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The vibration of skew laminated composite plates with simply supported and clamped
edges is studied. The skew plate is mapped into a unit square by linear transformation.
Orthogonal polynomials are used with the Ritz method to determine the natural
frequencies. The effects of skew angle and lamination scheme on natural frequencies are
studied. Results are tabulated for different lamination schemes and compared to available
studies in the literature.
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1. INTRODUCTION

The use of skew laminated composite plates has increased in many applications. As a result,
there is a significant number of studies on vibration of thin, skew isotropic plates (see, for
example, references [1-16]). On the other hand, in literature there is a relatively limited
number of studies on laminated composite skew plates. Krishnan and Desphande [17]
studied thin cantilevered isotropic skew plates, laminae and laminates using discrete
Kirchoff theory. Hosokawa et al. [18] analyzed free vibrations of a fully clamped
symmetrically laminated skew plate, using the Green function approach. They studied the
effects of the skew angle and the fibre orientation angle on natural frequencies and mode
shapes. Han and Dickinson [19] extended the Ritz approach to symmetrically laminated,
composite, skew plates. They illustrated the influence of different lamination lay-ups, skew
angles and edge conditions on the natural frequencies and nodal patterns of a selection of
plates. Wang [20] presented a B-spline Rayleigh-Ritz method for free vibration analysis of
thin skew fibre-reinforced composite laminates. He obtained non-dimensional frequency
parameters for arbitrary lay-ups, various skew angles and boundary conditions.

In the present study, a skew plate is mapped into a unit square, and the Ritz method is
used together with two-dimensional orthogonal polynomials to study the free vibration
analysis of thin skew laminated composite plates. To prove the validity of the approach,
numerical results are compared to the results available in the literature.

2. SOLUTION

Figure 1 shows the geometry of a skew lamina and the fibre orientation. Each lamina is
assumed to have the same material density, p, per unit area and the same thickness, h. The
laminate is made up of a number of laminae, each consisting of unidirectional
fibre-reinforced composite material. The skew angle « is measured as shown in Figure 1.
The fibre angle, 0, is measured from the x-axis in the counterclockwise direction.
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Figure 1. The geometry of a skew fibre-reinforced laminate.

The Ritz method is used to find an approximate solution for free vibration of skew
laminated composite plates. The strain energy and the kinetic energy are given by
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D;j’s are the laminate stiffnesses given in Appendix A, p, is the mass per unit volume. Since
the system is assumed to be conservative, the total energy obtained by adding equations (1)
and (2) is constant. This displacement function is assumed to have the following form:

w(x, y, 1) = W(x, y)e’, )

where w is the natural frequency and W the midsurface displacement in the z direction.
Substituting equation (3) into equations (1) and (2), the following is obtained:
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where E,, is the modulus of a lamina transverse to the direction of fibres. The solution of
the problem reduces to finding the minimum of the total energy given by equation (4).
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2.1. MAPPING OF THE SKEW DOMAIN

Before assuming a proper function for the midplane displacement W(x, y), the skew plate
is mapped into a unit square. A similar mapping is used by Liew et al. [21] for the mapping
of quadrilateral plates into a unit square. Figure 2(a) shows the domain of the skew plate R.
The mapping of the skew plate into a unit square is performed as follows:

x=aé + bcosan, y=bsinay, (5)

where ¢ and 5 are new co-ordinate axes as shown in Figure 2(b). If equation (5) is
substituted into equation (4) and the derivatives evaluated accordingly, an energy equation
similar to equation (4) in terms of & and 7 is obtained. To apply the Ritz method
a displacement function for the midplane, @(¢&,#), which is made up of orthogonal
polynomials will be used in the mapped domain.

