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The industry-standard MGB approach to predicting the noise generated by a given
aerodynamic #ow "eld requires that the turbulence velocity correlation be speci"ed so
that the source terms in the Lighthill acoustic analogy may be computed. The velocity
correlation traditionally used in MGB computations is inconsistent with a number of basic
qualitative properties of turbulent #ows. In the present investigation, the e!ect on noise
prediction of using two alternative velocity correlations is examined.
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1. INTRODUCTION

The need for reduced noise production by aircraft is understood by all; this need drives an
intense research e!ort into possible means of e!ecting such reductions (e.g., reference [1]).
At the heart of this problem is the need to predict accurately the noise generated by
a turbulent #ow.

The prediction of the noise generated by a turbulent #ow involves three problems: the
computation of the underlying turbulent #ow "eld, the prediction of the noise generated by
that #ow "eld and the prediction of the propagation of the acoustic waves in the
inhomogeneous medium presented by the #ow. None of these problems have been
satisfactorily resolved. The computation of turbulent #ow about realistic geometries at
Reynolds numbers of practical interest can only be carried out through the numerical
solution of the Reynolds-averaged Navier}Stokes (RANS) equations, coupled with
turbulence models that are not always reliable. Direct numerical simulations and
large-eddy simulations are important tools for understanding the physics of turbulent #ows
0022-460X/01/170197#18 $35.00/0 ( 2001 Academic Press
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(and the mechanisms by which they generate noise), but they are for the present restricted to
relatively simple geometries and, in the case of DNS, low Reynolds numbers, and so are not
currently practical for use in the design of, say, jet nozzles. The details of the physical
mechanisms by which turbulence generates noise are as yet still unknown, though the
Lighthill acoustic analogy [2] permits the expression of the acoustic noise sources in terms
of fourth order velocity correlations of the turbulent #ow. Computation of the propagation
of an acoustic wave in the spatially and temporally inhomogeneous medium that is the
turbulent #ow "eld, once the sound has been generated, is also a non-trivial problem,
requiring high levels of accuracy to reliably reproduce the phase relationships between
waves.

The present work is concerned with the second of these problems. We do not attempt
a "rst-principles analysis of the generation of sound by turbulence, but rather simply to take
the present state of the art to the next level by examining the e!ect of alternative
representations for the turbulence spectra in the source terms in the Lighthill analogy. As
a representative of the state of the art of practical acoustics computations, we make use of
the MGB code developed by Khavaran [3], which employs the Lilley formulation of the
acoustic analogy [4] and convective corrections as proposed by Ffowcs-Williams [5].

The changes made in the present investigation are to the representation of the two-point,
two-time, velocity correlation, which, in the Khavaran code [3] and traditionally in the
MGB formulation [6], is the empirical representation introduced into acoustic work by
Ribner [7]. This representation involves the separation of the velocity correlation into
a time-dependent factor and a space-dependent factor. Both factors are generally taken as
Gaussian functions of their dependent variables. While this representation has been
adequate (e.g., reference [3]), there is clearly room for improvement in its agreement with
experiment. This representation is also inconsistent with the self-similar nature of the
inertial range of turbulence identi"ed by Kolmogorov [8]. It is natural, then, to ask whether
alternative representations might be more successful in making accurate acoustic
predictions. In the present paper, several alternative representations of the velocity
correlation are implemented in the Khavaran code and the e!ects of these new correlations
on acoustic predictions are presented.

The test case for these alternative representations is the Seiner converging}diverging
nozzle [9]. This nozzle has an exit diameter of 3)6 in, a design Mach number of 2)0 and
a design total temperature of 16803F. Acoustic and aerodynamic data were reported by
Seiner et al. [9] for cases with jet total temperatures ranging from 104 to 22003F. This data
provides a means of assessing the accuracy of both the acoustic computation that is the
focus of the present work and the aerodynamic computation that provides the input for the
acoustic computation. The accuracy of the aerodynamic computation was discussed in
detail by Woodru! et al. [10] and the results of that paper are employed in the present
investigation. Both cold jet (1043F) and hot jet (15503F) cases are examined in the present
work.

