probability p

m
in

advance. If the adjusted parameters always rest on some point then the mutation operation
is implemented with a probability of p

m
. The result of the mutation is to assign randomly

a new value to the adjusted parameter.
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The improved fuzzy adaptive BP algorithm added with a mutation operation possesses
the following characteristics:

(1) It prevents the parameters from getting stuck at the local optima or a constant
searching direction to a certain extent. The mutation gives the adjusted parameters chances
of escaping from the local optima and adjusting directions.

(2) If the adjusted parameter stabilizes in the optimum point then the mutation may have
a certain destructiveness. However, the algorithm has the ability to search for the optimum
again. Because the mutation probability is very small, the destructiveness of the mutation to
the algorithm is minor.

(3) The FABP algorithm can be considered as a special case of the improved algorithm
with a zero mutation probability. The improved FABP can provide an e$cient way of
increasing the training speed, if the parameter p

m
is set properly.

The FABP algorithm described above needs the adjustment of the parameters C¹ and
CC¹ in equations (12) and (13) to calculate the input variables of the fuzzy controller
CE(t#1) and CCE(t#1). The purpose of adjusting C¹ and CC¹ is to map reasonably CE
and CCE to a desired interval and divide the fuzzy subsets. Note that CE and CCE are
changeable and the changing region is very large (for example, in the initial phase of
training, the decreasing speeds of CE and CCE are fast owing to the error itself is large,
whereas as the error is small the decreasing speeds of CE and CCE are less several
quantitative orders than those in the initial phase of training), therefore even if some
suitable values of C¹ and CC¹ are chosen in the beginning, they will certainly lose their
reasonableness "nally as CE and CCE change. If CE and CCE cannot be mapped
reasonably to the desired interval then the division of the fuzzy subsets is no longer scienti"c
and the fuzzy control will lose its supported foundations.

In view of the above-mentioned reasons we cancel the parameters C¹ and CC¹ in the
improved algorithm and adopt the following method to quantize CE and CCE.

First, let

CE*(t#1)"
E (t)!E (t#1)

maxME (t), E (t#1)N
, (15)

CCE*(t#1)"CE*(t#1)!CE*(t); (16)

then de"ne referenced quantized scales

CE*(t#1)"1
2

(CE*(t)#CE*(t#1)), (17)

CCE*(t#1)"1
2

(CCE*(t)#CCE*(t#1)). (18)

On the basis of these de"ne the input variables of the fuzzy controller as

CE(t#1)"G
a if CE*(t#1)'a,

!a if CE*(t#1)(!a,

CE*(t#1) if DCE*(t#1) D)a,

(19)

CCE(t#1)"G
a if CCE*(t#1)'a,

!a if CCE*(t#1)(!a,

CCE*(t#1) if DCCE*(t#1) D)a.

(20)

In the present study we set a"3.
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5. SIMULATED EXAMPLE

In order to verify the e$ciency of applying the FABP and IFABP algorithms to the
identi"cation of multi-degree-of-freedom non-linear vibration systems, the restoring force
identi"cation of a three-degree-of-freedom vibration system with hardening springs is
examined.

The restoring forces in equations (1) are
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where the values of the physical parameters are taken as

m
1
"1 kg, m

2
"1)3 kg, m

3
"2 kg,

k
11
"1000 N/m, k

12
"2000 N/m, k

13
"800 N/m,

k
22
"1200 N/m, k

23
"1500 N/m, k

33
"3000 N/m,

c
11
"20 N s/m, c

12
"15 N s/m, c

13
"10 N s/m,

c
22
"15 N s/m, c

23
"30 N s/m, c

33
"25 N s/m,

k(3)
11
"1,000,000 N/m3.

The excitation used for training the neural network is a swept sine signal with amplitude
50 N and excitation frequency 2n. The excitation only exists at m

1
. The net inputs
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NT and the desired outputs Mg
1k
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, g
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NT are sampled in the time
interval [0)2, 20] s at intervals of 0)2 s. The number of patterns in the sample set is p"200.
TABLE 3

Comparisons between measurements and identi,cation of displacements, velocities and
restoring forces

Errors of
Measurements Minima Maxima Estimates Minima Maxima maxima (%)

y
1

!0)01780 0)01780 y@
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!0)01721 0)01721 3.29
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1
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!47)66461 48)17251 4.16
g
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!0)30951 0)31054 g@
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!0)28218 0)28318 8.81
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!0)46270 0)29123 g@
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!0)38029 0)27320 6.19



Figure 3. Measurements g
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Figure 4. Measurements g
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The number of the hidden layer neurons is l"13. The total number of the network
parameters to be adjusted is 133 (117 weights and 16 thresholds terms). Both mutation
probabilities of the learning rate g and the momentum factor a are taken as 0)01. The data
used in the validation phase are obtained by employing the excitation at m

1
with amplitude

48 N.
For the sake of comparing the FABP and IFABP algorithms with the conventional BP

algorithm, we set a desired error in the training process and examine the training speeds of
the three algorithms. The simulated results show that the training speed of the IFABP
algorithm is about 1)5 times faster than that of the FABP algorithm, and is 4 times or so
faster than that of the conventional BP algorithm. It can be seen that the mutation
operation plays an important role in the implementation process on the algorithm. Table 3
gives the minimum and maximum values of measurements and identi"cations of
displacements, velocities and restoring forces, and the relative errors of the maximum values
as the desired error is taken as 0)003.



Figure 5. Identi"cation results g@
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Figure 6. Identi"cation results g@
2
(yR @
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In order to inspect and compare the identi"cation results intuitively, Figures 3 and 4
show the measurements g

2
(y

2
) and g

2
(yR

2
), where y

2
and yR

2
are taken as independent

variables, respectively; Figures 5 and 6 show the corresponding identi"cations g@
2
(y@

2
) and

g@
2
(yR @

2
), respectively; Figure 7 shows the comparison of error curves from IFABP, FABP and

conventional BP algorithms.
From Table 3 and Figures 3}7 it can be seen that both FABP and IFABP algorithms can

be applied e!ectively to the identi"cation of restoring forces in multi-degree-of-freedom
vibration systems, whereas using the IFABP algorithm can obtain a big increase in the
training speed of the network.

6. CONCLUSIONS

Simulated results show that the fuzzy adaptive BP (FABP) algorithm which combines the
fuzzy theory with arti"cial neural network techniques is e!ective in solving the problems of



Figure 7. Comparison of error curves from IFABP, FABP and conventional BP algorithms: *} IFABP
algorithm; - - - FABP algorithm; } } } conventional BP algorithm.
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identifying restoring forces in non-linear vibration systems. The FABP algorithm increases
the training speed of the network to a certain extent. The improved fuzzy adaptive BP
(IFABP) algorithm which is based on the FABP algorithm and presented in this paper not
only increases the e!ectiveness of the algorithm but also enhances the adaptivity of the
algorithm still further and enables the algorithm to be more applicable in practice.
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