Linearly independent set of polynomials satisfying essential boundary conditions can be
defined as follows:

EGn =fCma&n), i=12.., (6)

where f;(&, ) take the ™ ™ form. m; and n; are non-negative integers and their choice
depends upon the mode shapes. For modes symmetric about the &-axis and antisymmetric
about the n-axis, m; are odd and n; are even. f(&, 1) satisfy the boundary conditions and have
the following form:

J(&m) =& =1 —n). ()

The parameters p, ¢, r and s take values according to the types of boundaries at the sides.
The parameters will be 0, 1 or 2 as the sides are free, simply supported or clamped,
respectively. If the & = 0 side is simply supported, then p = 1. The orthogonal polynomials,
¢x, are generated using the Gram-Schmidt orthogonalization procedure [13]. Generation
of orthogonal polynomials is also proposed by Bhat [22, 23].
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Figure 2. Mapping of the skew plate into a unit square.
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where

HF M) ;(E mdéEdy
= 17 6 E 1 6y(E Mgy

j=1,,i—1, i=2234,....m ©9)

After defining the orthogonal set of polynomials, the midsurface translational
displacement in the z direction, @(¢, 1), can be assumed in the form of a finite series,

n=Y o, (10)

where C;’s are undetermined coefficients. Substitution of @(&, #) into the mapped form of
equation (4), and minimizing gives the following equation:

Z [Klj—)uleJ]CJ:O, l: 1, 2,...,m, (11)
j=1

where K;; is the stiffness matrix shown below:
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S/’s are given in Appendix A, and M;; is the mass matrix,
11
My = [ [o,acan (13)
00

and A2 is the following frequency parameter:

/lz == w2a4p0/h2E22. (14)

2.2. BOUNDARY CONDITIONS

Plates clamped and simply supported at all sides are considered separately. The
boundary conditions are as follows:
For a simply supported edge:

E=0and l: =0, 0*w/0&* =

n=0and 1: @=0, 0*w/on*=0, (15)
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For a clamped edge:
¢=0and 1: @=0, Jw@/0=0,
n=0and 1: @=0, Jw/on=0. (16)

3. RESULTS

Natural frequencies of skew plates are obtained for various types of material
combinations and lamination schemes. Simply supported (SSSS) and clamped (CCCC)
skew plates with various skew angles o are studied. Cross-ply and angle-ply laminates are
used to examine the effect of the lay-up on frequencies. The results are given in the following
non-dimensional frequency parameter form:

2% = wd?/n*h/po/E,,. (17)

Note that in equation (17) A* = i/n?. Convergence of A* values are given in Tables 1 and 2,
for simply supported isotropic and cross-ply laminated plates.

First, a laminated skew plate with five symmetric cross-ply layers (90°/0°/90°/0°/90°) is
analyzed. For such a symmetric lay-up there is no coupling between in-plane and
out-of-plane behaviours. There is no bending—twisting coupling as a result of the cross-ply
lay-up used. The results are presented in Tables 3 and 4 for the two different boundary
conditions, SSSS and CCCC, respectively. The material properties of each lamina are
identical and have the following values: E/E,, = 40, G,,/E,, = 0:6, vy, = 0:25.

In Table 4, the frequency results for a fully clamped skew plate are presented and they are
in very good agreement with the results of Wang [20] for various skew angles and modes.
The accuracy of results decreases as the skew angle decreases from 90°. When the results for
a simply supported plate presented in Table 3 and the results for a fully clamped plate
presented in Table 4 are compared, it is seen that the results for a fully clamped skew plate
are closer to the results presented by Wang [20].

In Tables 5 and 6, the results for a laminated skew composite plate with five symmetric
angle-ply (45°/ — 45°/45°/ —45°/45°) layers are presented for SSSS and CCCC boundary
conditions respectively. In this case, as a result of the angle-ply configuration, there is

TaBLE 1

Convergence of 2* values for SSSS skew (x = 60°) isotropic plate

m I ax i 2 ax ax pE:

9 259 677 925 12:48 19-37 1997 2218
16 2:58 5-45 752 9-49 1872 18:83 1981
20 257 5-40 7-46 8-89 13-23 1381 1476
25 254 5-36 7-39 868 13-07 1341 14-59
29 254 534 733 8-54 12:77 1320 1459
30 257 529 719 8-64 12:81 13-19 14-63
36 254 533 731 853 1274 1275 14-54
40 2:54 533 731 851 12:51 1252 1431
49 254 533 730 850 12:48 12:45 1426
Wang [20] 253 533 728 8-50 12:45 1245 1426