The correlation between two velocities at di!erent points and times in a turbulent #ow is
the essential component of the noise source computation in the MGB formulation. This
correlation will be decomposed below in a manner common in turbulence investigations
into a spatial spectrum function Q(k) and a wavenumber-dependent time-correlation
function r (k, q). In the case of the correlation introduced by Ribner [7] used in the MGB
formulation, Q is a Gaussian exponential in k and r is a Gaussian exponential independent
of k. Two additional functions are introduced in the present work: the Q corresponding to
the Kolmogorov spectrum [8] and an r proposed by Kaneda [11] which is consistent with
the Kolmogorov inertial-range scalings. Four correlations may be constructed by
combining each of the two Q functions with each of the two r functions. One of these four
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correlations is the MGB correlation and a second (the Kolmogorov Q combined with the
MGB r) is shown below to di!er from it only by a multiplicative constant, so we are left with
two new correlations to compare against the MGB correlation.

The Q's and r's discussed here are by no means the only possibilities; the purpose of the
present work is to make an initial investigation of the e!ect of di!erent correlations on
the predicted noise spectra and so to determine the potential for improvements in
noise-prediction capabilities through the use of improved representations of the velocity
correlation. It will be seen that the somewhat crude representation of turbulence made by
the correlations tried in the present investigation do not, in fact, predict noise particularly
well. But they are seen to cause measurable deviations from the MGB results and to
improve on the MGB results in some limited respects, at least for the test cases treated here.

Rubinstein and Zhou, in a series of papers [12}14], have also explored the acoustical
consequences of realistic inertial range turbulence behavior, addressing such questions as
the resulting acoustic scaling laws, the appropriateness of Eulerian and Lagrangian
correlations and the development of subgrid noise-generation models for use in conjunction
with large-eddy simulations. In work with similar motivations to that reported here, Zhou
et al. [15] have implemented realistic inertial-range velocity correlations in the MGB
formulation and have also seen some improvement in certain aspects of their noise
predictions. They work with a physical space, rather than spectral, representation of the
velocity correlation and employ di!erent time correlations than those employed here.

Tam and Auriault [16] have recently proposed a di!erent approach to noise prediction
which, while also involving an integral representation of the far"eld acoustic energy in terms
of a near"eld velocity correlation, does not employ the Lighthill acoustic analogy or
theoretically motivated velocity correlations. Their method, based on a billiard-ball style
kinetic-theory argument, incorporates an experimentally determined anisotropic velocity
correlation function and is shown to work well for a number of jet #ows. That Tam and
Auriault's results are signi"cantly better than those presented here suggests that an
anisotropic velocity correlation may be crucial to accurate noise prediction.

2. AERODYNAMIC COMPUTATION

The aerodynamic data required for the acoustic computation is computed using the CFD
code ISAAC [17]. ISAAC (Integrated Solution Algorithm for Arbitrary Con"gurations) is
a second-order-accurate "nite-volume code for solving the full Navier}Stokes equations.
The convective terms are discretized with an upwind scheme based on Roe's #ux-splitting
algorithm, the di!usion terms are centrally di!erenced and the system of equations is
iterated using an implicit, spatially split, approximate-factorization scheme. The
computation is a Reynolds-averaged Navier}Stokes calculation, in which the mean velocity
"eld is found with the aid of two-equation turbulence models. The computations used in
this work were performed with a k}e model [18]. The aerodynamic calculation is described
only brie#y here. Further details may be found in Woodru! et al. [10].