Singh et al. [13] 2:57 535 7-40 8:86 13-20 — —
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TABLE 2

Convergence of 2* values for SSSS skew (« = 60°) cross-ply [90°/0°/90°/0°/90°] laminated
composite plate

m ¥ A% A% Y5 A% Ak A%
9 2:95 675 1247 14-08 1829 24-45 30-64
16 2:89 5-39 976 10-32 17-04 19-57 29-98
20 2-88 529 912 9-56 13-37 14-49 21-08
25 2-86 527 890 9-49 12-86 13-96 20-67
29 2:86 523 861 9-39 12:63 13-52 19-56
30 2-86 522 861 9-39 12:63 13-12 19-56
36 2-85 521 858 9-32 12-48 12:75 1863
40 2:-85 521 852 9-31 1228 12-35 18-51
49 2:84 520 849 9-29 12-18 12:25 17-18
Wang [20] 283 519 8-48 926 1211 1213 1648
TABLE 3

Values of 2* for SSSS skew laminated [90°/0°/90°/0°/90°] composite plate

o vk % % AF % rE ks Source

90° 191 398 666 7-66 815 1063 1477 Present study
1-91 398 6:66 7-66 815 10063 14-19 Wang [20]

60° 2-84 520 849 929 12-18 1225 1718 Present study
2-83 519 848 926 12-11 1213 1648 Wang [20]

45° 4-55 7-14 10-53 14-45 1518 19-02 21-34 Present study
4-48 7-11 10-45 14-10 1478 1796  19-60 Wang [20]

TABLE 4

Values of 2* for CCCC skew laminated [90°/0°/90°/0°/90°] composite plate

7% * * * 7% * *
o V5 s % iy % E % Source

90° 424 6:69 10-45 11-44 11-78 15-14 18-29 Present study

424 669 1045 1144 1178 1514 1819 Wang [20]

60° 563 833 1240 1413 1676 1697 2185 Present study
563 833 1240 1413 1674 1696 2170 Wang [20]

45° 846 1180 1618 2109 2156 2598 2748 Present study
846 1180 1617 2094 2151 2565 2684 Wang [20]

a bending-twisting coupling. The material properties of each lamina are the same as the
properties used previously. The results for angle-ply, simply supported laminated plate
are in good agreement with the results of Wang [20] (see Table 5). For a fully clamped
skew plate there is better accordance for higher modes and low skew angles as shown in
Table 6.
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TABLE 5
Values of A* for SSSS skew laminated [45°) — 45°/45°) — 45°/45°] composite plate

o ¥ 5y 2% AF A% rE A% Source

90° 2:44 499 619 849 10-26 11-66 12-87 Present study
243 4-99 6-18 849 1025 11-65 12:83 Wang [20]

60° 2:61 569 6-84 9-48 11-90 1325 14-35 Present study
261 569 6-83 9-48 11-89 1324 14-28 Wang [20]

45° 333 690 973 1073 1565 1631 19-44 Present study
3-32 6-90 9-69 10-72 1553 16:15 19-35 Wang [20]

TABLE 6

Values of 2* for CCCC skew laminated [45°) — 45°/45°/ — 45°/45°] composite plate

o ¥ % 2% V5 A% Ak 7% Source

90° 390 7-15 846 11-21 13-32 14-75 16-13 Present study
390 715 846 1121 13-32 1474 1613 Wang [20]

60° 4-54 838 9-88 12-85 15-69 17-489 18-35 Present study
4-54 838 9-88 12-85 15-69 17-49 18-34 Wang [20]

45° 631 10-82 14:50 15-47 21-09 22:13 25-89 Present study
6-31 10-82 14-50 1547 21-06 2208 25-89 Wang [20]