The computational domain is shown in Figure 1 for this axisymmetric aerodynamic
computation. The domain is composed of "ve blocks, with one in the nozzle (61]61 mesh
points), one outside the nozzle (61]61 mesh points) and three downstream of the nozzle
exit (65]121, 97]121 and 97]121 mesh points). Experimental conditions are used to
determine velocity, pressure and temperature boundary conditions for the upstream
boundary within the nozzle. An in#ow boundary condition with M"0)05 is imposed at the
upstream boundary outside the nozzle and a subsonic out#ow boundary condition is
imposed at the downstream boundary. A characteristic boundary condition is imposed at
the outside boundaries and the no-slip condition is imposed at all walls.



Figure 1. Computational domain.
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The "rst experimental case chosen for the present comparison study is a 1043F case.
Results of the aerodynamics computation are shown in Figure 2, taken from Woodru! et al.
[10], where centerline velocity, Mach number and temperature are compared with the
experimental values. The ISAAC results with the k}e model and using the Sarkar
compressibility correction seem to give the best overall agreement with the experimental
data; these results will be used as the aerodynamic inputs to the acoustic computations.

The second experimental case chosen for comparison is a 15503F case. Again, the
aerodynamic-computation results are taken from Woodru! et al. [10]; they are shown in
Figure 3. This time, the ISAAC results with the k}e model, but without a compressibility
correction, give the best overall agreement with experiment and will be used in the acoustic
computations.

3. ACOUSTIC COMPUTATION

The acoustic computation is the focus of the present work and is based on the state-of-
the-art MGB formulation pioneered by Mani et al. [6]. The MGB code upon which the
present work is based is that of Khavaran [3]. We give a brief overview of the MGB
formulation and the Lighthill acoustic analogy upon which it is based, introduce the new
correlations to be examined in this work and compute the noise source spectra that result
from these new correlations.

3.1. THE LIGHTHILL ACOUSTIC ANALOGY AND THE MGB FORMULATION

The MGB formulation builds on the Lighthill acoustic analogy as modi"ed by Lilley to
produce information about the acoustic "eld by integrating a Green's-function solution to



Figure 2. 1043F case, Sarkar compressibility correction: **, experiment; }))!)), ISAAC k}e model; * *,
ISAAC GS ASM; 2, PAB3D k}e model; })!), PAB3D GS ASM; - - -, PAB3D Girimaji ASM. Centerline (a)
velocity, (b) Mach number and (c) temperature.
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a wave equation over the turbulent "eld. Based on what is essentially a ray theory, the code
employs high-frequency asymptotic solutions to Lilley's equation coupled with various
turbulence approximations and acoustic correction factors to generate solutions for the
sound pressure "eld. The following is concerned with improving the turbulence
approximations used in the analysis. By expressing the two-point velocity correlation in
a general way, a framework is constructed for experimenting with a variety of velocity
correlations more accurate than that used traditionally in MGB formulations. Additionally,
the sensitivity of the acoustic results to the accuracy of the turbulence representation may be
assessed.

Lighthill [2] expressed the sound pressure level radiated by a turbulent #ow in terms of
an acoustic source
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where n is the separation vector between the points at which the primed and unprimed
quantities are evaluated and q is the corresponding time di!erence. The MGB analysis
invokes the twin approximations of quasi-incompressibility (the density is assumed
constant so that it may be pulled out of the average and out of the integral) and
quasi-normality (the resulting average of four velocities is broken up into a sum of products



Figure 3. 15503F case, no compressibility correction:**, experiment; }))!)), ISAAC k}e model;**, ISAAC
GS ASM; 2, PAB3D k}e model; })!)!), PAB3D GS ASM; - - -, PAB3D Girimaji ASM. Centerline (a) velocity,
(b) Mach number and (c) temperature.
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of averages of two velocities). The source then becomes
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is independent of the time separation q and its time derivative is zero.