TaABLE 7

Values of A* for CCCC skew laminated [30°/ — 30°/30°] graphite/epoxy composite plate

o ¥ 5y A% ¥ A% AE 2% Source
90° 2:47 377 570 603 7-56 8:03 10-17 Present study
2:47 377 570 6-03 7-56 — — Hosokawa et al. [18]
2:47 377 570 6-03 7-56 — — Han and Dickinson [19]
80° 2-31 3-82 542 5-96 7-28 8-49 10-00 Present study
2-31 3-82 542 596 7-29 — — Hosokawa et al. [18]
2-31 3-82 542 5-96 7-29 — — Han and Dickinson [19]
70° 2:27 4-09 504 6-52 7-40 9-12 9-39 Present study
2:27 4-09 5:04 652 7-40 — — Hosokawa et al. [18]
2:27 4-09 5-04 652 7-40 — — Han and Dickinson [19]
60° 2-37 4-65 495 7-35 815 876 10-87 Present study
2-37 4-65 4-95 7-35 815 — — Hosokawa et al. [18]
2:37 4-65 495 7-35 815 — — Han and Dickinson [19]
50° 271 522 574 814 9-46 10-11 11-88 Present study
271 522 574 814 9-46 — — Hosokawa et al. [18]
271 522 574 814 9-46 — — Han and Dickinson [19]

In Tables 7-9 non-dimensional frequencies of angle-ply rhombic laminates (30°/ — 30°/30°)
are tabulated for skew, clamped laminated plates made of three types of composites;
graphite/epoxy, E-glass/epoxy and boron/epoxy. The effect of the skew angle o« on
non-dimensional natural frequencies is calculated. The results are compared with those
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TABLE 8
Values of 2* for CCCC skew laminated [30°/ — 30°/30°] E-glass/epoxy composite plate

o ¥ 5y A% ¥ A% AE 2% Source

90° 1-32 2-46 2:90 3-88 4-40 528 5-58 Present study
1-32 2-46 2:90 3-88 4-40 — — Hosokawa et al. [18]

80° 1-32 255 2-80 4-00 4-47 5-08 5-90 Present study
1-32 2-55 2-80 4-00 4-47 — — Hosokawa et al. [18]

70° 139 2-69 2:94 4-14 4-89 523 6-05 Present study
1-39 2:69 2:94 4-14 4-89 — — Hosokawa et al. [18]

60° 1-55 2-89 341 4-37 5-56 598 623 Present study
1-55 2-89 341 4-37 5:56 — — Hosokawa et al. [18]

50° 1-88 330 4-29 4-85 6:66 672 7-60 Present study
1-88 3:30 429 4-85 6:66 — — Hosokawa et al. [18]

TABLE 9

Values of 2* for CCCC skew laminated [30°/ — 30°/30°] boron/epoxy composite plate

o vk % A% ¥ A% ¥ % Source

90° 2-10 327 502 507 642 7-13 872 Present study
2:10 327 502 5-07 642 — — Hosokawa et al. [18]

80° 197 3-33 4-57 527 622 7-58 8-39 Present study
197 333 4-57 526 622 — — Hosokawa et al. [18]

70° 195 3:58 428 5-80 634 7-67 844 Present study
1-95 3-58 4-28 5-80 634 — — Hosokawa et al. [18]

60° 2:07 4-06 427 652 7-01 7-52 971 Present study
207 4-06 427 652 7-01 — — Hosokawa et al. [18]

50° 2-39 4-53 5-08 7-08 837 8-83 1025 Present study
2:39 4-53 5-08 7-08 837 — — Hosokawa et al. [18]

of Hosokawa et al. [18], and Han and Dickinson [19]. The following material properties
are used for the graphite/epoxy composite: E;{/E,, = 154, G;,/E,, =079, v;, =0-3. In
Table 7, the results show that the natural frequency parameters are almost the same as the
results of Hosokawa et al. [18], and Han and Dickinson [19] for graphite/epoxy.
Hosokawa et al. [ 18] use the Green function with 66 number of terms. Han and Dickinson
[19] use a hierarchical finite element method with 20 shape functions. The accuracy remains
the same even for highly skewed plates and for higher modes.