3.2. VELOCITY CORRELATIONS

At this point we depart from the traditional MGB formulation by representing the
two-point correlation tensor for a statistically homogeneous, isotropic and stationary
turbulent #ow in the general form

S
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(k) Q (k) r(k, q). (3)
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and the function r(k, q), describing the temporal correlation at di!erent wavenumbers, is
normalized so that r (k, 0)"1. Speci"c choices of the functions Q(k) and r(k, q) will be made
below, but the goal here is to construct a framework permitting the acoustic predictions of
many choices for these functions to be evaluated. This representation of S

ij
is common in

the theory of turbulence; see, for example, reference [19].
Substitution of the expression for S
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in terms of Q and r in equation (2) yields
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It is more convenient to work with the frequency representation for I
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A variety of choices for Q(k) and r(k, q) are available in the turbulence literature and may
be conveniently tested with the adapted MGB code. All the choices considered in the
present work have a Gaussian form for the temporal correlation, so that the correlation
may be written r (k, q)"exp [!(q/q

0
)2/p2(k)]. In this expression, the function p is

dimensionless and q
0

is a characteristic time of the turbulence. With u@, a characteristic
velocity of the large-scale eddies, this characteristic time may be used to non-dimensionalize
the source spectrum. The source spectrum for the Gaussian time correlation becomes
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where we de"ne p"u@q
o
k and
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Equation (11) provides us with a convenient expression for evaluating the source spectra
corresponding to speci"c velocity correlations.

In the present investigation, two di!erent choices for Q and for r are examined. The "rst
of these are those corresponding to the MGB correlation. The MGB time-correlation
function [3] is

r
MGB

(k, q)"e~(q@q0)2, (13)

and so the corresponding p is p
MGB

(p)"1. The spatial correlation function employed in the
MGB formulation, a Gaussian exponential in the separation distance, Fourier transforms
to a Gaussian exponential in the wavenumber k and we have
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is the integral length scale of the turbulence, characterizing the size of the
large-scale turbulent motion. As such, it is related to the velocity and time scales u@ and q
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The second pair of functions Q and r to be examined here are chosen speci"cally to
reproduce the self-similar structure of the Kolmogorov inertial range. Thus, Q and the
corresponding Q* are power laws consistent with the !5/3 Kolmogorov inertial-range
energy spectrum:
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The constant C
K

is the Kolmogorov constant, to which we will give the value 1)6, consistent
with experimental observations [20]. The turbulent dissipation, e, may be related to the
kinetic energy K ("3/2 u@2) and to the time scale of the large-scale turbulence by
dimensional analysis to give e"q

o
/a

f
K. This relation has been employed by Khavaran [3]

to "x the time scale in his MGB code and will be used throughout the present paper. We
follow Khavaran in adopting the value a

f
"2.

The singular nature of equation (16) as k tends to zero necessitates that the large-scale
behavior of Q be adjusted in order to get a usable noise source spectrum. We adopt here
a simple and very crude cut-o! of the energy spectrum at a wavenumber k"k

o
, so that the

value of Q (k) is taken to be zero if k(k
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. It is reasonable to take the previously de"ned
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We now describe a time-correlation function r(k, q) that is more faithful to true
turbulence dynamics than the function given in equation (13). Such a time-correlation
function must re#ect the fact that the characteristic correlation times of di!erent-sized
motions are di!erent; thus the dependence of r(k, q) on the wavenumber k, which the MGB
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correlation r
MGB

lacks, is crucial. Broadly speaking, r(k, q) should re#ect the fact that
small-scale motion decorrelates faster than large-scale motion. Dimensional analysis in the
inertial range [8] leads more speci"cally to the scaling relationship q\k~2@3. Kaneda [11]
has presented an inertial-range time-correlation function consistent with this scaling and
with experimental data:
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The constant p
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takes the value 0)9. As this function is again a Gaussian exponential, it may

be expressed in the form presented in the previous subsection, with
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The above expressions have all been manipulated so that the only free parameters in the
velocity correlations are the characteristic velocity and time, u@ and q
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and C
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have already been speci"ed above, this relation "xes a

L
to a value which we

will use throughout this paper.
It remains only to "x precisely q

o
and u@ to complete the speci"cation of the velocity

correlations to be examined in this paper. The relation following equation (16) is used not
only to eliminate e from Q
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and r
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so that all expressions are written solely in terms of the

two parameters q
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and u@, but also as the de"nition of q
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in terms of K and e [3], which are

available to the MGB code from the aerodynamic input data. Similarly, given K"3
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may also be determined from the input data.
Before proceeding, it is useful to compare the two energy spectra and the two time-

correlation functions in order to better understand the noise spectra that will result. In
Figure 4, the two energy spectra are shown normalized by the total kinetic energy so that
the area under each of the curves is unity. The non-dimensional wavenumber p"u@q

o
k was

de"ned above. The MGB spectrum is seen to be composed of wavenumber components in
a fairly narrow band centered approximately about the non-dimensional wavenumber
corresponding to the length scale ¸

x
, p

o
"2n/a

L
+1)5. In contrast, the Kolmogorov energy

spectrum is much broader and involves signi"cant contributions from higher wavenumbers.
Both time-correlation functions examined in this paper are Gaussian functions of time;

they di!er in that the width of the bell curve varies with wavenumber in the case of the
Kaneda time correlation. For the parameter values chosen above, r

K
(k, q) is virtually

identical to r
MGB

(k, q) when k is at the cuto! value k
o
. As the wavenumber increases, r

K
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drops o! faster in time so that the correlation time becomes smaller according to q\k~2@3.
There is no reason why Kaneda's r function should not be used with the MGB energy

spectrum; this k2e~#0/45.k2 energy spectrum is a common choice for "tting low-Reynolds-
number experimental data and initializing low-Reynolds-number DNS runs. It will thus
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provide an opportunity to compare an essentially low-Reynolds-number correlation with
our other, high-Reynolds-number, inertial-range-dominated, Kolmogorov-spectrum-based
correlation. So, in addition to the new velocity correlation constructed with the Q

K
and

r
K

(which shall be referred to as the K#K correlation), we have a second new velocity
correlation constructed with Q

MGB
and r

K
(to be referred to as the M#K correlation).

Noise predictions using these two new correlations will be compared with predictions using
the traditional MGB correlation (Q

MGB
combined with r

MGB
, or M#M). A fourth

correlation results from using Q
K

with the MGB time correlation r
MGB

, but, as mentioned
above, this correlation leads to a source spectrum identical to that associated with the
M#M correlation, except for a multiplicative constant.

3.3. COMPUTATION OF THE SOURCE SPECTRA

We begin our computation of source spectra corresponding to speci"c turbulence
correlations by recovering the MGB noise spectrum by using Q

MGB
and r

MGB
in the

determination of I(X) . If p in equation (11) is replaced by p
MGB

, but Q is left unspeci"ed, the
source spectrum becomes
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and we see that the source spectrum for this choice of time correlation always has
a frequency dependence const. X4e~#0/45.X2. The spatial correlation, determined by Q(k),
serves only to "x the overall multiplicative constant. Consequently, not only is the MGB
expression for the turbulence spectrum unable to represent the inertial range properly, but it
always gives a Gaussian frequency dependence multiplied by an algebraic factor and is
essentially una!ected by the nature of the spatial correlation. Use of the Kolmogorov Q or
any other Q in place of Q

MGB
does not lead to a signi"cantly di!erent noise spectrum as long

as the MGB time correlation is used.
Since we do want to "x the constant in the MGB case, we substitute Q

MGB
for Q in the

above to get the MGB result
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The "rst alternative to the MGB velocity correlation is the K#K correlation, where
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the cuto! at k"k
0

discussed in the previous subsection, one "nds
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This is a reasonable result for the inertial range and has the self-similar power-law behavior
one expects. However, its failure to drop o! to zero at low frequencies makes it an
inadequate representation of the source spectrum as a whole and makes it unusable in the
MGB code.