E-glass/epoxy and boron/epoxy are the materials used to calculate the results of Tables 8
and 9. They have the following material properties, respectively: E,{/E{, =245,
G15/E;; =048, v =023, and E,/E,; = 11, G1,/E;, = 034, vy, = 0-21.

The results are compared to the results of Hosokawa et al. [18] in Tables 8 and 9 for
both cases. The frequencies agree quite well for highly skewed cases and for higher
vibration modes. The results obtained in the present study for E-glass/epoxy are lower than
those of Hosokawa et al. [18]. Graphite/epoxy yield the largest frequency values while
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TasLE 10
Values of 2* for CCCC skew laminated [0°/0°/0°/0°/0°] graphite/epoxy composite plate

o ¥ 5y A% ¥ A% AE 2% Source
90° 275 3-42 4-80 693 7-25 777 8:80 Present study
2-75 3-42 4-80 690 7-25 — — Han and Dickinson [19]
30° 502 7-82 1120 12008 1513 1628  19-56 Present study
5-02 7-81 1120 12-07 15-08 — — Han and Dickinson [19]
TaBLE 11
Values of A* for CCCC skew laminated [30°/ — 30°/30°/ — 30°/0°] graphite/epoxy composite
plate
o Vi % % ¥ % ¥ % Source
90° 2:62 421 622 6.58 807 9-60 10-97 Present study
2:62 421 622 6-58 807 — — Han and Dickinson [19]
30° 6-06 992 1381 1446 1841 2114 23-60 Present study
6-:06 992 13-81 14-44 18:36 — — Han and Dickinson [19]

E-glass/epoxy material has the lowest frequency values for the symmetric angle-ply
laminated composites.

Non-dimensional natural frequency parameters are also obtained for five symmetric
angle-ply skew composite plates made of graphite/epoxy with (0°/0°/0°/0°/0°) and
(30°/ — 30°/30°/ — 30°/30°) configurations. The material properties are the same as those
used previously. For a fully clamped plate, the results are given in Tables 10 and 11 for two
different skew angles (¢ = 90, 30). There is very good agreement with the results of this study
and of those of Han and Dickinson [19]. Although the laminate is highly skewed, the
accuracy is very good even for higher modes.

4. DISCUSSION

In this paper, the free vibration problem of skew laminated composite plates is studied.
Natural frequencies are calculated for various skew angles, lamination schemes and
material properties. An approach that can easily be applied to finding the frequencies of
laminated, skew, composite plates is provided.

The skew domain is mapped into a unit square to use simple orthogonal polynomials,
which are generated through the Gram-Schmidt orthogonalization procedure. The use of
orthogonal polynomials together with the Ritz method is an efficient computational
method. Once the orthogonal polynomials are generated for the unit square, they are used
for plates with different aspect ratios a/b, and skew angles «. An appropriate number of
polynomials, m can be chosen to obtain a desired accuracy. In this study, 49 terms have been
used for the calculations to obtain sufficient accuracy. The next step would be to use 64
terms, which would introduce additional computational difficulties, and make the
computation time considerably longer. Mathematica has been used extensively, and for
example the use of 49 terms instead of 36 almost doubled the amount of computation time.
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For all cases, 49 terms are used, and 49 terms give satisfactory results in frequency
parameters when compared with the previous studies. The comparison of frequency
parameters is given in Tables 3-11. For example, Liew and Lam [11] use 35 terms and the
convergence pattern they show for the first four modes employs two decimal places.
A similar convergence pattern for the first four modes has been obtained as seen in Tables 1
and 2.