When the cut o! (which has the e!ect of changing the lower limit of integration in
equation (11) to p
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where C (a) and C (a, x) are the Euler gamma function and the incomplete Euler gamma
function, respectively.

The second source-spectrum alternative arises from using the M#K velocity
correlation. When Q
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and p
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are used in equation (11), the source spectrum becomes

I(X)

o2u@7
"

64a
L

5a
f

n5@2p3
0
f
eC

(a2
L
a
f
)1@3q

0
X

21@231@3n5@6p
0
D. (25)

The function f
e
(z) is de"ned by

f
e
(z)"z4P

=

0

dp@ p@16@3 exp (!z2/p@4@3!p@2). (26)



Figure 5. I(X)/I
max

for the three noise spectra:**, MGB; - - -, Kolmogorov energy spectrum with Kaneda time
correlation (K#K); })!), MGB energy spectrum with Kaneda time correlation (M#K).
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We now have three source spectra to consider: the original MGB spectrum of equation
(21), the K#K spectrum of equation (23) and the M#K spectrum of equation (25). When
these three expressions for I (X) are evaluated numerically, the most dramatic di!erence
between them is in their magnitudes. With the parameter values given in the previous
subsection, the MGB spectrum has a peak value 441)31 o2u@7, the K#K spectrum has
a peak value of 2)6 o2u@7 and the M#K spectrum has a peak value of 15)07 o2u@7. The three
spectra, normalized by their peak values, are shown in Figure 5. The two new spectra are
seen to be signi"cantly more narrow-banded than the MGB spectrum and to peak at lower
frequencies: at Xq

0
"1)65 for the K#K spectrum and Xq

0
"1)15 for the M#K

spectrum, in contrast to the Xq
0
"4 peak of the MGB spectrum.

4. RESULTS

The e!ects on actual noise predictions of using the new source spectra instead of the
standard MGB form are now examined. Results are compared with experiment for the two
experimental cases described previously. As discussed in the aerodynamics-computation
section, the aerodynamic data used for the 1043F jet case is computed using ISAAC with the
k}e model with the Sarkar compressibility correction, and the aerodynamics data used for
the 15503F jet case is computed using ISAAC with the k}e model without the Sarkar
compressibility correction.



Figure 6. SPL at three microphone angles for 1043F case: **, experiment; - - -, Khavaran MGB code; 2,
present computation, using Kolmogorov spectrum and Kaneda time correlation (K#K). (a) h"93)33,
(b) h"122)73 and (c) h"138)83.
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The experimental acoustic data was taken with a series of microphones located on a line
parallel to the jet axis and 12 ft from that axis. For the present comparison, sound pressure
levels (SPLs) in one-third-octave bands are given at each of three microphone positions. For
each microphone position, the experimental SPL, the SPL given by the traditional MGB
formulation and the SPL given by the new source spectrum is displayed. The angle h is the
angle between a line from the jet nozzle to the microphone and the jet axis, measured so the
1803 is directly downstream of the nozzle and 903 is abeam of it.

Figure 6 shows results for the 1043F case, using the source spectrum of equation (23) from
the K#K velocity correlation. The predictions of the new source spectrum are signi"cantly
lower than those of the MGB source spectrum, as might be expected given the much smaller
amplitude of this source spectrum. The sharp peaks that appear in the h"93)33 SPL at
high frequency are the result of contributions from other noise mechanisms (such as shock
noise); the MGB source spectrum contribution is large enough that these other
contributions play no signi"cant role for this test case. (Note that one would not expect
shock noise to make a signi"cant contribution to noise generation for this test case.) It is
encouraging that the SPL as a whole is broader than the MGB SPL, particularly for the
h"93)33 case, and in this respect agrees better with experiment. It is also of interest that the
experimental results are marked by a reduction in the frequency of the SPL peak as
h increases. While neither prediction re#ects this property well, the peaks in the SPLs
associated with the K#K correlation move more than those of the MGB SPLs. (The
altered source frequency spectrum is able to a!ect the angular dependence of the noise
predictions because it emphasizes di!erent frequency bands. The amplitude of the di!erent