The frequency parameters are evaluated for simply supported and clamped laminated
composite skew plates. The accuracy obtained in frequency parameters for different modes
and skew angles using 49 terms is presented in Tables 3-11. The results show that sufficient
accuracy has been obtained when the results are compared to those of Wang [20], Han and
Dickinson [19] and Hosokawa et al. [18]. Higher accuracy in the results is obtained for the
case of clamped plates. This may be the result of the displacement form assumed for the
simply supported case. The accuracy is determined by comparision with the results
presented in the literature.

In frequency parameter calculations, the accuracy of the results decreases as the number
of modes increases. To increase the accuracy for higher modes more terms should be
included to the series expression for @ (&, ), given in equation (10). Accuracy also decreases
for the cases where o decreases from 90°.

We have used simple polynomials that are easy to apply compared to other methods used
in the literature such as the use of B-spline function by Wang [20], Green function by
Hosokawa et al. [18]. This makes the application of the solution method to skew plates less
tedious.
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APPENDIX A

k

n h,
py= ¥ |
k=1Jh

g —

Q_f;‘) z?dz, (A1)

where the Q;/s (i,j = 1, 2, 6) are

0% = Q108" 0 + 2(Q, + 2Qe6) sin? O cos? O + Q,,sin* 0,

0% = Qy1sin*0 + 2(Q15 + 2Q¢6)sin? 0 cos? O + Q,, cos* 0,

_(1k2) =(Q11 + Q22 —4Qs6)sin* 0 cos? 0 + Q,((sin* 0 + cos* 0),

08 = (011 + Q22 — 2015 — 2Q66) sin* O cos? 0 + Qg6 (sin* 0 + cos* 0),
Q_iks) =(Q11 — Q12 — 2Q66)sin 008 0 + (Q12 — Q25 + 2Q¢6)sin’ O cos 0,

04 =(Q11 — Q12 — 2Qs6)sin® 0 cos 0 + (Q15 — Q22 + 2Q6¢)sin 0 cos® 0 (A2)

and the elastic constants Q;;’s (i,j = 1, 2, 6) are

Q11 =E /(1 =vi3v21), Qa2 =Epn /(1 —vi3vs9),
Q1o =vo1 Eqi /(1 —viava1), Qa1 =viEnn /(1 —viavsay),

Q66 = G12, Q16 = Q26 =0, (A3)
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2C2DT2 C4D’2kz 4C2D§6 4CD>1k6 4C3D’2k6

S1:DT1+
52 st 52 s s3 7

47y

N _u'D3

2 = 4

2u*D¥, 2u*c?D%,  4p’cD3g
S = 2 + o+ - PER

4u*c?D},  8ucDis  4u’Dis
Sa = st s + sz 7

. 4ucDY, n 4uDts . 4,UC3D3<2 n 12,UCZD>2F6 . 8ucDgs

Ss = 52 s st s3 s
4 3 D* 4 3D*
Se = — ﬂC4 22+ /1326’ (Ad)
S S
D} = Dyy/Exa i, (A3)

1= ajb, (A6)

where s = sina and ¢ = cosa.
Displacement function used for simply supported boundary:

@& n) = Ci(n — En— &> + En®) + Co— En/2 + 3En/2 — En + &n*)2 — 38072
+En?) + Ca(— &n/2 + En/2 + 3&n*/2 = 38n%)2 — &n® + &)
+ Ca(Cnf4d —3En/4 + En/2 = 3En?/4 + 9En%/4 = 38022 + &n’)2
=382 + End). (A7)
Displacement function for CCCC boundary conditions:
a(&n) = Co(En = 2807 + &> =280 + 480> = 2847 + En* = 280* + &)
+ Co(= En*2 4+ 280 = 5072 + En? + En® — 480 + 5&°
=28 = En*2 +28% = SEMH2 + Ent) + Ca(— En?2 + En?
— &2)2 4280 — 487 + 284 — 502 + 5&3n* — 5EH)2
+ 07 = 2807 + E%) + Cu(EPn? /4 — En® + 58H 4 — En?2 — S
+ 4803 = SEP+280° +580* 4 — 5En* + 258 4 — 5En*2

— En’)2 42807 — 5832 + &), (A8)
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