Figure 7. SPL at three microphone angles for 1043F case: **, experiment; - - -, Khavaran MGB code; 2,
present computation, using exponential spectrum and Kaneda time correlation (M#K). The source spectrum has
been multiplied by a numerical factor that brings its peak value to that of the MGB source spectrum. (a) h"93)33,
(b) h"122)73 and (c) h"138)83.
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frequency bands varies di!erently with the angle h, and so the results using the new
spectrum exhibit di!erent angular dependence than those using the original spectrum.)
Both computations severely underpredict the low-frequency noise.

Results using the source spectrum of equation (25) from the M#K velocity correlation
are shown in Figure 7. Most of the observations on the K#K results apply here as well,
with the exception that the overall magnitudes of the M#K SPLs are somewhat more in
line with the MGB and experimental results * this is most likely simply a result of the
reduced amplitude discrepancy in the M#K source spectrum. In particular, the
broadening of the SPL seen in the K#K results is even more pronounced here.

In order to separate out the e!ect of the shapes of the new source spectrum distributions
from the e!ect of their overall amplitude, additional computations were carried out with
each source spectrum multiplied by a factor which brings its peak value to the peak value of
the MGB source spectrum. The results are shown in Figures 8 and 9. While there is
improvement (the multiplicative factor makes the source-spectrum component large
enough to cover the shock-noise component that generated the isolated peaks at h"93)33,
for example), the predictions are still inadequate, particularly at higher values of h. It is
c

Figure 9. SPL at three microphone angles for 1043F case:**, experiment; ---, Khavaran MGB code; ))), present
compution, using exponential spectrum and Kaneda time correlation (M#K). The source spectrum has been
multiplied by a numerical factor that brings its peak value to that of the MGB source spectrum. (a) h"93)33,
(b) h"122)73 and (c) h"138)83.



Figure 8. SPL at three microphone angles for 1043F case:**, experiment; ---, Khavaran MGB code; ))), present
compution, using Kolmogorov spectrum and Kaneda time correlation (K#K). The source spectrum has been
multiplied by a numerical factor that brings its peak value to that of the MGB source spectrum. (a) h"93)33,
(b) h"122)73 and (c) h"138)83.
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Figure 10. SPL at three microphone angles for 15503F case: **, experiment; ---, Khavaran MGB code; ))),
present compution, using Kolmogorov spectrum and Kaneda time correlation (K#K). The source spectrum has
been multiplied by a numerical factor that brings its peak value to that of the MGB source spectrum. (a) h"93)33,
(b) h"122)73 and (c) h"138)83.

212 S. L. WOODRUFF E¹ A¸.
interesting to note that the sensitivity of the K#K and M#K results in Figures 8 and 9 to
variations in h are signi"cantly greater than that of the MGB results or the results in
Figures 6 and 7.

The corresponding results for the two new spectra for the 15503F jet case are shown in
Figures 10 and 11. (These results are computed with the source spectra multiplied by the
same factors as for Figures 8 and 9.) The qualitative trends are similar to those for the 1043F
case.

While the two new source spectra examined here were derived from fairly crude
representations of the turbulence velocity correlations and did not lead to a material
improvement over the standard MGB code, the present results do show that the adoption
of alternative velocity correlations can a!ect noise predictions. It is possible that further
work in this direction will lead to improvements in MGB-code acoustic predictions,
notwithstanding the poor performance of the spectra tried here. Consequently, more
sophisticated velocity correlations are currently being investigated.
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Figure 11. SPL at three microphone angles for 15503F case: **, experiment; ---, Khavaran MGB code; ))),
present compution, using exponential spectrum and Kaneda time correlation (M#K). The source spectrum has
been multiplied by a numerical factor that brings its peak value to that of the MGB source spectrum. (a) h"93)33,
(b) h"122)73 and (c) h"138)83.
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